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Abstract
Since the COVID-19 outbreak, four cities—Wuhan, Beijing, Urumqi and Dalian—have experienced the process from out-
break to stabilization. According to the China Statistical Yearbook and China Center for Disease Control records, regional, 
pathological, medical and response attributes were selected as regional vulnerability factors of infectious diseases. Then 
the Analytic Hierarchy Process (AHP) method was used to build a regional vulnerability index model for the infectious 
disease. The influence of the COVID-19 outbreak at a certain place was assessed computationally in terms of the number 
of days of epidemic duration and cumulative number of infections, and then fitted to the city data. The resulting correlation 
coefficient was 0.999952. The range of the regional vulnerability index for COVID-19 virus was from 0.0513 to 0.9379. 
The vulnerability indexes of Wuhan, Urumqi, Beijing and Dalian were 0.8733, 0.1951, 0.1566 and 0.1119, respectively. 
The lack of understanding of the virus became the biggest breakthrough point for the rapid spread of the virus in Wuhan. 
Due to inadequate prevention and control measures, the city of Urumqi was unable to trace the source of infection and close 
contacts, resulting in a relatively large impact. Beijing has both high population density and migration rate, which imply that 
the disease outbreak in this city had a great impact. Dalian has perfect prevention and good regional attributes. In addition, 
the regional vulnerability index model was used to analyze other Chinese cities. Accordingly, the regional vulnerability index 
and the prevention and control suggestions for them were discussed.
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Introduction

As is well known, the COVID-19 epidemic first broke out 
in Wuhan, China, on December 12, 2019. It is an infectious 
disease caused by a new type of coronavirus, which was 
not isolated until January 2020. In February 11, 2020, the 
World Health Organization officially named the disease as 
the COVID-19 (Zhu et al. 2020). Due to the highly infec-
tious nature of COVID-19 and its occurrence during the time 
of the traditional Chinese festival (Spring Festival) during 
which the country experiences a huge passenger volume, 
the new crown pneumonia swept all Chinese provinces in 
less than a month, and then spread worldwide (Gross et al. 

2020; Jia et al. 2020). As of April 2, 2020, the number of 
people diagnosed with COVID-19 had exceeded one million 
worldwide. There is no doubt that the COVID-19 poses a 
huge threat to human health all over the world, and it has 
also caused serious damage to the world economic situation 
(Wale-Awe 2020).

Epidemic prediction models play a very important role in 
the prevention and control of infectious diseases. However, 
the current mathematical models of infectious disease spread 
rather simulate and predict follow-up developments based 
on the short-term disease evolution after its occurrence. The 
most commonly used model is the susceptible-infected (SI) 
model and other variations derived from it (Anderson and 
May 1979; May and Anderson 1979). Among them, the sus-
ceptible–exposed–infected–removed (SEIR) model currently 
performs best in the case of COVID-19 (Wu et al. 2020b). 
For example, the SEIR model was used to perform an 
insightful comparative analysis of the COVID-19 epidemic 
spread in China, South Korea, Italy and Iran (He et al. 2020). 
The approach of inferring long-term trends from short-term 
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results is mathematically simple and effective under certain 
conditions. However, since it needs to use short-term data 
that are available after the outbreak, it can neither provide 
early warnings of a disease that has not yet occurred, nor 
analyze specifically the weak links in disease prevention and 
control to offer targeted prevention suggestions.

In this case, the establishment of a regional vulnerability 
model allows the assessment of various parameters related 
to the spread of infectious diseases and the risk prediction 
analysis of unaffected areas. At present, many relevant stud-
ies have used various methods to construct vulnerability 
models related to COVID-19 and involve many possible 
risk factors, such as blood type, HIV, gene and genetic fac-
tors (El-Shitany et al. 2021; Pollitt et al. 2020). In addition 
to pathological factors, the vulnerability of social factors, 
such as population density, age structure of the population, 
ethnicity, and regional health levels, is also worth studying 
(Ong et al. 2021; DeCaprio et al. 2020; Chen et al. 2021). 
In these studies, the AHP method was also applied to the 
assessment of regional risk levels (Rahman et al. 2020; 
Mahato et al. 2020; Sarwar and Imran 2021).

Therefore, this work uses regional conventional attributes 
together with pathological infectious disease attributes to 
assess the risk of an infectious disease outbreak in a region. 
Following risk assessment, the goal of the work is threefold: 
(a) to analyze the region’s vulnerability factors related to 
the disease in order to prevent its spread in advance, (b) to 
identify the potential weaknesses of epidemic prevention, 
and (c) to make comprehensive recommendations that can 
help optimize infectious disease prevention and control.

Following the announcement of the first reported 
COVID-19 case in Wuhan on December 12, 2019, the cit-
ies of Wuhan, Beijing, Dalian and Urumqi went through 
the process leading from outbreak to stabilization (i.e., 
when no new cases were reported in the city during the 
14-day incubation period). Judging from the COVID-19 
developments in the above four regions, there are great 
differences in the number of infected persons, transmis-
sion speed and duration. This means that the COVID-19 

impacts were also considerably different in these four 
regions.

