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Simple Summary: Intensive research in the field of cancer biology has discovered a unique mode
of interplay between cells via extracellular bioactive vesicles called exosomes. Exosomes serve as
intermediators among cells via their cargoes that, in turn, contribute in the progression of cancer.
They are ubiquitously present in all body fluids as they are secreted from both normal and tumor
cells. These minuscules exhibit multiple unique properties that facilitate their migration to distant
locations and modulate the microenvironment for progression of cancer. This review summarizes
the multifarious role of exosomes in various aspects of cancer research with its pros and cons. It
discusses biogenesis of exosomes, their functional role in cancer metastasis, both protumorigenic and
antitumorigenic, and also their applications in anticancer therapy.

Abstract: Exosomes, the endosome-derived bilayered extracellular nanovesicles with their contri-
bution in many aspects of cancer biology, have become one of the prime foci of research. Exosomes
derived from various cells carry cargoes similar to their originator cells and their mode of generation
is different compared to other extracellular vesicles. This review has tried to cover all aspects of
exosome biogenesis, including cargo, Rab-dependent and Rab-independent secretion of endosomes
and exosomal internalization. The bioactive molecules of the tumor-derived exosomes, by virtue of
their ubiquitous presence and small size, can migrate to distal parts and propagate oncogenic sig-
naling and epigenetic regulation, modulate tumor microenvironment and facilitate immune escape,
tumor progression and drug resistance responsible for cancer progression. Strategies improvised
against tumor-derived exosomes include suppression of exosome uptake, modulation of exosomal
cargo and removal of exosomes. Apart from the protumorigenic role, exosomal cargoes have been
selectively manipulated for diagnosis, immune therapy, vaccine development, RNA therapy, stem cell
therapy, drug delivery and reversal of chemoresistance against cancer. However, several challenges,
including in-depth knowledge of exosome biogenesis and protein sorting, perfect and pure isolation
of exosomes, large-scale production, better loading efficiency, and targeted delivery of exosomes,
have to be confronted before the successful implementation of exosomes becomes possible for the
diagnosis and therapy of cancer.

Keywords: tumor-derived exosomes; exosomal cargoes; protumorigenic effect; drug resistance;
anticancer therapy

1. Introduction

Exosomes are bilayered endosomal nanovesicles, first discovered in 1983, as transfer-
rin conjugated vesicles (50 nm) released by reticulocytes [1]. Due to the increasing interest
of scientists in exosome biology, a consensus guideline was proposed by board members
of International Society of Extracellular Vesicles under “minimal experimental require-
ments for definition of extracellular vesicles and their functions” (MISEV2014) which was
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later updated in 2018 (MISEV2018). The guidelines advocated norms for nomenclature,
isolation, separation, characterization, functional studies, and reporting requirements for
proper identification of and experimentation with extracellular vesicles and exosomes [2,3].
Exosomes are generally formed by inward budding of late endosomes, also known as
multivesicular bodies (MVBs). Intraluminal vesicles (ILVs) of MVBs engulf a variety of
biomolecules which are released into extracellular space as exosomes. Exosomes are anucle-
ated particles naturally released by cells, surrounded by lipid bilayer and are not capable
of replication. Exosomes are identified by size (30–200 nm) and surface markers, such
as membrane-associated proteins, e.g., lysosome-associated membrane glycoprotein 3
(LAMP3)/CD63; intercellular adhesion molecule (ICAM1)/CD81; and tetraspanin mem-
brane protein/CD9. Exosomes are observed in various body fluids, such as blood, plasma,
saliva, urine, synovial fluid, amniotic fluid, and breast milk [4,5].

All cellular types (normal and diseased) secrete exosomes, mediating intercellular
communications [6]. Exosomes exhibit heterogeneity in size—Exo-Large (90–120 nm), Exo-
Small (60–80 nm), and the membrane-less exomere (<50 nm). Exosome-mediated intercel-
lular transfer of specific repertoire of proteins, lipids, RNA and DNA confer physiological
and/or pathological functions to the recipient targets. Exosomes regulate physiological
functions, such as neuronal communication, immune responses, reproductive activity, cell
proliferation homeostasis, maturation and cellular waste disposition. They also contribute
in clinical disorders, including inflammation, cancer, cardiovascular diseases, neuronal
pathologies and pathogenic infections [5].

