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Abstract: Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary and multisystemic
disease, characterized by progressive distal muscle weakness and myotonia. Despite huge efforts,
the pathophysiological mechanisms underlying DM1 remain elusive. In this review, the metabolic
alterations observed in patients with DM1 and their connection with lipin proteins are discussed.
We start by briefly describing the epidemiology, the physiopathological and systemic features of
DM1. The molecular mechanisms proposed for DM1 are explored and summarized. An overview of
metabolic syndrome, dyslipidemia, and the summary of metabolic alterations observed in patients
with DM1 are presented. Patients with DM1 present clinical evidence of metabolic alterations, namely
increased levels of triacylglycerol and low-density lipoprotein, increased insulin and glucose levels,
increased abdominal obesity, and low levels of high-density lipoprotein. These metabolic alterations
may be associated with lipins, which are phosphatidate phosphatase enzymes that regulates the
triacylglycerol levels, phospholipids, lipid signaling pathways, and are transcriptional co-activators.
Furthermore, lipins are also important for autophagy, inflammasome activation and lipoproteins
synthesis. We demonstrate the association of lipin with the metabolic alterations in patients with
DM1, which supports further clinical studies and a proper exploration of lipin proteins as therapeutic
targets for metabolic syndrome, which is important for controlling many diseases including DM1.

Keywords: myotonic dystrophy type 1; metabolic syndrome; dyslipidemia; lipin; insulin resistance

1. Introduction

Myotonic dystrophy type 1 (DM1) is a multisystemic and autosomal dominant heredi-
tary disease mainly characterized by progressive distal muscle weakness and myotonia
(sustained muscle contractions) [1–5]. DM1 is caused by the expansion of unstable rep-
etitions of cytosine-thymine-guanine trinucleotide (CTG) in the 3’ untranslated region
(3’UTR) of the Myotonic Dystrophy Protein Kinase (DMPK) gene located at chromosome
19q13.3 [4,6,7].

Metabolic syndrome (MetS) in patients with muscular disorders are significantly higher
than in general population due to abnormal lipid metabolism, such as insulin resistance,
hypertriglyceridemia, increased fat mass, high levels of low-density lipoprotein (LDL), low
levels of high-density lipoproteins (HDL) and abdominal obesity [8,9]. These abnormalities
seem to be related to lipin, since it is a key enzyme that regulates lipid metabolism and
signaling, and is a transcriptional co-activator of fatty acid β-oxidation [10–14]. Other
important features associated to the effects of lipin alterations that have been studied in the
last decade and demonstrated by previous studies will be detailed below.

Therefore, the purpose of this review is to provide an overview of the metabolic
changes observed in patients with DM1 and to correlate them with current knowledge
of lipin and their role in DM1. We briefly summarize the DM1 epidemiology and the
underlying molecular mechanism, after which we provide clinical evidence of abnormal
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lipid metabolism in patients with DM1. The role of lipin in DM1 is also discussed in
this review.

2. Epidemiology and Molecular Characteristics of DM1

Muscular dystrophies are a group of inherited muscle disorders, in which one or
more genes necessary for normal muscular function are mutated, resulting in progressive
weakness and loss of muscle mass with a variety of severity degrees [15–17]. Concerning
muscular dystrophies, there are nine major forms namely, Duchenne muscular dystrophy
(DMD), Becker muscular dystrophy (BMD), congenital muscular dystrophy (CMD), my-
otonic dystrophy (MD), facioscapulohumeral muscular dystrophy (FSHD), Emery–Dreifuss
muscular dystrophy (EDMD), distal muscular dystrophy (DD), limb-girdle muscular dys-
trophy (LGMD) and oculopharyngeal muscular dystrophy (OPMD) [15–17].

DM1 also known as Steinert’s disease, is the most common form of muscular dystro-
phy in adults, with a prevalence of 1 in 3000 and 8000 individuals worldwide (Table 1) [1,4,
18,19]. The main clinical feature of DM1 is myotonia (sustained muscle contractions) at the
skeletal muscle level, progressive weakening of the distal muscles, and also affects other
organ systems (e.g., eyes, heart, lungs) (Table 1) [1,4,18]. Additionally, other multisystem
characteristics are observed namely, insulin resistance, dyslipidemia, defects in cardiac
conduction, gonodal atrophy, alterations in the central nervous system (CNS), and breath-
ing problems (Table 1) [1,2,20]. DM1 is caused by the expansion of unstable repetitions of
CTG in the 3’UTR DMPK gene (Figure S1). The latter gene gives rise through extensive
alternative splicing to 6 major DMPK isoforms proteins (DMPK A, B, C, D, E, and F) in both
humans and mice, and 1 isoform (DMPK G) only present in humans (Figure S1) [6,20–22].
The expanded CUG repeats of the DMPK protein accumulates as nuclear foci compromis-
ing nuclear functions, and the expanded mRNA products are toxic to cells, affecting the
normal processing of other genes in different tissues [4,6,7,18].

Table 1. Summary of principal clinical features of DM1 [1,2,7,15,16,19].

Global Clinical Features DM1

Heredity Autosomal dominant

Prevalence 1 in 3000 and 8000 individuals

Cancer
Reproductive tract (endometrial, ovarian and testicular),

thyroid and colorectal
High risk of tumour development

Anticipation Present

Life expectancy Reduced

Mortality 70%, Caused by cardiorespiratory complications

Appearance

Forehead balding

Myopathic face

Temporal wasting

Ptosis

Nasal/slurred speech

Dysphagia

Age at onset Childhood to adulthood

Congenital form Present

Facial dysmorphism Present in congenital form

Male hypogonadism Present

Insulin Resistance Present

Dyslipidemia Present
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Table 1. Cont.

Global Clinical Features DM1

Metabolic syndrome Present

Thyroid deficiency More common

Diabetes mellitus High risk of development

Creatine kinase, liver enzymes and cholesterol Elevated

Hypogammaglobulinemia High incidence

Muscle weakness Extreme at 50 years of age (distal)

Muscle Pain/myalgia Less frequent

Clinical myotonia Evident in early adulthood

Myotonia Handgrip, tongue (distal)

Atrophy Distal (early)