In addition to the pathological properties of the disease 
itself, the reason why the same infectious disease exhibited 
varying levels of impact in these regions is that there are 
some differences between these cities that probably influ-
ence the development of the disease. Previous research 
has shown that factors such as geographic location, popu-
lation density, population mobility and epidemic preven-
tion measures can, indeed, impact the development of the 
epidemic. In fact, these factors exhibit relatively large dif-
ferences in the four regions of interest (Xiong et al. 2020) 
(see, also, Table 1).

By way of a summary, the four cities of interest exhibit 
certain differences in their urban attributes, medical attrib-
utes and response attributes, which can serve as reference 
values for assessing the differences in city vulnerability to 
COVID-19. More specifically, appropriate methods can be 
chosen to extract and analyze the individual vulnerability 
factors of the four cities, and then combined with the cur-
rent infectious disease situations in the cities to derive a 
regional vulnerability model of the infectious disease of 
interest.

Specifically, in section ‘Model construction and analy-
sis’ the study regions and data sources are described, fol-
lowed by an outline of the proposed study methodology. 
The latter includes the definition of the relevant study vari-
ables, the construction of the Analytic Hierarchy Process 
(AHP) matrix and the development of a regional vulner-
ability model for infectious diseases. This model is used 
to study the four cities of interest, as well as provincial 
administrative regions and prefecture-level cities in the 
major Zhejiang Province (a regression technique is used 
to test model accuracy). In section ‘Application’, the study 
conclusions are discussed. Section ‘Discussion’ outlines 
the pros and cons of the proposed vulnerability model, 
and offers suggestions for the prevention and control of 
COVID-19 based on the vulnerability modeling results 

Table 1  Comparison of urban 
attributes

The data was obtained from the 2018 Chinese City Business Charm List released by China Business News 
Weekly (see Online Appendix for detailed analysis)

Beijing Wuhan Urumqi Dalian

Development of 
the city

1st tier city New 1st tier city 3rd tier city 2nd tier city

Regional North China Central China Northwest China Northeast China
Pathologic COVID-19 COVID-19 COVID-19 COVID-19
Medical No.1 No.9 No.21 No.25
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obtained. Lastly, section ‘Conclusions’ provides a brief 
study summary.

Material and methods

Study regions and data sources

As noted earlier, the four research regions considered in 
this work are Beijing, Wuhan, Urumqi and Dalian (Fig. 1). 
The reasons for this selection will become apparent in the 
following discussion.

We start by noticing that the study data consist of two 
main parts: epidemic data and regional information data. 
The epidemic data are all from the bulletin of the Chinese 
health commission and the health commissions of all prov-
inces in China. The duration of COVID-19 outbreaks and 
the cumulative number of COVID-19 infections within 
the duration of the four regions were taken into account.

The basic regional information data, on the other hand, 
are all obtained from the statistical yearbook published by 
the National Bureau of Statistics and the provincial admin-
istrative regions of China. The data includes annual GDP, 
permanent resident population, registered population, pop-
ulation density, passenger turnover, number of colleges 
and universities, number of students at above junior col-
leges, number of medical and health institutions, number 
of medical beds and number of medical staff. The most 
recent date was selected for all these data; the permanent 
and registered population data were obtained from the sta-
tistical Yearbook 2020 (statistical data at the end of 2019) 

and the rest from the Statistical Yearbook 2019 (statistical 
data at the end of 2018); and the COVID-19 pathological 
data came from the latest bulletin issued by WHO.

Study method

The study method followed in the present COVID-19 work 
consisted of four main parts:

(a) All variables considered in the modeling of the regional 
vulnerability to the infectious disease were rigorously 
defined.

(b) Factor analysis was used to analyze the level of regional 
higher education.

(c) The AHP method was used to construct the importance 
matrix of the regional disease vulnerability factors and 
the associated influencing variables.

(d) The regional disease vulnerability index was computed 
based on the influencing factors of the regional vulner-
ability and their variables considered in step b above.

(e) A regression analysis of the vulnerability models was 
used for model optimization purposes (Fig. 2).

Variables of the regional disease vulnerability 
model

The variables considered in the present study were 
divided into four following groups: regional attribute var-
iables, pathological attribute variables, medical attribute 
variables and response attribute variables. In addition, 
outbreak attribute variables for the infectious disease 

Fig. 1  The four study regions 
shown in black
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were also included. The detailed definitions of these vari-
ables are shown in Table 2 (Wang et al. 2020; Wu et al. 
2020a, b, c; Kang et al. 2020; Zhang and Schwartz 2020; 
Desjardins et al. 2020; Liu et al. 2020a, b; Zhang et al. 
2020b, c; Wells et al. 2020; Moghadas et al. 2020; Chat-
terjee et al. 2020; Ackerknecht 1955; Pawlińska-Chmara 
and Wronka 2007; Li et al. 2020; Huang et al. 2020; Zhao 
et al. 2020a, b; Riou and Althaus 2020; Peng et al. 2020; 
Wilasang et al. 2020; Tian et al. 2020).