Our review deals with exosomal contents, exosome-associated protumorigenic, antitu-
morigenic effect and therapeutics, unlike other reviews, which discuss combinational roles
of all microvesicles in cancer progression [7,8] or have primarily focused on tumor-derived
exosomes (TEXs) with little information on therapeutics [9]. In contrast to reviews which
have focused on specific exosomal cargoes and therapeutics [10,11], we have envisaged
the exosomal contents, the mechanisms influencing cancer progression and their ther-
apeutic implications in cancer management. The inexplicable nature of exosomes has
raised concern about their role in the invasion and metastasis of cancer cells, encompassing
epithelial-to-mesenchymal transition (EMT), angiogenesis, and immune regulation [12].
Thus, instead of reviewing the isolated impact of exosomes, e.g., evasion of immune
surveillance [13] for cancer progression, we have tried to encompass exosome-mediated
propagation of oncogenic signaling, epigenetic regulation, modulation of tumor microenvi-
ronment (TME) and immune escape, EMT, angiogenesis, metastasis and drug resistance.
Considering the clinical applications, the exosomes serve as potent diagnostic and prog-
nostic biomarkers because of their bioavailability, low toxicity and differentiated surface
markers [5]. Recent reviews on exosomes have focused on therapeutic efficacy of exo-
somes by addressing extracellular vesicular interaction with the host immune system [14],
constraints and opportunities available with bioengineering of exosomes [15–17], success
against multiple cancers [18] and exosome-based drug delivery [19–21]. Anticancer treat-
ments sometimes experience shortfall in their efficacy due to unwanted side effects of the
therapeutic agents or shortened shelf-life, but exosomes serve as natural agents to overcome
these issues and become a potent therapeutic agent [22]. However, instead of perceiving
specific therapeutic potential of exosomes, the present review has tried to decipher the
entire repertoire of exosomes, including both protumorigenic and antitumorigenic impact.

2. Cargo Composition of Exosomes

Exosomes are rich in enzymes, transcription factors, heat shock proteins (Hsps),
major histocompatibility complex (MHC), cytoskeleton components, signal transducers,
tetraspanins, lipids, RNAs and DNAs [6,23]. Detailed information about the exosomal
components can be accessed via databases, such as ExoCarta [www.exocarta.org], EVpe-
dia [http://evpedia.info] and Vesiclepedia [www.microvesicles.org]. Though exosomes
diverge in size and biomolecular inclusions, some common components are observed
in all types [5]. Lipid components are cholesterol, sphingomyelin, glycosphingolipids,
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phosphatidylcholine, phosphatidylserines, phosphatidylethanolamines and saturated fatty
acids [4]. RNAs include specific microRNAs (miRNAs), long non-coding RNAs (lncRNAs),
vault RNA, Y-RNA, transfer RNAs (tRNAs), ribosomal RNA (rRNA) fragments (such as
28S and 18S rRNA subunits) and messenger RNAs (mRNAs) [24]. Exosomal cargo compo-
nents also include mitochondrial DNA (mtDNA), single-stranded DNA, double-stranded
DNA and retrotransposons [4,6]. Different protein forms include components of the im-
mune system (MHC class I and II molecules, cytokines), endosomal sorting complexes
required for the transport (ESCRT) complex, those involved in trafficking (tetraspanins,
glycosylphosphatidylinositol-anchored proteins, Rabs, soluble N-ethylmaleimide-sensitive
fusion protein attachment protein receptors (SNARES), flotillins, lipid-rafts residents [25]
and those involved in carcinogenesis (oncoproteins, tumor suppressor proteins, and tran-
scriptional factors) [4]. The plasma membrane (PM) proteins constitute the vesicle mem-
brane for maintaining composition parity with the cell membrane which helps in seques-
tration of soluble ligands. Exosomal proteins are involved in (i) antigen presentation, (ii)
cell adhesion, (iii) cell structure and motility, (iv) stress regulation, (v) transcription and
protein synthesis, and (vi) trafficking and membrane fusion [26]. The structure of exosome
with membrane proteins and cargoes have been depicted in Figure 1.
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Figure 1. Structure of exosome with membrane proteins and cargoes. Exosomes consist of many constituents of a cell
including DNA, RNAs, amino acids, proteins, metabolites, enzymes, lipids (cholesterol) and Hsps along with several
cytosolic and cell-surface signaling proteins which are involved in intercellular communications. Exosomal membrane
is rich in transmembrane proteins (tetraspanins such as CD81, CD63 and CD9), flotillin, ICAMs, integrins and adhesion
molecules. They consist of immune components including MHC class I and class II molecules. Abbreviations: CD, cluster
of differentiation; DNA, deoxyribonucleic acids; Hsps, heat shock proteins; ICAMs, intercellular adhesion molecules; MHC,
major histocompatibility complex; mRNA, messenger RNA; miRNA, microRNA.
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3. Exosome Biogenesis