Type 1 fiber atrophy Present

Calf hypertrophy Absent

Cardiac arrhythmias Present

Sudden death More common

Sleep disorders Present

Cognitive decline Prominent in congenital form

Central nervous system problems Present

Cataracts Present

Respiratory failure Present

Gastrointestinal problems Present

Abdominal pain Present

Constipation Present

Gene DMPK, chromosome 19q13.3, CTG expansion at 3’UTR

DMPK Reduced

CNBP/ZNF-9 Normal

CUGBP1 Upregulated

MBNL1 Down regulated/sequestered

Ribonuclear inclusion Present

Spliceopathy Present

Transcription dysregulation Present

MicroRNA dysregulation Present

RNA translation Present

The number of CTG repeats in the DMPK gene is polymorphic and is correlated with
the severity of DM1. In healthy population it varies between 5–37 repetitions. Individuals
who have the DM1 pre-mutation have at least 38–49 repetitions being considered generally
asymptomatic. However, they can pass the disease to the next generation. In contrast,
individuals with repeats number comprised between 50–4000 are considered patients with
DM1 [5,23]. In average, CTG expansions increase an additional 200 repetitions when
transmitted from one generation to the next, leading to the disease anticipation, meaning
that the disease symptoms will appear earlier and with higher severity in the subsequent
generation [5,23]. In addition, although DM1 is more common in early adulthood, it can
also affect fetal development and postnatal growth in individuals with large number of
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CTG expansions. Due to DM1 clinical heterogeneity, it is routinely subdivided according
to the severity of symptoms and the age of disease onset. These categories are important to
provide adequate DM1 recognition, diagnosis, and prognosis. In other words, the pheno-
type is divided into three categories (mild, classic, and severe) and clinically categorized as
congenital (<1 month and ≥1000 CTG repeat length), infantile (1 months to 10 years and
>500 CTG repeat length), juvenile (>10 to 20 years and >400 CTG repeat length), adult-onset
(>20 to 40 years and 150 to 1000 CTG repeat length), and late-onset (>40 years and 50 to
149 CTG repeat length) [23–26].

3. Physiological and Systemic Features of DM1

Besides progressive muscle weakness and myotonia, the most common features
observed in patients with DM1 are endocrine and metabolic alterations, respiratory and
cardiac dysfunctions (Table 1). Endocrine dysfunctions have an increased incidence in
patients with DM1, especially gonadal insufficiency (hypogonadism), diabetes, and thyroid
disorders [27,28]. Hypogonadism is the most frequent feature and is characterized by low
serum testosterone levels being more prevalent in men (Table 1) [27]. Palpable thyroid
gland abnormalities have been described in 20% of patients with DM1 [27,28]. These
endocrine alterations are correlated with metabolic dysfunctions in these patients which
will be detailed below.

Overall respiratory dysfunction (respiratory failure or aspiration) is the most common
cause of death in patients with DM1, since respiratory disease has a complex etiology in
these patients, combining both peripheral respiratory dysfunction and central respiratory
drive dysfunction, as well as upper airway muscles dysfunction (obstructive sleep apnea
and aspiration) and high risk of pulmonary infections [29,30]. The mortality rate involving
respiratory dysfunction ranges from 51% to 76% specially in congenital form (Table 1) [29,30].
Cardiac dysfunction is the second common cause of death, about 30% of mortality in
adults with DM1. Cardiac involvement in DM1 includes conduction disease, atrial and
ventricular tachyarrhythmias, atrioventricular block, left-ventricular systolic dysfunction,
and myocardial fibrosis resulting in sudden death (Table 1) [31–33].

These systemic features may be associated to DMPK gene alterations, given that DMPK
mRNA is highly expressed in skeletal, cardiac, smooth muscle and in smaller amount in
different areas of the brain. DMPK is highly expressed during muscle development be-
tween weeks 9–16 and is associated to myogenic differentiation, meaning that DMPK has
an important role during myogenesis [6,34–36]. In addition to muscle development, DMPK
is also involved with the maintenance of ion homeostasis (Dihydropyiridine-Voltage-
Dependent L-type Calcium receptors) and sodium channels. Furthermore, DMPK also
modulates the chloride channel phospholemman (PLN), the activation or inhibition of
Sarco/Endoplasmic reticulum Ca2+-ATPase (SERCA) through phosphorylation of phos-
pholamban and sarcolipine. As such, it is possible to state that DMPK is involved in skeletal
muscle contraction and relaxation and ion homeostasis. In the case of DM1 disease, DMPK
may be related to myotonia and also could be involved indirectly or directly with the
cytoskeleton myosin phosphatase target subunit (MYPT1), serum response transcription
factor (SRF), and the nuclear envelope protein lamin A/C [6,37–39].

4. DM1 Underlying Molecular Mechanisms

To date the identification of the molecular mechanisms underlying this pathology
is not yet fully understood. However, there are three hypotheses that are more consen-
sual within the scientific community namely the rearrangement of DM1 locus, DMPK
haploinsufficiency, and gain of toxic RNA function (Figure 1).
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Figure 1. Molecular Mechanisms in DM1. Toxic CUG-containing transcripts forms secondary structures and accumulates 
in the nucleus of DM1 cells, causing multisystemic effects of DM1 throughout RNA gain-of-function mechanism, Chro-
matin rearrangements at the DM1 locus and DMPK haploinsufficiency [6,21,40–48]. CUGBP1-CUGBP-Elav-like family 
member 1; MBLN1—muscleblind-like protein 1; Insulin receptor (IR); DHPR—Voltage-Dependent L-type Calcium; 
PLM—Phospholemman, PLN—Phospholamban; SRF—Serum response factor; MYPT—Myosin phosphatase; 
CIC/CLCN1—Voltage-gated chloride channel; SNC5A—Sodium channel protein type 5 subunit alpha; TNNT2/3—Tro-
ponin T 2/3; Bin1—Bridging integrator 1; PKM—Pyruvate kinase. 

Regarding rearrangement of the DM1 locus, DMPK gene is transcribed into sense 
and anti-sense transcripts (Figure 1) [7]. Anti-sense transcripts could be involved in chro-
matin ultrastructure regulation, since it is known that anti-sense DMPK transcripts extend 
into an insulator element located between DMPK and SIX5 genes [7,40]. The formation of 
double strand RNA structures due to the folding of CUG transcripts into hairpin struc-
tures, or due to complementary hybridization between sense and anti-sense DMPK tran-
scripts might activate iRNA [22,39]. Furthermore, microRNA (miRNA) deregulation 
could be an additional mechanism involved in DM1 biogenesis, since it has been found 
altered in skeletal muscle and heart of patients with DM1 [41,42]. 

Concerning DMPK haploinsufficiency (Figure 1), it is also known that about ~50% of 
DMPK expression and activity are decreased due to CTG expansions (haploinsufficiency) 
and that DMPK is crucial for the phosphorylation of certain essential proteins for muscle 
contraction and relaxation, such as phospholamban (PLB), phospholemman (PLM), sar-
colipine (SLN), and lipin [21,43,44]. PLB and SLN when phosphorylated interact with 
SERCA allowing muscle contraction, through calcium output. Due to the decrease in 
DMPK levels, phospholamban and sarcolipine are not phosphorylated, in turn SERCA is 
constantly inhibited, leading to an increase concentration of calcium in the cytoplasm, 
causing sustained muscle contraction (myotonia) [6,21,29,43,44]. 