Epidemic attributes are mainly used in the regression 
analysis of the vulnerability models to verify their accu-
racy. The present work evaluates the impact of an infectious 
disease outbreak in a region in terms of the number of days 
it lasted until the regional impact subsided, and the cumula-
tive number of infections caused due to this regional impact 
(Table 3).

Model construction and analysis

Construction of the AHP matrix and calculation 
of the vulnerability factor weight

AHP modeling

Epidemic decision-making is a cognitive and mental pro-
cess relying on the adequate selection of reasonable multi-
faceted criteria. The Analytic Hierarchy Process (AHP) 
method (Saaty 2013) is a multi-objective decision scheme 
that is widely used in many fields and can be organically 
combined with many other methods. A characteristic of 
the AHP method is the fusion of qualitative with quanti-
tative analysis. First, the influential factors of a complex 
problem are extracted and listed hierarchically, and each 
factor is transformed into a mathematical notion. Then, 
by integrating expert opinion with objective judgment the 
importance relationship between each element is quanti-
tatively described and the importance matrix of the differ-
ent influencing factors is obtained. Finally, the importance 

Fig. 2  The process of the study

Table 2  Attribute variables (see Online Appendix for detailed vari-
able definition and analysis)

Attribute Symbol Attribute Symbol

City GDP Pathological R0
PD IP
PRP Medical MI
RP BED
RPK MS
SCH Response MEA
STU UND
EIH

Table 3  Model variables

Symbol Designation Unit Definition

DAY Outbreak duration Day Number of days from an 
outbreak of an infectious 
disease to a steady state

NUMBER Cumulative number 
of infected per-
sons

/ The cumulative number of 
infections caused by the 
outbreak of infectious 
diseases
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weight of each layer element is calculated by a mathemati-
cal technique, and the results are reserved for subsequent 
analysis.

In the present work, the hierarchical model is constructed 
according to the AHP method in terms of the attributes 
described above, see Fig. 3. The regional disease vulner-
ability factors are composed of the elements defined earlier, 
among which R0 and IP are the pathological attributes and 
MEA and UND are the response attributes that rise to the 
1st level due to their importance. The regional attribute ele-
ments (CITY) and medical attribute elements (MED) belong 
to the 1st level after being integrated with their 2nd level 
elements. The dynamic population (MP) is computed as the 
difference as follows:

where the PRP and RP are the CITY variables defined in 
Table 2.

Population quality (PQ) was calculated by SCH, STU 
and EIH. These three figures have been proven to represent 
more than 90% of educational development in a region (Nie 
2003). On this basis, the previous research also proposed 
three common factors, among which F1 represents the scale 
of higher education, F2 represents the financial support of 
higher education, and F3 represents the structure factor of 
higher education. The score model of three common factors 
can be obtained by using factor rotation method by SPSS 
statistics, and then the calculation formula of the compre-
hensive factor F4 = PQ can be obtained (Yadav et al. 2020). 
The specific formula is shown in Eq. (2) as follows:

As regards the determination of the R0 value, there is a 
big difference between the different prevention measures and 
the different medical treatment levels for the same infectious 

(1)MP = PRP − RP,

(2)

⎧⎪⎨⎪⎩

SCH = 0.258 ∗ F1 − 0.017 ∗ F2 − 0.105 ∗ F3

EIH = 0.247 ∗ F1 − 0.04 ∗ F2 + 0.021 ∗ F3

STU = 0.253 ∗ F1 − 0.031 ∗ F2 − 0.007 ∗ F3

PQ = F4 = (0.5671 ∗ F1 + 0.3213 ∗ F2 + 0.0811 ∗ F3)∕0.9695

disease, which means that the R0 value in the same region 
will change as the epidemic develops and the local preven-
tion and control measures are implemented, accordingly (Wu 
et al. 2020b; Li et al. 2020; Yadav et al. 2020; Zhao et al. 
2020c; Yue et al. 2020; Stedman et al. 2020; Peng et al. 
2020). Hence, the present work refers mainly to the data pro-
vided by WHO when a relevant decision needs to be made. 
Based on previous studies, the R0 values of different regions 
were considered for reference purposes, and the temporary 
value was set to 2.5.