Endocytosis generates early endosomes via invagination of PM rich in lipid rafts. This
internalizes the PM receptors which are either recycled or degraded. The exosome biogene-
sis involves a complex network of enzymatic actions and signal transductions. Early endo-
somes mature to MVBs or late endosomes upon internal budding of endosomes, forming
ILVs [23]. MVB budding is primed with actin polymerization at PM lipid domains [27,28].
ADP ribosylation factor 6 (ARF6), along with phospholipase D2 (PLD2), converts ILVs
into mature MVBs [29]. Heparanase enzyme stimulates the syndecan-syntenin-ALG-2
interacting protein X (ALIX) axis, upregulating exosome formation [30]. ARF6-induced
actomyosin contractility and ESCRTs promote ILVs shedding from MVBs as exosomes [31].
The MVBs undergo one of the three type consequences [23,32] mentioned below:

(i) Recycling through the trans-Golgi network (TGN) which may be subdivided into a
fast and a slow pathway, considering the duration taken by the specific proteins/lipids
from internalization to re-exposure at the cell surface or exocytosis.

(ii) Lysosomal degradation by hydrolytic enzymes which are able to digest complex
macromolecules.

(iii) Fusion of MVBs with the cell surface release exosomes via exocytosis. Additional
materials may be incorporated to the TGN at any juncture and processed through the
canonical secretory pathways.

4. Sorting of Exosomal Cargoes
4.1. ESCRT-Dependent Sorting Pathway

The ESCRT pathway participates in sorting ubiquitinated proteins of exosome, after
being internalized within ILVs. The complex includes ESCRT-0, which identifies and
processes ubiquitin-dependent cargo inside the vesicles; ESCRT-I and ESCRT-II evoke
budding and ESCRT-III causes vesicle scission from endosomal membrane. Other accessory
proteins such as ALIX aid in vesicle budding and vacuolar protein sorting associated protein
4 (VPS4) promotes scission [30,33].

4.2. ESCRT-Independent Exosomal Sorting

Ceramide and cholesterol, PLD2, or tetraspanins mediates ESCRT independent sorting
machinery. Tetraspanins may promote incorporation of specific cargoes into exosome,
e.g., CD9 facilitates encapsulation of metalloproteinase CD10 and CD63. Even the lipid
composition and membrane dynamics of the early endosome and MVBs may regulate
exosomal cargoes. Ceramide and neutral sphingomyelinase 2 (nSMase2) play a pivotal
role in an ESCRT independent process of exosome formation, loading, and release [23].
Podoplanin, a transmembrane glycoprotein, is another regulator of exosome biogenesis
and cargo sorting [31].

5. Exocytosis and Secretion of Exosomes

Exocytosis is exosomal secretion into the extracellular matrix (ECM) which is regulated
by Rab GTPases, molecular motors, cytoskeletal proteins, SNAREs, intracellular Ca2+ levels
(increased Ca2+ results in increased exosome secretion) and extracellular/intracellular pH
gradients [23]. Vesicular SNAREs (v-SNARE) on the MVB bind with the target SNARE
(t-SNARE), Syx 5, on the inner surface of the PM for mediating fusion of MVB with the
cell membrane [34]. The fusion of exosome with PM occurs at the actin-rich zones of the
invadopodia, promoting ECM degradation and metastasis, followed by their exocytosis
into extracellular space [34]. Peptidyl arginine deiminases aid exosomal secretion by
deaminating actin [35]. A negative feedback mechanism limits excess exosome secretion
from the same cells [34].