Gain of toxic RNA function is another plausible DM1 mechanism (Figure 1). The mu-
tant DMPK mRNA with the CUGexp repeats accumulates in the nucleus as a ribonuclear 
foci folding into ‘RNA hairpins’, sequestering and deregulating RNA-binding proteins 
(RBP) crucial for alternative cell processing of other genes and/or mRNAs, leading to the 
complexity of the DM1 phenotype. Among the RBP associated with abnormal splicing 
mechanism related with DM1 are muscleblind-like protein1 (MBNL1) and CUG-BP-

Figure 1. Molecular Mechanisms in DM1. Toxic CUG-containing transcripts forms secondary structures and accumu-
lates in the nucleus of DM1 cells, causing multisystemic effects of DM1 throughout RNA gain-of-function mechanism,
Chromatin rearrangements at the DM1 locus and DMPK haploinsufficiency [6,21,40–48]. CUGBP1-CUGBP-Elav-like fam-
ily member 1; MBLN1—muscleblind-like protein 1; Insulin receptor (IR); DHPR—Voltage-Dependent L-type Calcium;
PLM—Phospholemman, PLN—Phospholamban; SRF—Serum response factor; MYPT—Myosin phosphatase; CIC/CLCN1—
Voltage-gated chloride channel; SNC5A—Sodium channel protein type 5 subunit alpha; TNNT2/3—Troponin T 2/3;
Bin1—Bridging integrator 1; PKM—Pyruvate kinase.

Regarding rearrangement of the DM1 locus, DMPK gene is transcribed into sense and
anti-sense transcripts (Figure 1) [7]. Anti-sense transcripts could be involved in chromatin
ultrastructure regulation, since it is known that anti-sense DMPK transcripts extend into
an insulator element located between DMPK and SIX5 genes [7,40]. The formation of
double strand RNA structures due to the folding of CUG transcripts into hairpin structures,
or due to complementary hybridization between sense and anti-sense DMPK transcripts
might activate iRNA [22,39]. Furthermore, microRNA (miRNA) deregulation could be
an additional mechanism involved in DM1 biogenesis, since it has been found altered in
skeletal muscle and heart of patients with DM1 [41,42].

Concerning DMPK haploinsufficiency (Figure 1), it is also known that about ~50% of
DMPK expression and activity are decreased due to CTG expansions (haploinsufficiency)
and that DMPK is crucial for the phosphorylation of certain essential proteins for mus-
cle contraction and relaxation, such as phospholamban (PLB), phospholemman (PLM),
sarcolipine (SLN), and lipin [21,43,44]. PLB and SLN when phosphorylated interact with
SERCA allowing muscle contraction, through calcium output. Due to the decrease in
DMPK levels, phospholamban and sarcolipine are not phosphorylated, in turn SERCA
is constantly inhibited, leading to an increase concentration of calcium in the cytoplasm,
causing sustained muscle contraction (myotonia) [6,21,29,43,44].

Gain of toxic RNA function is another plausible DM1 mechanism (Figure 1). The mu-
tant DMPK mRNA with the CUGexp repeats accumulates in the nucleus as a ribonuclear
foci folding into ‘RNA hairpins’, sequestering and deregulating RNA-binding proteins
(RBP) crucial for alternative cell processing of other genes and/or mRNAs, leading to the
complexity of the DM1 phenotype. Among the RBP associated with abnormal splicing
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mechanism related with DM1 are muscleblind-like protein1 (MBNL1) and CUG-BP-ELAV-
Like family member1 (CUGBP1 or CELF1) [43,44]. MBNL1 protein is responsible for
splicing regulation of several hundreds of transcripts, regulating mRNA transport and
decay. MBLN1 has high affinity to the CUG repeats of the RNA, thus being sequestered
in the nucleus by the DMPK CUGexp mRNA, reducing its activity and availability in
the cell [5,43]. CUGBP1 is linked to a “short single-stranded CUG repeat”, so it is not
sequestered as MBNL1 [21]. It is hypothesized that hyperphosphorylation and stabilization
of CUGBP1 occurs [21] through a PKC activation induced by a mutant mRNA through an
unknown mechanism [21]. Both MBNL1 and CUGBP1 proteins may be responsible for
some of the symptoms observed in patients with DM1 (Figure 1) [6,21,45–48]. Additionally,
being DMPK an important protein kinase is reasonable to deduce that protein phosphoryla-
tion is also an important regulatory mechanism in DM1. Aberrant protein phosphorylation
is recognized as a critical step in the pathogenesis of several diseases, such as Alzheimer’s
disease and cancer [49–52].

5. Metabolic Dysfunction in DM1

MetS represents an accumulation of at least three metabolic abnormalities out of the
five conditions, which are hypertension, central obesity, insulin resistance, atherogenic dys-
lipidemia, and pro-inflammatory state [53]. Metabolic syndrome can lead to cardiovascular
disease, diabetes mellitus, vascular, and neurological problems such as cerebrovascular
accident [9,53,54]. Metabolic abnormalities can become a syndrome if a patient presents at
least three of the following metabolic risk factors:

• Waist circumference (or abdominal obesity) more than 40 inches or ≥102 cm in men
and 35 inches or ≥88 cm in women [9,53,54];

• Elevated triglycerides (TAG) ≥150 milligrams per deciliter of blood (mg/dL) or
higher [9,53,54];

• Reduced high-density lipoprotein cholesterol (HDL) less than <40 mg/dL (1.0 mmol/L)
in men and <50 mg/dL (1.3 mmol/L) in women that is associated with increased
cholesterol levels [9,53,54];

• Normal value of fasting glucose <100 mg/dL. Elevated fasting glucose of
≥l00–125 mg/dL is considered pre-diabetes and 126 mg/dL or higher is considered
diabetes [9,53,54];

• Blood pressure values of systolic ≥130 mmHg or higher and/or diastolic ≥85 mmHg
or higher [9,53,54].

Literature review was conducted in Web of Science and PubMed. Data were gathered
and extracted to a structured table (Table S1) with authors, year of publication, number
of participants (DM1 patients and controls), age and sex, CTG repeat length, body mass
index (BMI) and waist circumferences, insulin metabolism, HOMA-IR, glucose metabolism,
and lipid metabolism. Data regarding age, sex, CTG repeat length, BMI were collected
to characterize the population. One summary table (Table 2) was created to synthesize
previously reported results of abnormal metabolism studies in patients with DM1. From
the included studies, all data was gathered, and upon adequate calculations they were
expressed as mean ± standard deviation (SD; range) and median (Table 2). From the
literature review, 18 studies evaluated metabolic alterations in patients with DM1 (sum-
marized in Table 2), in which is it was possible to observe differences regarding lipid
metabolism between patients with DM1 and control group. Clinically, insulin metabolism
and HOMA-IR (Insulin resistance index) were significantly higher in patients with DM1
than control group [27,28,55–62] as demonstrated in Table 2. Glucose levels were similar in
both patients with DM1 and control group [27,28,55–58,60–67]. Total cholesterol values in
patients with DM1 were higher than control group [27,28,55–60,62–65,67]. LDL was also
higher in patients with DM1 when compared with control group [27,28,58–60,62–64,68,69].
Whereas HDL was similar in both patients and control group [27,28,58–60,62–66,68,69].
TAG levels were higher in patients with DM1 than control group [27,28,56–60,62–69].
Furthermore, from the 18 studies, 11 [27,55,57,59–62,64,65,68,70] showed a significant dif-
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ference (p ≤ 0.05) between patients with DM1 and controls (Table S1); namely, higher
levels of insulin [57,59,61,62], HOMA-IR [27,57,61,65,70], total cholesterol [55,57,60,65],
LDL [60,68], TAG [27,57,59,60,65,68], whereas glucose levels [64] and HDL were signifi-
cantly lower [59,60,65].