Regarding the regional medical capacity factor, and tak-
ing the current situation in China as a reference, the medical 
capacity of most regions is sufficiently strong in the case of 
no emergency. In particular, the current medical scientific 
research capacity, the number of medical equipment and the 
number of medical personnel are considered sufficient to 
cope with the outbreak under normal conditions. The short-
age of medical resources occurred only when Wuhan experi-
enced an outbreak of unknown an infectious disease and did 
not take timely preventive measures. Therefore, the medical 
attribute parameter is associated with the UND value in this 
model. The medical attribute parameter is considered only 
when the UND value is less than 1. When the UND value 
is equal to 1, that is, when the infectious disease is fully 
understood, the influence of the medical attribute parameter 
will not be considered.

Judgment matrix of the importance degree

According to the regional disease vulnerability index model 
proposed above, the comparative matrix of importance of 
various elements can be constructed by combining litera-
ture research, expert opinion and comprehensive analysis. 
The assignment method adopts the standard Saaty nine-level 
scaling method, as shown in Table 4 (Yu 2019).

After taking all factors into consideration, the regional 
vulnerability index matrix of infectious diseases is shown in 
Table 5 (see the Online Appendix for the judgment matrix 
of City attribute Med attribute).

Fig. 3  Hierarchical model diagram of the factors influencing the disease vulnerability index
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Attribute element weights

After calculating the eigenvectors of the judgment matrix for 
each importance degree, the weight values of each element 
in the calculation of the risk coefficient can be obtained as 
shown in Table 6 and Fig. 4.

The weight is associated with each element by means of 
the computed matrix eigenvector. The vulnerability matrix 
factors are shown in Table 6. The corresponding eigenvector 
is [0.1026, 0.0567, 0.0567, 0.379, 0.026, 0.379]T, so that the 
weight factors are: CIYT: 0.1026, R0: 0.0567, IP: 0.0567, 
MEA: 0.379, MED: 0.026, and UND: 0.379.

Vulnerability index and model optimization

Using the AHP method, the attribute weights at each level 
were derived and their parameters calculated by combin-
ing the element and the average element values at each 
level. The ratio of each attribute value in each city over the 
national average attribute value is multiplied by the corre-
sponding attribute weight. Since the ranges of the attribute 
values are different, the corresponding functions are used 
to normalize each attribute value and then sum them up, so 
that the calculated city attribute value (YCITY) is given by

Table 4  The nine stage scaling 
method

Scale Comparison of the importance of the two factors

1 Both factors are equally important
3 The vertical index is slightly more important than the horizontal index
5 The vertical index is more important than the horizontal index
7 The vertical index is very more important than the horizontal index
9 The vertical index is extremely more important than the horizontal index
2, 4, 6, 8 The degree of importance of vertical index over horizontal index is 

between the two adjacent grades above

Table 5  Judgment matrix of 
vulnerability factors

CITY R0 IP MEA MED UND

CITY 1 3 3 1/7 5 1/7
R0 1/3 1 1 1/8 4 1/8
IP 1/3 1 1 1/8 4 1/8
MEA 7 8 8 1 9 1
MED 1/5 1/4 1/4 1/9 1 1/9
UND 7 8 8 1 9 1

Table 6  Weight of each factor Target layer The weight of the factor 
layer to the target layer

The indicator 
layer

The weight of the indicator 
layer to the target layer

Rank

Vulnerable index CITY x1 = 0.1026 GDP x11 = 0.00629964 8
PD x12 = 0.0498636 3
MP x13 = 0.0235467 4
RPK x14 = 0.01731888 5
PQ x15 = 0.00558144 9

R0 x2 = 0.0567 R0 x2 = 0.0567 2
IP x3 = 0.0567 IP x3 = 0.0567 2
MEA x4 = 0.379 MEA x4 = 0.379 1
UND x5 = 0.379 UND x5 = 0.379 1
MED x6 = 0.026 MI x61 = 0.0064922 7

BED x62 = 0.0033072 10
MS x63 = 0.0162006 6
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where the weights are given in Table 6.
The medical attribute factor value (YMED) is obtained 

by multiplying the medical attribute parameter values in 
Table 2 by the weights of the medical attribute parameter 
values in Table 6, i.e.,

After all the vulnerability attribute factors were deter-
mined, the overall regional vulnerability index was obtained. 
From Table 6, the weight of each vulnerability factor was 
computed as based on the AHP matrix (these weights rep-
resent the regional attribute factor weight, the R0 factor 
weight, the latency factor weight, the measures level fac-
tor weight, the understanding factor weight and the medical 
attribute factor weight). After that, the weight was multiplied 
by the corresponding attribute value of the vulnerability 
factor, that is, the final regional vulnerability factor index 

(3)
YCITY =

(
X11 ∗ GDP + X12 ∗ PD + X13 ∗ MP

+X14 ∗ PRK + X15 ∗
2

Pi
tan−1 (PQ)

)
,

(4)YMED = x61 ∗ MO + x62 ∗ BED + x63 ∗ MS

is obtained. It also be noted that, as mentioned above, the 
medical attribute factor value needs to be judged according 
to the attribute value of UND. Therefore, if the UND value 
is less than 1, the vulnerability index value is calculated by 
the following formula:

For illustration, in the case of an UND value equal to 1, 
the vulnerability index value is calculated by

which is a special case of Eq. (5).