Rabs Control Endocytic Pathway

The Rab GTPases belong to a large family of highly conserved proteins with 60 mem-
bers, which regulate vesicular trafficking in eukaryotes. Different Rab forms are involved
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in endocytic trafficking—Rab4, 5, 9, 11a, 11b, 25 and 35 control recycling [36–39]; Rab5 and
7 cause endosomal maturation [40]; Rab 7 regulates sorting and degradation [41]; Rab 7,
27a and b control secretion of exosomes [42,43] and Rab5 overexpression causes release
of exosomal markers [44]. Deregulation of the Rabs perturb the progression of cargo at
specific endocytic locations. Rabs also play a crucial role in the regulation of tumor-derived
exosomes. Rab11 influenced extrusion of exosome and interaction of MVB with autophago-
somes [45] and promoted calcium dependent docking of MVBs to the PM [46] in K562 cells.
Rab27A, in association with its GTPase activator, EP164, promoted exosome secretion by
A549 lung cancer cells [47]. Rab27A/B are associated with exchange of exosomes between
different cells of TME as well as with exosome secretion by macrophages [6]. Various types
of Rabs involved in endocytic cargo trafficking have been depicted in Table 1.

Table 1. Different types of Rabs and their function in endocytic trafficking.

Rabs Effects Functions References

Rab27
Secretion of exosomes

Release of markers MHC II, CD63, and
CD81 in cancer cells [32]

Rab7, Rab27a/b Fusion with plasma membrane [43]

Rab5, Rab4, Rab35

Recycling

Fast delivery of cargo to the plasma
membrane [36]

Rab5, Rab11a, Rab11b, Rab25 Slow delivery of cargo to the
plasma membrane [37,38]

Rab9 Transportation to TGN [39]

Rab5, Rab7 Endosome maturation Release of Rab5 [40]

Rab7 Sorting and degradation Reduction in pH and acquisition of
hydrolytic enzymes [41]

Rab5 overexpression<break/>Note:
may be rescued by Rab7

Suppression of release of
exosomal markers syndecan,

CD63, and ALIX

Inhibition of progression of endocytosed
material from early endosomes [44]

Abbreviations: ALIX, ALG-2 interacting protein X; MHC-II, major histocompatibility complex II; TGN, trans-Golgi network.

6. Exosomal Internalization by Recipient Cells

Exosomes float in the ECM after their release and exosomal surface proteins help in
detecting the target cells for their internalization [48]. Exosomes attach to specific target
cells by receptor-ligand binding, mediated through integrins, tetraspanins and intercellular
adhesion molecules, which then internalizes exosomes (Figure 2) by (i) clathrin/caveolin-
mediated endocytosis, (ii) uptake via lipid raft, (iii) macropinocytosis, (iv) direct fusion
with the PM and (v) phagocytosis.