Table 2. Summary of previously reported data concerning abnormal metabolism in patients with DM1.

Patients Characteristics DM1 (n = 623)
[27,28,55–70]

Controls (n = 428)
[27,55–57,59–62,64,65,68,70]

Patients per study 44 ± 33; (8–115)
[27,28,55–70]

96.8 ± 203.3; (3–734)
[27,55–57,59–62,64,65,68,70]

Age (years) 41.7 ± 3.8; (34–47)
[27,28,55–70]

42.35 ± 6.17; (33–54.6)
[27,55–57,59–62,64,65,68,70]

Sex 379 F, 417 M
[27,28,55–70]

347 F, 815 M
[27,55–57,59–62,64,65,68,70]

BMI (kg/m2)
23.8 ± 1.75; (22.3–27.2);

Median: 23.4
[27,28,55,57–59,61,63–67,70]

23 ± 0.72; (21.7–23.7);
Median: 23.2

[27,55,57,59,61,64,65,70]

Waist circumference (cm)
95.8 ± 2.19; (94.3–97.4)

Median: 93.43
[27,57–59]

84.9;
Median: 87.5

[27,57,59]

CTG repeat length
555.22 ± 250.99; (355.9–973);

Median: 413.75
[28,55,58–60,63,65–67,69,70]

ND

Central Obesity (%) 13.6
[63] ND

Metabolic syndrome (%) 16.7–41.2
[58,63] ND

Insulin metabolism (pmol/L)

125.4 ± 63.5; (51.38–186.11);
Median: 73.5

Male: 127.8 ± 33.4; (104.26–151.45)
Female: 119.8 ± 22,1; (104.16–135.48)

[27,28,55–62]

69.9 ± 28.4; (45.8–86.0);
Median: 44.29

Male: 56.25
Female: 63

[27,57,59–62]

HOMA-IR

3.03 ± 1.7; (1.9–6.4);
Median: 2.25

Male: 4.7
Female: 3.7

[27,55–58,61,65,70]

1.43 ± 0.13; (1.3–1.6);
Median: 1.42
[27,57,61,65]

Glucose metabolism (mg/dL)

91.84 ± 7.5; (82.7–108.5);
Median: 91.4

Male: 90.5 ± 6.3; (86–95)
Female: 95.9 ± 24.1; (78.9–113.0)

[27,28,55–58,60–67]

89.65 ± 5.11; (81.6–95.6);
Median: 90

Male: 83
Female: 88

[27,55,57,60–62,64,65]

Total cholesterol (mg/dL)

200.34 ± 15.88; (176–228);
Median: 200

Male: 216.37 ± 50.02; (181.0–251.7)
Female: 200.8 ± 13.9; (191.0–210.7)

[27,28,55–60,62–65,67]

179.4 ± 24.5; (146.0–200.5);
Median: 176.72

Male: 128
Female: 134

[27,55,57,59,60,62,64,65]

HDL (mg/dL)

52.42 ± 3.64; (48.2–58.0);
Median: 51.4

Male: 44
Female: 61

[27,28,58–60,62–66,68,69]

51.4 ± 5.5; (45.7–56.7 51.82);
Median: 51.82

Male: 67
Female: 55

[27,53,57,58,61,62,65,66]
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Table 2. Cont.

LDL (mg/dL)

118.38 ± 14.65; (106.34–143.08);
Median: 122.6

Male: 104
Female: 101

[27,28,58–60,62–64,68,69]

110.0 ± 17.7; (97.4–122.6);
Median: 129.3

Male: 146
Female: 102

[27,59,60,62,64,68,69]

TAG (mg/dL)

184.9 ± 52.5; (108–274);
Median: 172.4

Male: 194.3 ± 11.7; (186.0–202.6)
Female: 134.1 ± 18.2; (121–147)

[27,28,56–60,62–69]

115.9 ± 39.6; (77–168);
Median: 95.2

Male: 75
Female: 105

[27,57,59,60,62,64,65,68,69]

Data expressed as mean ± SD (range). Abbreviations: NA—Not applicable; ND—Not Determined; F—Female; M—Male; BMI—Body
Mass Index; HOMA-IR—Insulin resistance index HDL—High-density lipoprotein; LDL—Low-density lipoprotein; TAG—Triacylglycerol.

Interestingly, the occurrence of MetS in patients with muscle disorders is significantly
higher than in the general population [63]. Abnormal lipid metabolism is frequently ob-
served in patients with DM1, particularly in skeletal tissue. Additionally, the main cause
of this abnormality is insulin resistance (increased levels of insulin at plasma, hyperinsu-
linemia) and dyslipidemia (hypertriglyceridemia, low HDL cholesterolemia, high LDL
cholesterolemia, and abdominal obesity) [8,9]. MetS in patients with DM1 may be asso-
ciated with lipin deficiency levels. In fact, in previous studies LPIN1 gene was reported
to be among the aberrant alternative splicing genes in DM1 mouse model, particularly
in the biological function of lipid metabolism, indicating that LPIN1 gene seems to be
dysregulated in DM1 [45]. Further, in a more recent study using human skeletal and heart
muscle DM1-derived biopsies LPIN1 gene was also found associated to DM1 [71]. Thus,
the study of lipin is of paramount importance and the underlying mechanisms should be
extensively studied. Given that, lipin could be a key to understand the metabolic features
in the DM1 disease, as described in the following section.

6. Lipin Protein Family

Lipins are phosphatidate phosphatase (PAP) enzymes that catalyze the conversion of
phosphatidic acid (PA) to diacylglycerol (DAG) in TAG biosynthesis, phosphatidylethanola
mine (PE) or phosphatidylcholine (PC) (Figure 2) as well as phosphatidylinositol (PI),
phosphatidylglycerol (PG) and cardiolipin (CL) via cytidine diphosphate diacylglycerol
(CDP-DAG) [10,11,72,73]. Phosphatidic acid is an intermediate in TAG biosynthesis that
has an important function in the Kennedy pathway for the component of cell membranes
and dynamic effects on intracellular and intercellular signaling pathways (Figure 2) [73].