Model accuracy verification using epidemic data 
fitting

The situation in the cities of Wuhan, Beijing, Urumqi and 
Dalian was assessed quantitatively using the formula of the 
regional disease vulnerability index obtained above. The 
number of confirmed cases and the duration of the epidemic 
were taken as independent variables, and the vulnerability 
indexes of the four cities (calculated according to the above 
formula) were taken as dependent variables for regression 
analysis purposes. See Table 7 for details.

The regression analysis results are shown in Table 7. 
According to these results, the correlation coefficient is 1, 
and 99.9952% of the total change of the dependent variable 
is caused by the independent variable change, indicating a 
good fitting effect. The dependent variable changes almost 
completely with the change of the independent variable.

(5)

Y = X1 ∗
(
2

Pi

)
∗ tan−1 (YCITY) + X2 ∗

(
2

Pi

)
∗ tan−1 (R0)

+X3 ∗
(
2

Pi

)
∗ tan−1 (IP) + X4 ∗ MEA

+X5 ∗
(
2

Pi

)
∗ tan−1 (YMED) + X6 ∗ UND

(6)

Y = X1 ∗
(
2

Pi

)
∗ tan−1 (YCITY) + X2 ∗

(
2

Pi

)
∗ tan−1 (R0)

+X3 ∗
(
2

Pi

)
∗ tan−1 (IP) + X4 ∗ MEA + X6 ∗ UND,

Fig. 4  Weight of the indicator layer to the target layer (computed 
based on the matrix of Table 5)

Table 7  Details about the vulnerable index of the four cities

Beijing Wuhan Dalian Urumqi

Vulnerable index 0.1566 0.8733 0.1119 0.1951
DAY 25 182 15 31
NUMBER 335 81,260 93 826
Regression analysis Multiple R R Square Adjusted R square Standard error

0.999952 0.999904 0.999713 0.006115
df SS MS F
2 0.390899 0.19545 5226.629
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Then, the analysis of variance (ANOVA) technique was 
used to test the significance of the regression equation to 
observe whether there was a considerable linear relation-
ship between the independent and the dependent variables. 
In this case, the significance F is considerably smaller than 
the test value (typically, 0.05), and thus a linear relationship 
was assumed between the independent and dependent vari-
ables (Table 7).

According to the above regression analysis, there is a cor-
relation between the calculated vulnerability index and the 
number and duration of the epidemic, so the vulnerability 
index can be used to distinguish the epidemic situation.

Vulnerability index scope and criteria

Taking into account the different virus attributes, the 
regional disease vulnerability model can be used to com-
pute the value range of the disease vulnerability index. For 
example, for the COVID-19 virus the limit value method 
can be used to obtain the range of the vulnerability index 
for COVID-19 and to rank the vulnerability. The vulner-
ability index range is between 0.0513 and 0.9379. The basic 
threshold range of the index can be divided into four levels: 
safe, which the range is from 0.0513 to 0.2729; mild risk, 
when the range is from 0.2729 to 0.4946; severe risk, when 
the range is from 0.4946 to 0.7162; extreme risk, when the 
range is from 0.7162 to 0.9379.

Application

Application of the vulnerability model in the four 
cities

Based on the above analysis, the vulnerability index of Bei-
jing, Wuhan, Dalian and Urumqi as well as the scores of the 
various dependent vulnerability factors were calculated as 
shown in Table 8.

Being the outbreak source, Wuhan has suffered the great-
est impact. A main reason why Wuhan suffered such a big 
impact is that before the COVID-19 outbreak at Wuhan, 
China and the entire World had no understanding of the 
virus, so no optimal measures could be taken at the time 
of the outbreak in terms of treatment or prevention. Also, 
it was because of the significant lack of response attribute 
factors that the vulnerable index of Wuhan at that time dif-
fered greatly from that of other cities (i.e., it was one order 
of magnitude higher than in other cities). Admittedly, the 
virus itself (especially its strong pathological properties) was 
the main reason that the outbreak in Wuhan had such a great 
impact at that time. Taking into consideration the huge gap 
between the response attribute factors in Wuhan and those in 
other regions, other indicators have become less important 

in the analysis of the epidemic situation in Wuhan. In other 
words, if unprepared, the impact of the outbreak would be 
huge in any city, and surely at a much larger degree than in 
cities where an early warning happens to be available.