Clathrin protein forms a mesh like structure around the exosomes for its internaliza-
tion. The PM of the recipient cells forms an inward invagination, followed by pinching
off the clathrin coated vesicle from the membrane. The exosome empties all its contents in
recipient cell’s endosomes to perform specific functions [49]. Endocytosis, similar to the
clathrin-dependent process, may be also mediated by caveolin-1 whose aggregations in
PM form rafts. The invagination of the PM (caveolae) is rich in glycolipids, cholesterol and
caveolin 1 [50]. Macropinocytosis involves distortion of PM forming protrusions from the
membrane which encompass a region of extracellular fluid and exosomes, thereby inter-
nalizing exosomes. This process is Rac1-, actin- and cholesterol-dependent and it requires
Na+/H+ exchange [51]. LAMP-1, integrins or tetraspanins are involved in the fusion of
exosomes with the PM of recipient cells [52,53]. Phagocytosis is similar to macropinocy-
tosis where exosomes are internalized along with some extracellular fluids. This process
is followed by both phagocytic cells—like macrophages and dendritic cells (DCs)—and
non-phagocytic cells like γδ T cells [54]. During exosome uptake by soluble signaling,
exosomal ligands are cleaved by cytoplasmic proteases and are bound to their respective
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receptors present on the PM of the recipient cells. In case of juxtacrine signaling, the ligands
and receptors need to be in close proximity for efficient ligand–receptor binding [55]. Exo-
somal tetraspanins (CD9, CD63, CD81 and CD82) regulate cell fission and fusion, target cell
selection [42], migration, adhesion, proliferation, and interaction between exosomes and
recipient cells [56]. Size distribution in exosomes facilitates their internalization since cells
have a propensity for loading smaller exosomes [5]. Oncogenic integrins play a dominant
role during internalization of tumor-derived exosomes by recipient cells. Metastasis has
been observed to be associated with exosome-integrins, such as αvβ6 integrin in prostate,
αvβ5 integrins in liver and α6β4 and α6β1 integrins in lung [56].
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endocytosis, the exosomes either undergo lysosomal degradation or mediate cellular response. Abbreviations: mRNA,
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7. TEX

The TEXs influence shaping of the TME, tumor progression, invasion and premetastatic
niche formation, metastasis, angiogenic switch, and immune escape by paracrine subver-
sion of local and distant microenvironments [57].



Cancers 2021, 13, 326 7 of 31

7.1. Oncogenic Signaling Involved in Exosomal Trafficking

According to the genometastatic theory, complex biomolecules in exosomes transfer
oncogenic traits to target cells. Matrix cells in the TME interact with their oncogenic
counterparts through exosomes and mediate tumor evolution and progression. Exosomal
cargoes confer oncogenic transformation, EMT, immune surveillance evasion, invasion,
and metastatic properties to the recipient cells [58]. Hypoxia and extracellular acidity
culminate in greater release of TEXs [58]. Cells having even one oncosuppressor mutation
are more prone towards uptake of exosomal oncogenic factors. Mutations leading to
upregulated mitogen-activated protein kinase (MAPK) signaling in cancer cells elevated
exosomes release [59]. Secretion of exosomes by activated platelets promoted MAPK and
phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/matrix metalloproteinase (MMP)
signaling during cancer progression [31]. Expression of oncogenic RAS in non-tumorigenic
epithelial cells promoted secretion of oncoprotein-rich exosomes [60]. Robust expression of
oncogenic and truncated forms of epidermal growth factor receptor (EGFR) vIII in glioma
cells augmented exosomal secretion and transfer of oncogenic activity to other normal
cells [61]. Mutation of liver kinase B1 (STK11), a tumor suppressor, increased exosome
secretion in lung cancer [62]. Secretion of exosomal mtDNA induced anaerobic metabolism
and dormancy in cancer cells [31].

7.2. Exosomal miRNA-Mediated Cancer Promotion

Breast TEXs, enriched with Dicer, Protein Argonaut 2, and transactivation response
element RNA-binding protein, processed precursor miRNAs into mature miRNAs for
gene silencing in target cells and induced non-tumorigenic epithelial cells to form tu-
mors [63]. Exosomal miRNAs suppressed cell proliferation by downregulating the C-X-
C motif chemokine ligand 12 (CXCL12); exosomal-miR-23b augmented cell quiescence
by inhibiting myristoylated alanine-rich C-kinase substrate expression in the metastatic
niche [64]; miR-10b molded the TME to promote tumor metastasis [65] of breast cancer (BC)
cells. Astrocyte-derived exosomes suppressed phosphatase and tensin homolog (PTEN)
by intracellular trafficking of miR-19a in metastatic BC and melanoma brain metasta-
sis models [66]. Release of exosomal miR-1245 from mutant p53 cancer cells reoriented
macrophages to transforming growth factor-β (TGF-β)-rich tumor-associated macrophages
(TAMs) which, in turn, propagated tumor progression [67]. Exosomal miR-105 and miR-939
in BC and miR-181c in brain cancer dissolved tight junctions, caused vascular leakiness
and induced metastasis [31].