It is also known that phosphatidic acid is the precursor of CDP-DAG used to produce
phosphatidylglycerol and phosphatidylinositol, while DAG is the substrate for synthesis
of other abundant phospholipids like phosphatidylcholine and phosphatidylethanolami
ne [73]. There are three main pathways to synthesize phosphatidic acid which are (1) de
novo synthesis pathway through acylation of lysophosphatidic acid by lysophosphatidic
acid acyltransferase; (2) phosphorylation of DAG; (3) hydrolysis of phospholipids by
phospholipase D [74]. Some of phosphatidic acid targets are activation of NADPH, PKC-ζ,
phosphatidylinositol 4-kinase, Raf proteins, phospholipase C-γ, Ras, and inhibition of
protein phosphatase-1 (PP1) [75]. The effect of phosphatidic acid on Ras and Raf increases
extracellular signal-related kinase activity and cell division [76]. The relative concentrations
of lysophosphatidate/DAG and phosphatidic acid contributes to membrane curvature
(through fusion and fission) and vesicle budding [76]. Phosphatidic acid has also been
shown to activate the extracellular signal-regulated kinase (ERK), mitogen-activated protein
kinase (MAPK) signaling cascades and suppressed protein kinase A (PKA) activity by a
direct interaction with phosphodiesterase 4 (PDE4) and by activating mitogen-activated
protein kinase (mTOR) signaling to enhance PDE activity and reduce cyclic adenosine
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monophosphate (cAMP) [77,78]. Additionally, phosphatidic acid can increase cell division
through mTOR, and it stimulates stress fibers formation [75].
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TAG—triacylglycerol; PE—phosphatidylethanolamine; PC—phosphatidylcholine; PI—phosphatidylinositol; PG—
phosphatidylglycerol; CL—cardiolipin; CDP-DAG—cytidine diphosphate diacylglycerol; PS—phosphatidylserine; AKT—
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Lipin also has a transcriptional co-activator motif and can co-regulate the expression of
fatty acid β-oxidation and inflammatory genes. Lipin subcellular localization is related to
its dual role of transcriptional co-activator (nucleus), lipid metabolism, and lipid signaling
(ER) and in cytoplasm when phosphorylated (not activated) (Figure 2) [10–14].

Lipin family consists of three members, which are lipin-1, lipin-2, and lipin-3. Lipin-1
was the first lipin member identified and is encoded by LPIN1 gene [13]. Lipin-1 is a Mg2+

dependent protein, predominantly expressed in adipose tissue, skeletal muscle, and testis,
being expressed at lower levels in other tissues such as liver, kidney, brain, heart, and
lungs. There are three human lipin-1 isoforms (lipin1-α, lipin1-β, lipin1-γ) generated by
alternative mRNA splicing (Figure 3) [14,72,79,80]. Lipin-1α contains 890 amino acids, pre-
dominates in pre-adipocytes during early stages of adipocytes differentiation, but most of
the α-isoform is located at the nucleus as a transcriptional co-activator of lipid metabolism
genes [12,13,72,79]. Lipin-1β is the longest isoform and contains an additional β-specific
region of 36 amino acids (242–277) and is mainly associated with ER membrane carrying the
PAP activity function. Lipin-1β predominates in mature adipocytes and induces the expres-
sion of lipogenic genes and lipid storage, whereas lipin-1γ is highly expressed in human
brain compared to lipin-1α and β (Figure 3) [12,13,72,79]. Lipin-2, encoded by LPIN2 gene,
is commonly expressed in the liver, kidney, brain, lungs, macrophages, and small intestine.
Lipin-3, encoded by LPIN3 gene, has been reported that in vivo it cooperates with lipin-1 to
influence adipose tissue PAP activity and adiposity, but it has the highest levels in small
intestine, adipose tissue, and liver (Figure 3) [12,81]. All three lipin proteins are important
to activate the synthesis of both major storage phospholipids, the TAG and membrane
phospholipids. Lipin-1, lipin-2, and lipin-3 are also involved in many cellular process
through intermediates that activate cellular signaling, including the regulation of lipid
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storage, lipoprotein synthesis, autophagy, inflammation, and gene expression [81]. Lipin
proteins suffer post-translation modifications including phosphorylation, sumoylation,
acetylation, and ubiquitination [81]. From the lipin family, only lipin-1 is regulated by in-
sulin via mTOR phosphorylation. Dephosphorylation of lipin-1 allows to translocate freely
from the cytoplasm to the nucleus and to membranes containing phosphatidic acid, such
as endoplasmic reticulum, mitochondria, and autophagosomes/lysosomes (Figure 2) [81].
Lipin defects in the formation of DAG may lead to lipodystrophy or block adipocyte
differentiation [14]. Also, DAG is a regulator of signaling cascades including protein kinase
C (PKC) and protein kinase D (PKD) [73,82]. Activation of PKC through accumulation
of DAG has been linked to insulin-resistance in obesity [73,82–84]. Also, activation of
PKC may results in the activation of the transcription factor activator protein-1 (AP-1),
which has many sequence targets in inflammation-related genes (e.g., Ciclo-oxigenase-2
(Cox2)) [85–88]. Activation of PKD cascade through DAG at the surface of autophago-
somes/lysosomes, leads to fusion of autophagosomes with lysosomes to form functional
autolysosomes [81]. Additionally, lipin-1 can interact with other nuclear receptors, such
as PPARγ [12,89], hepatocyte nuclear factor-4α (HNF-4α) [12,90], glucocorticoid receptor
(GR) [12,91], as well as non-nuclear receptor transcription factors, including nuclear factor
of activated T-cells c4 (NFATc4) [92,93] and myocyte enhancer factor 2 (MEF2) [94]. Lipin-1
also represses the activity of Sterol regulatory element-binding protein 1 and 2 (SREBP1,
SREBP2), and NFAT4c by inhibiting the binding of these transcription factors to their
respective promoters in hepatocytes. SREBP1, SREBP2, and NFAT4c have been identified
to contribute to promotion of macrophage pro-inflammatory responses and inhibition of
wound healing macrophage polarization [12,14,78,81,93]. Therefore, lipin-1 can serve as
gene expression activator or repressor [12].
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6.1. Dyslipidemia and Lipin

Dyslipidemia is frequently observed in patients with DM1 [9,27,28,56–60,62–64,68,69,
95]. It is a term used for lipid disorders from hyperlipidemia to hypolipidemia, which
includes the elevation of plasma cholesterol, hypertriglyceridemia, low HDL, high LDL,
and exceed visceral fat accumulation. It is a major risk factor for cardiovascular disease,
cerebrovascular disease accident and peripheral arterial disease [9,53,54]. Dyslipidemia is
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strongly associated to MetS, nonalcoholic fatty liver disease (NAFLD) and is closely related
with insulin resistance, since alteration of lipid metabolism and the increase of free fatty
acid (FFA) flux inhibits insulin signaling leading to insulin resistance [8,9,53,56,63].