The second biggest impact occurred in Urumqi. The 
first case of COVID-19 occurred in Urumqi on July 16. It 
took 31 days for the newly diagnosed cases to go back to 
zero, which is what made it the most significant outbreak 
since the outbreak subsided in Wuhan. After the epidemic 
outbreak, Urumqi adopted the strategy of closing down the 
city and restricting the movement of population in time, 
but source control was not carried out timely. It was not 
until July 23 that the outbreak source was grasped, but the 
best opportunity for optimal prevention and control track-
ing was missed. Therefore, the response attribute factor 
index was high, leading to a noticeable gap between Urum-
qi’s vulnerability index and those of Beijing and Dalian.

The vulnerability index analysis in Beijing and Dalian is 
essentially based on the comparison of the regional attrib-
ute factor characteristics when the pathological attribute 
factors of the disease outbreak, its level of understanding, 
and the associated prevention levels are assumed to remain 
the same in the two cities. A diagram comparing the 
regional properties of the four cities is shown in Table 8.

The impact of the epidemic in Beijing is higher than 
that in Dalian, which is reflected in the comparison of 
the regional attributes. In Table 6, the population den-
sity, floating population and passenger turnover rank 3, 4 
and 5 among the regional attribute factors, respectively. 
Beijing is at a significantly higher risk than Dalian in 
terms of these three indicators, and its GDP factor is also 
higher than Dalian’s. Although Beijing performs better 
than Dalian as regards population quality, its weight is too 
small compared to the previous four indicators. Therefore, 
the Beijing risk coefficient is higher than that of Dalian 
assuming the same pathological and response attributes. 

Table 8  Details of the vulnerability indexes of the four cities

Beijing Wuhan Dalian Urumqi

X1*(2/pi)*[1/tan(YCITY)] 0.0718 0.0539 0.0271 0.0193
X2*(2/pi)*[1/tan(R0)] 0.0429 0.0429 0.0429 0.0429
X3*(2/pi)*[1/tan(IP)] 0.0343 0.0343 0.0343 0.0343
X4*MEA 0.0038 0.379 0.0038 0.0948
X3*(2/pi)*[1/tan(MED)] 0 − 0.0159 0 0
X6*UND 0.0038 0.379 0.0038 0.0038
YCITY 1.9567 1.0839 0.4394 0.0193
GDP 0.136 0.0666 0.0292 0.0139
PD 0.671 0.7637 0.3634 0.1457
MP 0.5781 0.1666 0.0778 0.0953
RPK 0.6235 0.0346 0.0067 0.0103
PQ − 0.0519 0.0524 − 0.0377 0.0395
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This result was also confirmed during the development of 
the epidemic. Both the duration of the epidemic and the 
total number of infected people were lower in Dalian than 
in Beijing.

Overall, the analysis of the vulnerability index of COVID-
19 outbreaks in the four cities—Beijing, Wuhan, Dalian and 
Urumqi—using the above model is basically accurate. In 
addition, the distribution of all influencing factors is reason-
able, and the results are basically in line with expectations. 
To some extent, this indicates that the regional vulnerability 
model of infectious diseases proposed in this paper has a 
certain universality, which is of great significance for the 
promotion and application of the model.

Application of the vulnerability model 
in provincial‑level administrative regions in China

According to the above formula, the vulnerability index to 
the COVID-19 virus is shown in Fig. 5 assuming the same 
knowledge level and measures in each province.

Remarkably, Shanghai, Guangdong, Beijing, Henan 
and Tianjin are the top five provinces in terms of the vul-
nerability index among China’s provincial administrative 
divisions. The main focus is on the regional attributes of 
each province, assuming the same level of preparedness 
and medical information sharing to ensure the same level 
of national COVID-19 awareness and the correspond-
ing prevention and treatment options. According to the 

previous analysis, among the regional attribute indica-
tors, the importance of population density, the floating 
population and the passenger turnover are at the top. The 
top five and even seven provincial-level regions (sixth and 
seventh are Jiangsu and Zhejiang, respectively) share the 
same socioeconomic characteristics. They are all devel-
oped municipalities directly under the central government, 
populous provinces, or coastal economically developed 
cities with a large number of migrant workers, trade con-
tacts and even tourists, with the common characteristics of 
high population density. Accordingly, they have a higher 
floating population and tourist turnover. The biggest char-
acteristic of infectious diseases is that the more densely 
populated the region is, the more frequently people move 
and have contacts with each other, the higher the risk fac-
tor is. Especially, for a deadly infectious disease such as 
COVID-19, the greater the number of people in the area, 
and the higher the risk. This view is also supported by the 
conditions at the five provinces at the bottom of the list, 
Tibet Autonomous Region, Qinghai Province, Inner Mon-
golia Autonomous Region, Xinjiang Autonomous Region 
and Gansu Province. These provinces are characterized by 
a relatively low population density and a relatively small 
number of migrants, thus reducing the risk of an infectious 
disease outbreak. The above findings assume that the same 
measures are taken. These regions are also prone to poor 
prevention arrangements due to their low vulnerability 
index. For example, the COVID-19 outbreak in Xinjiang 

Fig. 5  Predictive vulnerable index of each provincial administrative region in China



2534 Modeling Earth Systems and Environment (2022) 8:2525–2538

1 3

was more damaging because no effective measures were 
taken in time. In this case, it is not appropriate to analyze 
the vulnerability index simply from the regional attributes.