7.3. Exosomes and TME

TEXs are well documented for immune suppression by multiple interactions with
immune cells of the TME (Figure 3). They hinder helper and cytotoxic T-cell activation
and function, activate regulatory T-cell (Tregs), inhibit cytotoxicity of natural killer (NK)
cells, augment differentiation of myeloid-derived suppressor cells (MDSCs) and reduce
leukocyte adhesion [34]. Exosomes modulate the TME by extracellular signal-regulated
kinase (ERK)-mediated cell growth or apoptosis. Interaction of stromal cells and tumor
via exosomes inflict dissemination of tight junctions, generating a suitable niche for metas-
tasis [68]. TEXs induced cancer-associated fibroblasts (CAFs) for exosomes’ release [69].
The transfer of CAF-derived exosomal cargoes in the form of metabolic intermediates of
the tricarboxylic acid cycle to cancer cells promotes neoplastic growth by alteration of
glycolysis and glutamine-dependent reductive carboxylation [70]. Exosomes transformed
fibroblasts into CAFs in melanoma [71]. CAFs or mesenchymal stem cells (MSCs) derived
exosomes maneuvered Wnt signaling-induced migration [68]. Exosomes expressing Fas
ligand activated CD8+ T-cell apoptosis [72]. Exosomal αvβ6 integrin inhibited the signal
transducer and activator of transcription 1 (STAT1)/MX1/2 signaling in cancer cells and
reprogramed monocytes into the M2 phenotype [73]. Exosomal miR-146a-5p from hepato-
cellular carcinoma (HCC) cells induced M2 polarization [74]. BC cell derived exosomes
inhibited NK cells [75] and infiltrated neutrophils into tumors [76]. Melanoma-derived
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exosomes perturbed maturation of DCs in lymph nodes [77]. However, TEXs can sup-
ply antigens to DCs for cross-presentation to cytotoxic T cells [78]. Administration of
topotecan/radiation induced the release of exosomal immunostimulatory DNA, which
inflicted DC maturation and cytotoxic T cell activation [31]. Programmed death ligand 1
(PD-L1)-positive exosomes positively correlated with head and neck squamous cancer cells
(HNSCC) progression in patients and administration of anti-PD-L-1 antibodies inhibited
the immunosuppressive function of PD-L1 [79].
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by exosomal EGFR in GC [89]; MMP1 mRNA in ovarian cancer [90]; miR-25-3p, miR-130b-
3p, miR-425-5p in colorectal cancer cells (CRC) [91]; miR-106b in lung cancer [92]; and 
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Figure 3. Exosomes in tumor microenvironment. Exosomes secreted from tumor cells containing MVBs exhibited a dynamic
signaling between tumor cells and the TME. Exosomes may lead to immune suppression by downregulating macrophages,
DC, T cells and NK cells and upregulating immunosuppressive cells like Tregs, MDSCs and TAMs. Exosomes induced
differentiation of fibroblasts, activation of CAFs and degradation of ECM, which are associated with TME construction.
They are involved in the alteration of ECM, hypoxia-mediated angiogenesis and the formation of pre-metastatic niches that
trigger the metastatic escape of tumor cells. Abbreviations: CAFs, cancer-associated fibroblasts; ECM, extracellular matrix;
DCs, dendritic cells; MDSCs, myeloid-derived suppressor cells; NK cells, natural killer cells; TAMs, tumor-associated
macrophages; TME, tumor microenvironment; Tregs, tumor regulatory cells.