These alterations in lipid metabolism frequently observed in patients with DM1
(Table 2) may be correlated with lipin metabolism, since lipin regulates adipocyte differen-
tiation allowing TAG storage. Thus, with decreased lipin function there will be a decrease
of adipocyte differentiation and an increase of TAG levels. Also, lipin has a major role
in biosynthesis of phospholipids, fatty acid β-oxidation, inhibition of de novo lipogenesis
and TAG secretion through lipoproteins. These features were also in accordance with
Table 2, as with the downregulation of lipin the de novo lipogenesis was not inhibited and
therefore there will be an increase of total cholesterol, LDL, and TAG secretion, as well as
fatty acid synthesis [14,76,81,96–101]. Furthermore, the lipin deficiency may also, lead to
insulin resistance, obesity, and amplification of the pro-inflammatory factors, influencing
abnormal lipid metabolism, cell growth, SERCA function, endoplasmic reticulum stress,
mitochondrial dysfunction, autophagosome accumulation, and lipid accumulation in skele-
tal muscle and liver, among other organs [8,9,14,81,96]. Therefore, it would be important to
understand the correlation of lipin alteration in patients with DM1 with the high frequency
of dyslipidemia and MetS. Thus, more studies with a large cohort should be taken in
consideration, particularly, to evaluate the involvement of lipin with the levels of TAG,
total cholesterol, HDL, LDL (Figure 4).
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6.2. Insulin Resistance Association with Lipin

Insulin is a metabolic hormone, produced by pancreatic beta cells to regulate the
glucose uptake. The major targets of insulin are adipose tissue, muscle, liver, and heart.
Insulin receptor can also be found in brain, lungs, kidneys, fibroblasts, and blood cells [8].
Insulin is also a key molecule in lipid metabolism and protein synthesis, and is involved
in glucose uptake in skeletal muscle and adipocytes, promotion of glycogen synthesis,
inhibiting lipolysis in adipocytes, reduction of hepatic gluconeogenesis process by lipol-
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ysis inhibition, regulation of muscle proteins synthesis, and promoting cell division and
growth [8,70].

Insulin is produced by the cleavage of pro-insulin. After insulin production it interacts
with insulin binding receptors (IR) and insulin growth factor 1 receptor (IGF1R). Insulin
receptors (IR) belong to a super family of transmembranar receptor tyrosine kinases that
are encoded by the insulin receptor (INSR) gene located on chromosome 19p13.2 [55,70,
102]. Alternative splicing of INSR pre-mRNA originates two isoforms, IR-A and IR-B.
IR-A and IR-B are activated by auto-phosphorylation resulting in downstream cascades
activation which interacts with insulin response elements 1 (IRS-1) or 2 (IRS-2), through
tyrosine residues phosphorylation. IRS-1 activates the RAS/mitogen-activated protein
kinase (MAPK) cascade and regulates the extracellular-signal-regulated kinase signaling
(ERKS) [55,70,102,103]. Also, IRS-1 activates the phosphoInositide 3-kinase (IP3K) signaling
pathway as well as protein kinase B (PKB or AKT) regulating the protein production
and apoptosis via mitogen-activated protein kinase (mTOR) and glycogen synthesis via
glycogen synthase kinase 3 beta (GSK-3β). Consequently, an increase of glucose transporter
4 (GLUT4) is observed enabling the glucose uptake [55,70,102–104]. Insulin signaling also
enhances lipid storage in adipocytes, through stimulation of TAG synthesis and inhibition
of lipolysis, as well as stimulation of glycogen synthesis through AKT2, glycogen synthase
kinase 3 (GSK3) inhibition and glycogen synthase (GS) activation [70]. Insulin growth
factor receptors (IGFR) are metabolic hormones that are structural homologs to insulin and
share a common signaling pathway. There are two isoforms of IGFR namely IGF1R and
IGF2R, which are produced in the liver, brain, pancreas, intestine, kidney, adipose tissue,
and muscle [8].

Furthermore, it is known that insulin plays an important role in skeletal muscle
growth, development, differentiation, and regeneration and in the absence of insulin stim-
ulus, a loss in muscle mass and strength can be observed. Therefore, insulin plays a critical
role controlling skeletal muscle mass through regulation of protein metabolism via two
main downstream effectors, mTOR and FoxO [70]. Insulin induces the phosphorylation
and activation of mTOR promoting protein synthesis, while insulin dependent phosphory-
lation of FoxO1 leads to a decrease in atrogenes expression [70,105], such as MuRF1 and
Atrogin-1/MAFbx, thus inhibiting ubiquitin-dependent protein degradation [55,70]. The
binding of insulin receptors leads to AKT/PKB activation and mTOR and FoxO phospho-
rylation. Phosphorylation of mTORComplex 1 allows the protein synthesis, autophagy,
mitochondrial metabolism, and activation of SREBP, through lipin inhibition, which regu-
lates de novo lipogenesis [8,70,73,106,107], whereas mTORComplex 2 (mTORC2) negatively
regulates insulin signaling, controls cell stress response, apoptosis, and cytoskeleton or-
ganization [73]. In addition insulin stimulates the interaction between lipin-1 and 14-3-3
proteins promoting cytoplasmic retention of lipin-1 [108]. Interestingly, loss of MBNL1
function leads to changes in mTOR pathway [109] and the reduction of cyclin D3 in DM1
muscles due to abnormal increase of GSK3β switches the CUGBP1ACT to CUGBP1REP
leading to a miss regulating myogenic CUGBP1 targets [110].

Insulin resistance is the inability of exogenous or endogenous insulin to increase
glucose uptake and use, basically the cells stop responding to the hormone [102]. Insulin
resistance is a common MetS feature observed in patients with DM1 and more than 50%
of the patients have insulin resistance after dyslipidemia (Table 2) [8,63]. It is further
involved in cardiovascular disease, left ventricular hypertrophy, type 2 diabetes mellitus
(T2DM), atherosclerosis, hypertension, neuropathy, dyslipidemia, obesity, and loss of
muscle mass and/or strength [8,70,102]. Due to high metabolic demand, insulin resistance
has a significant impact in skeletal muscles, adipocytes and liver, since skeletal muscle and
adipocytes account for 60–70% and 10% of insulin, respectively, for the uptake of glucose
via GLUT4 [55,70,102,103]. The liver account for 30% of insulin-stimulating glucose and
insulin resistance can lead to an increased triglycerides content and very-low-density-
lipids (VLDL) secretion [55,70,102,103,111]. Insulin resistance also induces hyperglycemia,



Int. J. Environ. Res. Public Health 2021, 18, 1794 13 of 22

activation of oxidative stress (mithocondrial and endoplasmic reticulum dysfunction) and
ectopic lipid accumulation [55,70].