Application of the vulnerability model 
in prefecture‑level cities in Zhejiang Province

According to the above formula, the risk factors for the 
COVID-19 outbreak in all prefecture-level cities in Zheji-
ang province are shown in Fig. 6, with the same level of 
understanding and measures.

The top five Zhejiang prefecture-level cities in terms of 
the vulnerability index are Hangzhou, Ningbo, Wenzhou, 
Jiaxing and Taizhou. Among them, Ningbo city and Hang-
zhou city are the two highest developed cities in the Zhe-
jiang Province, with high population density and floating 
population. It is inevitable that their vulnerable indexes are 
high without considering their response attributes and medi-
cal attributes. Wenzhou ranked third with higher passen-
ger turnover than Hangzhou and Ningbo. Jiaxing, in fourth 
place, has the highest population density of any prefecture-
level city in Zhejiang province. Population density is a major 
risk factor for Jiaxing (other factors are not as obvious). 
Finally, Taizhou is a prefecture-level city with relatively 
average indicators. Compared to other prefecture-level cit-
ies in Zhejiang Province, Shaoxing ranks in the middle of 
all indicators. After comprehensive analysis, Shaoxing ranks 

the fifth in the vulnerability index. From the comparison of 
these cities, it was found that developed cities generally have 
a higher number of floating population and passenger turno-
ver, which will relatively increase the epidemic outbreak 
risk. Compared to other cities, transportation hub cities with 
special attributes or cities with developed trade will have 
prominent passenger turnover. Cities with a small regional 
area are more likely to have high population density, which 
is a factor leading to an increase of the regional vulnerability 
index.

Discussion

Advantages and disadvantages of the vulnerability 
model

The most important advantage of the regional disease vul-
nerability model is flexibility; its vulnerability factors have 
strong universality features and can be applied to study vari-
ous factors in each region. This flexibility is concretely dem-
onstrated in three respects, as follows:

The model can be easily adjusted to the scope of the study 
region. No hard rules are imposed on the model factors, 
and only the regional levels are divided, such as the provin-
cial administrative regions and the prefecture-level cities. 
Therefore, it is only necessary to specify the appropriate 

Fig. 6  The predictive vulnerable 
index of each city in Zhejiang
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average variable to be combined with the regional data at 
the same level, and the vulnerability index assessment of 
the corresponding regional scope is obtained without the 
user modifying the model variables and fixed parameters.

Regional vulnerability index modeling does not involve 
the transmission factors of the epidemic itself. Except of the 
R0 attribute of the disease virus itself, no other epidemic 
development data are needed for reference purposes. For the 
same reason, the model can assess the regional characteris-
tics and preventive measures before an outbreak.

The model can use the control variable method to study 
the impact of the same virus outbreak in different regions, 
or the impact of different virus outbreaks in the same region, 
so as to comprehensively identify the weak links and prob-
lems that need attention concerning the epidemic prevention 
and control of each region. For example, depending on the 
known pathological properties of a virus and the regional 
properties of each region, the level of prevention measures 
can be adjusted to verify the extent to which the virus is cir-
culating in that region when different prevention measures 
are taken. Correspondingly, pathological attributes and pre-
vention levels can also be taken as constants, and the effect 
of limiting population flow on the prevention of infectious 
diseases can be obtained by modifying regional attributes 
such as the number of population flows. Many valid conclu-
sions can be drawn in this way. For example, in terms of 
regional attributes, cities with a large floating population 
need to pay special attention to the detection of transporta-
tion facilities such as railway stations and airports, whereas 
cities with a large population density need to take measures 
such as wearing masks and restricting the movement of peo-
ple within the city. It is even possible to simulate the virus 
pathology during periods when there is no threat, and to test 
the impact of a sudden emergence of an infectious disease 
in an area.

Beyond its advantages above, the main problem of this 
model is that due to the limitations of the available data and 
current research status, the parameters taken into account 
are not comprehensive enough as a vulnerability model. For 
example, in the case of the regional attributes, the popula-
tion age structure will also influence the development of the 
epidemic. However, due to model limitations it is difficult to 
integrate this variable, so the model does not take this factor 
into consideration. In addition, regional temperature, humid-
ity and other geographical factors will also have an impact on 
the development of the epidemic. However, due to the diffi-
culty in defining the impact of geographical attributes on the 
virus, there is no unified way to quantitatively describe the 
impact of temperature and humidity on COVID-19. Moreo-
ver, the geographical attributes may have different influence 
on different infectious diseases, which is not adequately 
reflected in the vulnerability model. Therefore, geographi-
cal attributes are not taken into account in this model.