Insulin resistance can be caused by lipid accumulation, inflammatory molecules
(interleukine-6 (IL-6), tumor-necrosis factor-α (TNF-α)) secretion by adipocytes and macro
phages, mitochondrial dysfunction related to fatty acid accumulation, reduced insulin
mediated glucose uptake by GLUT4, and dyslipidemia (in terms of lipogenesis and lipoly-
sis) [8,55,63,103,112]. Also, our findings summarized in Table 2 have shown an abnormal
lipid metabolism in patients with DM1, which are crucial for the development of insulin
resistance, such as increased levels of TAG and LDL, as well as waist circumferences, and
in some cases lower levels of HDL [59,60,65]. It is recognized that lipin altered levels may
lead to insulin resistance, probably through a combination of factors including impaired
glucose uptake in adipose tissue and muscle, and reduced levels of adipose-derived factors,
such as leptin and adiponectin (Figure 4) [113].

Interestingly, these features may be deeply involved with the lack of adipocyte stimu-
lus and differentiation due to insulin resistance and lipin altered levels. Although, patients
with DM1 have a normal glucose tolerance and a very low prevalence of diabetes, in spite of
a marked insulin resistance (Table 2) [59,61], raising many questions. Thus, it is important
to further study the relation and connection of lipin with insulin resistance underlying
pathways, particularly, the glucose uptake and adipose tissue in these patients.

6.3. Skeletal Muscle Metabolism and the Lipin Role

Skeletal muscle accounts for almost half of the total body mass and energy expenditure.
Additionally, it is the major site for fatty acid and glucose oxidation [114]. Lipin-1 is
involved in almost all muscular PAP activity compared with lipin-2 and lipin-3 that are
expressed at much lower levels in skeletal muscle. Thus, altered levels of lipin-1 affects
the energy metabolism, mitochondrial enzymes [12] the glycolysis, glycogenolysis, and
mitochondrial respiration, which leads to impaired skeletal muscle functions causing
severe myopathies [114,115].

A previous study demonstrated a severe myopathy after deletion of lipin-1 in murine
model skeletal muscle [114], and an increased phospholipid biosynthesis of PC, PE, PI,
and PG, thus providing a tool for assessing lipin-1 role on skeletal muscle function and
metabolism [114]. Interestingly in this study [114] the authors also found a severe sar-
coplasmic reticulum (SR) stress, mitochondrial alteration, and neutral lipid accumulation
of TAG, cholesterol, cholesterol esters, and increased levels of DAG, and increased SREBP
activation [114].

There are three SREBP mammalian isoforms, namely, SREBP-1a, SREBP-1c, and
SREBP-2 [116,117], in which, SREBP-1a regulates fatty acid and cholesterol synthesis, and
cholesterol uptake [116,118,119], SREBP-1c regulates the expression of genes required for
fatty acid synthesis [118,120] and is upregulated by insulin stimulation [116,119,120] and
SREBP-2 regulates uptake and synthesis of cholesterol [116].

These findings are in accordance with previous studies described in Table 2, since
due to deficiency of lipin-1 levels there will be an increased activation of SREBP and
therefore increased fatty acids synthesis, phospholipids biosynthesis, cholesterol, and
TAG levels (Figure 2) [97–101]. Interestingly, similar results were reported by another
previous study [97] using Duchenne muscular dystrophy (DMD) mouse model, where
lipin-1 knockdown lead to changes of lipid metabolism in the skeletal muscles, resulting
in increased phospholipid biosynthesis and a reduction of SERCA function leading to a
pronounced muscle weakness (myopathy) [97].

Previous studies also, showed mitochondria dysfunction in skeletal muscle of patients
with DM1 indicating impaired oxidative skeletal muscle metabolism, low levels of ATP
production and increased reactive oxygen species (ROS) production [121–124]. In addition,
it was shown a 50% reduction of ATP production via mitochondrial oxidative phosphoryla-
tion system activity in patients with DM1 compared with controls [121]. As previous stated
lipin-1 is a key regulator of transcriptional factors related to the fatty acid β-oxidation such
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as PPARα and PGC-1α promoting cellular energy consumption and the downregulation
of nuclear SREBP protein, a master regulator of lipid synthesis (Figure 2) [10,14,99]. Thus,
lipin-1 deficiency may be involved in mitochondrial dysfunction, which was observed
in previous studies with a lipin-1 deficiency mouse model that had impaired autophagy,
accumulation of dysfunctional mitochondria in skeletal muscle, and lack of mature au-
tolysosomes formation [81,125–128]. These findings are in accordance with Table 2 data,
since the lipin-1 altered levels seems to alter the mitochondrial function, and the amount of
free fatty acids accumulation will increase as well as the total cholesterol and LDL synthesis
through SREBP increased activity.

Interestingly one additional study has suggested a connection between lipin-1 and
mitochondria through a phosphoglycerate mutase family member 5 (PGAM5), a ser-
ine/threonine specific protein phosphatase that promotes lipin-1 dephosphorylation in
the nucleus and therefore, promoting the cellular energy consumption and the control of
lipid metabolism through PPARα and PGC-1α. More studies are needed to understand
the consequences of lipin-1 dephosphorylation in skeletal muscle mitochondria of patients
with DM1 [10] as well as the true impact of lipin in skeletal muscle mitochondria function
(Figure 4).

6.4. Lipin Association with Adipose Tissue

Adipose tissue is mainly composed by adipocytes and acts as an energy store for
skeletal muscles. There are two types of adipocytes, the white and brown adipocytes. White
adipocytes store energy in a highly concentrated form, namely as TAG, mostly in a single
large lipid droplets [129]. Brown adipocytes are characterized by multiple, smaller droplets
of TAG, which are accessible for rapid hydrolysis and rapid oxidation of the fatty acids [129].
Adipose tissue can secret a large number of peptide hormones, adipokines and activated
lipids [130], affecting energy metabolism in liver muscles and neuroendocrine pathways
(behaviors related to feeding) [129]. Adipokines, for example leptin, monocyte chemoattrac-
tant protein-1/chemokine (C–C motif) ligand-2 (MCP-1/CCL2) and TNFα, modulates an
inflammatory response in adipose tissue and regulate the mitochondria present in adipose
tissues playing a role in the regulation of lipid and glucose metabolism [129,131].

Several studies regarding non-DM1 obese individuals have reported a relation be-
tween hypertrophic adipocytes in white adipose tissue and MetS [132–134]. These patients
had a higher activation of inflammation, increased TAG and accumulation of lipid species,
such as diacylglycerol and ceramides and systemic insulin resistance, features presented in
Table 2. In addition, some of the gathered previous studies have also reported an altered
adipose tissue function in patients with DM1 (Table 2) [56,57,59,64,65]. Given this findings,
we hypothesized the involvement of lipin in adipose tissue dysfunction, since lipin-1α can
be found in the nucleus and stimulates expression of genes involved in adipocyte differen-
tiation such as PPARγ and CCAAT/enhancer-binding protein α [12,96]. On the other hand,
lipin-1β is predominantly localized on the cytoplasm and is associated with the expression
of genes involved in lipogenesis and triglyceride storage in adipocytes, including fatty acid
synthase and diacylglycerol acyltransferase [96]. Given this, both lipin-1α and lipin-1β
are important for normal adipogenesis and lipogenesis, as observed in previous studies
with a lipin-deficient mice models which developed decreased mature adipocytes [68,125].
However, in another study the overexpression of lipin in adipose tissue of a transgenic
mice caused obesity, increased lipogenic gene expression, and hypertrophic adipocytes,
which could lead to improved insulin sensitivity [96,127].