The model has been evaluated for only one virus, the 
COVID-19. Although the urban, medical and response 
attributes were compared at four different cities, the patho-
logical attributes were not. The main reason is that other 
infectious disease outbreaks have been occurring for so long 
that it is difficult to find appropriate comparative data for 
analysis. The lack of comparison of pathological attributes 
will have a certain effect on the model accuracy.

COVID‑19 prevention and control recommendations

In order to prevent COVID-19, detailed prevention and con-
trol measures should be formulated early. Among the fac-
tors affecting the regional disease vulnerability index, the 
response attribute factors are the most important. Although 
a complete disease understanding may not be possible at 
the initial stage of a new infectious disease, prevention and 
control measures are the most important human interven-
tions. The three major measures for disease prevention and 
treatment (namely, controlling the source of infection, cut-
ting off the route of transmission, and protecting vulnerable 
groups) can be artificially intervened. A very important part 
of prevention and control is to find the infection source in 
a timely manner, make a network of relationships immedi-
ately, isolate the close contacts and prevent the emergence of 
super spreaders (Chinazzi et al. 2020; Lai et al. 2020; Linka 
et al. 2020; Koo et al. 2020; Fowler et al. 2020; Zhang et al. 
2020a; Hellewell et al. 2020; Ferretti et al. 2020). In addi-
tion, wearing masks, banning crowd behavior and calling 
on people to isolate themselves at home are also important 
measures to prevent the spread of infectious diseases, which 
should be taken actively at the early stage of their spread 
(Lin et al. 2020; MacIntyre et al. 2008; Koo et al. 2020; 
Fowler et al. 2020; Zhang et al. 2020a). Depending on the 
extent of the epidemic, it is critical to have the flexibility of 
taking different levels of action.

Medical attribute factors are also very important. The out-
break of a regional viral infection that has never been seen 
before is an emergency situation. For example, in Wuhan, 
the worst hit city during the early stages of the COVID-19 
outbreak, the lack of early medical personnel and facilities 
has been a major obstacle to effective disease prevention 
and control. In addition, a very strong medical foundation 
is needed to support scientific research on the new virus, 
the study of its pathological properties, the proposal of a 
simple and rapid diagnosis scheme, and the development of 
an effective vaccine. In sum, strengthening the medical and 
health care systems, as well as establishing a sound medical 
system, is a matter of life and death for any country.

As for regional attribute factors, more attention should 
be paid to the characteristics of the region itself. For most 
developed cities, large population density, large number 
of migrants and high passenger turnover are quite normal 
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phenomena, but these are indeed not conducive to the pre-
vention and control of infectious diseases. Naturally, a city 
should establish the best infectious disease prevention sys-
tem for the case. Once an infectious disease risk is detected, 
a timely warning should be issued, so as greater losses 
are avoided. For some port and transportation hub cities, 
although the population in the city itself is not large, it car-
ries a very large passenger volume. In this case, it is neces-
sary to strengthen human surveillance in transport facilities 
such as railway stations and airports, to maintain sanitation 
in public areas and to minimize the possibility of foreign 
virus spread (Zhang et al. 2020b; Wu et al. 2020a; Wells 
et al. 2020). Although the population density is lower in 
some sparsely populated cities, such cities also have weaker 
medical conditions and regulatory measures. In this kind of 
a city, people need to be increasingly conscious. Once there 
is any situation that requires people to report their concerns 
in a timely manner, the relevant departments should actively 
take relevant measures to prevent infectious disease spread.

Conclusions

Combined with knowledge obtained in relevant studies 
on infectious diseases available in the literature, the pre-
sent study identified four types of vulnerability factors: 
regional, pathological, medical and response attribute fac-
tors. The AHP model can be used to analyze quantitatively 
the importance of various vulnerability factors. On this 
basis, a complete regional vulnerability model of infectious 
diseases could be developed. The model exhibited a good 
fit to in Beijing, Wuhan, Urumqi and Dalian data, and can 
be applied to study regional disease vulnerability factors in 
various regions.

However, as discussed above, the current vulnerability 
model still leaves plenty of room for improvement. For 
example, the vulnerability indicators involved in the cur-
rent model are not comprehensive enough. Relevant studies 
have proved that environmental factors, such as temperature, 
humidity, seasonal factors, ethnic factors, people’s sanitary 
habits, age distribution, urban economic conditions and 
other indicators, are all related to the infectious disease 
spread (Sajadi et al. 2020; Paez et al. 2020; Yancy 2020; 
Wadhera et al. 2020), so how to quantify and integrate these 
factors into the model is worth studying. In addition, by 
extending the model in a space–time context, the combined 
spatio-temporal evolution of an epidemic could be predicted, 
which can make the results more specific and intuitive. For 
example, a region’s vulnerability index can be combined 
with modern spatiotemporal geostatistics methods to make 
more informative predictions and judgments about the epi-
demic spread in that region (Christakos 1990, 2000).
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