Furthermore, insulin resistance and dyslipidemia in skeletal muscle are associated
with inflammatory state in adipose tissue through recruiting MCP-1, TNFα, and other
cytokines leading to increased free fatty acids causing a decreased TAG synthesis, accumu-
lation of TAG and activated lipids with a long-chain of fatty acyl-CoA esters. Consequently,
a disruption of mitochondrial function, and glucose transport in the skeletal muscle, liver,
and pancreas is observed, thus triggering insulin resistance and dyslipidemia [9,69,129].
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Interestingly, macrophages can express lipin-1, lipin-2, and lipin-3, thus lipin also has an
important role in macrophage physiology and pathophysiology [135,136].

Although, we hypothesize the role of lipin altered levels in adipose tissue (Figure 4),
there are evidences of adipose tissue alteration in patients with DM1, which have features
of MetS summarized in Table 2. Thus, more studies regarding lipin function in adipose
tissue of patients with DM1 would give insight towards these metabolic alterations and
may be give rise to new underlying metabolic pathways and/or therapeutics.

Over all our findings suggests that there is indeed a correlation between lipin dys-
function and DM1 altered metabolism, particularly, a relation of lipin with dyslipidemia,
insulin resistance, skeletal muscle metabolism, and adipose tissue (Figure 4). Therefore,
there is a need to understand not only the underlying pathways of lipin in DM1 disease,
but also, how are these pathways affected and how they potentially lead to DM1 metabolic
dysregulation (Figure 4).

7. Future Perspectives

Of note, there are several metabolic changes observed in patients with DM1 (Table 2).
These alterations are potentially involved with altered lipin expression levels and activity
apparently leading to lipid metabolism abnormalities in patients with DM1. Therefore, all
these aspects need further investigation. The underlying mechanisms and pathways associ-
ated to these lipid metabolic changes should be explored in DM1, since it poses interesting
challenges and potential therapeutically opportunities for MetS and diabetes mellitus.

From the literature review, many questions were raised, such as: How is lipin reg-
ulated in patients with DM1? What conditions influence lipin activation and inhibition?
What is the association between DMPK mRNA and/or other nuclear proteins with lipin?
What are the consequences of downregulation (lipin deficiency) or overexpression in pa-
tients with DM1? Can lipin proteins be targets for the modulation of TAG storage and/or
TAG secretion? These questions are in reach through studies of genetically modified mouse
models, cell culture systems, transcriptome alterations, and metabolome analysis in pa-
tients with DM1 [45,71,81,127] with the aid of technology advancements and methods in
measurement of lipids [107], including nuclear magnetic resonance (NMR), mass spec-
trometry (MS), and vibrational spectroscopy like Raman and Fourier-transform infrared
(FTIR) that have the capability to analyze lipid abnormalities in a variety of biological
samples [137–141]. In addition, there is a need to better understand and study the role of
lipin in DM1, since to our current knowledge there are few studies related to this subject.
Also, it would be interesting to evaluate the metabolic alterations and their relations to
DM1 phenotypes (congenital-onset, infantile-onset, juvenile-onset, adult-onset, late-onset),
to observe if it is possible to discriminate patients with DM1 by disease severity through
metabolome analysis as a screening tool.

8. Concluding Remarks

In this review, we have consolidated the clinical and molecular evidence of metabolic
alterations observed in patients with DM1 and the potential involvement of lipin in such
metabolic alterations. In addition, evidence of altered lipin levels in DM1 mouse model
and in humans has been reported [45,71], thus emphasizing the importance of this review,
regarding the potential correlation between altered lipin levels and the DM1 metabolism.
Also, alterations in lipidome composition have been observed in Duchenne muscular
dystrophy, Becker muscular dystrophy, DM1, myotonic dystrophy type 2, among other
skeletal muscle disorders [107]. These lipid alterations are important components of MetS,
non-alcoholic fatty diseases, cardiovascular diseases, lipid storage disorders, vascular
and neurologic disorders, diabetes mellitus, insulin resistance, atherogenic dyslipidemia,
hypertension, central obesity, and pro-inflammatory state disorders [8,53,54].

Clear clinical metabolic alterations, namely, increased total cholesterol, LDL, TAG,
insulin, and HOMA-IR have been demonstrated in this review between patients with DM1
and control groups. These clinical results showed not only the incidence of metabolic
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alterations in patients with DM1 but also, the urgent need to further study the underlying
mechanisms and pathways leading to these metabolic alterations. One hypothesis is that
altered levels of lipin may be associated with metabolic abnormalities found in patients
with DM1, since lipin has a critical metabolic role in adipose tissue, skeletal muscle system,
and liver, being localized in the cytoplasm, endoplasmic reticulum, and in the nucleus.
Our findings are in accordance with previous studies [73,81,97,113,114,129,142], were al-
terations in lipin levels potentially led to impaired skeletal muscle functions, impaired
mitochondrial function, severe sarcoplasmic reticulum stress, neutral lipid accumulation,
insulin resistance, dyslipidemia, inflammatory state (macrophage) in adipose tissue, endo-
plasmic reticulum stress, and SREBP activation, which are common features observed in
patients with DM1.

Interestingly, to our current knowledge patients with DM1 despite abnormal metaboli
sm, rarely became glucose intolerant, and the incidence of diabetes ranges from 0 to 6.5%.
Also, the blood pressure is not elevated as in patients with MetS [56,61,65,143]. Thus,
patients with DM1 may be of interest for further studies on therapeutically mechanisms for
diabetes and components of MetS.

Nonetheless, there is still a gap between the pathway and the mechanism underly-
ing the molecular pathology of altered lipin levels’ downstream events regulating lipid
metabolism in patients with DM1. Although, the hypothesis that altered lipin levels is
a hallmark of several dysfunction in patients with DM1 is emerging. Therefore, under-
standing the different molecular mechanism underlying lipin dysfunction will significantly
increase the knowledge of the physiological and pathological abnormal metabolism in
patients with DM1.
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major DMPK isoforms in humans and their domains and localization [5–7]. DMPK subcellular
localization is confined to either endoplasmic reticulum (ER) or nuclear envelope (DMPK A and B),
to mitochondria (DMPK C and D) or to cytoplasm (DMPK E, F, and G) [6,20,37]. UTR, untranslated
region; DMWD, Dystrophia myotonica WD repeat-containing protein (represented as Blue); DMPK,
Myotonic Dystrophy Protein Kinase; CTG, cytosine-thymine-guanine trinucleotide; LDR-Leucine rich
Domain; PKD, Serine/threonine protein kinase domain. Alternative splicing sites of VSGGG and
Tail (1, 2, 3, and 4) are represented as light blue.
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