7.4. Impact of Exosomes on EMT, Invasion, Metastasis and Angiogenesis

Exosomal cargoes CD151 and Tspan8 are related with ECM degradation, stromal
reprogramming, cell motility and tumor progression [80]. EMT was induced by exoso-
mal miR-663b in bladder cancer [81]; lncRNA SOX2 overlapping transcript (Sox2ot) in
pancreatic ductal adenocarcinoma (PDAC cells) [82]; and TGF-β-enriched TEXs in myofi-
broblasts [83]. Migration of tumor cells was facilitated by the exosome-mediated transfer
of αvβ6 in prostate cancer [84]; miR-21 in bladder cancer [85]; TAM derived exosomes in
gastric cancer (GC) cells [86]; and lncRNA ubiquitin-fold modifier conjugating enzyme 1
(UFC1) in non-small cell lung carcinoma (NSCLC) [87]. Exosomal lncRNA zinc finger anti-
sense 1 (ZFAS1) induced EMT and migration in GC cells [88]. Metastasis was promoted by
exosomal EGFR in GC [89]; MMP1 mRNA in ovarian cancer [90]; miR-25-3p, miR-130b-3p,
miR-425-5p in colorectal cancer cells (CRC) [91]; miR-106b in lung cancer [92]; and miR-21
in oesophageal cancer [93]. Cell proliferation and invasion was induced by exosomal
miR-1260b in lung adenocarcinoma [94] and miR-222 in PDAC [95]. Angiogenesis and
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tumor progression were influenced by exosome mediated Wnt4/β-catenin signaling in
CRC [96] and by vascular endothelial growth factor A (VEGF-A) enriched exosomes in
brain endothelial cells [97]. Tumor progression was augmented by exosomal miRNAs from
TP53-mutant cells in colon cancer cells [98] and by exosomal lncRNA ZFAS1 in GC [92].
Exosomal miR-21 reduced apoptosis in GC cells [99], exosomal IL-6 induced metastasis
in BC cells [100], exosomal HSP70 induced tumor progression in MSC cells [101], and
exosomal TGF-β promoted tumor growth in LAMA84 cells [102]. Various recent studies
based on the tumor promoting effect of exosomes have been listed in Table 2.

Table 2. Tumor-promoting effects of exosomal cargoes on recipient cells.

Exosome Donor Cells Exosomal Cargo Target Cells Effects Mechanisms References

Human prostate cancer (PC3) cells Integrin αVβ6

Peripheral blood
mononuclear cells

and THP-1
monocyte cells

↑M2 polarization ↓STAT1/MX1/2
signaling [73]

Human prostate
cancer DU145 cells

↑Cell adhesion and
migration

↑Latency-associated
peptide-TGF-β [84]

HCC (mouse Hepa1-6, H22, and
human HepG2, H7402) cells miR-146a-5p

Mouse RAW264.7
cells, THP-1 cells,
mice peritoneal
macrophages

↑Pro-inflammatory
factors, ↑M2

polarization, ↑T-cell
exhaustion by M2

macrophages

↑NF-κB, ↑p-STAT3,
↓p-STAT1 [74]

Human Bladder cancer (T24 and
5637) cells miR-663b T24 and 5637 cells ↑Cell proliferation,

↑EMT
↓ERF, ↓E-cadherin,

↑Vimentin [81]

Human PDAC (Hs 766 T) and
metastatic (Hs 766T-L2) cells lncRNA-Sox2ot Human PDAC

(BxPC-3) cells

↑EMT, ↑stemness,
↑invasion and

metastasis
↑Sox-2 [82]

Human bladder cancer (T24) cells miR-21
Human THP-1

cell-derived
macrophages

↑M2 polarization,
↑tumor cell

migration and
invasion

↓PTEN,
↑PI3K/Akt-STAT3

signaling
[85]

M2 polarized
macrophages (TAMs) Apolipoprotein E

Mouse gastric
carcinoma (MFC)

cells
↑Cell migration ↑PI3K-Akt signaling [86]

Human NSCLC (A549 and
H1299) cells lncRNA UFC1 A549 and H1299 cells

↑Cell proliferation,
↑migration,
↑invasion

↓PTEN via
EZH2-mediated

epigenetic silencing
[87]

Human GC (BGC-823) cells lncRNA-ZFAS1 Human GC
(MKN-28) cells

↑EMT, ↑cell
proliferation,
↑migration

↑Cyclin D1, ↑Bcl-2,
↓Bax, ↓E-cad, ↑N-cad,

↑Slug
[88]

Human GC (SGC7901) cells EGFR Primary mouse liver
cells

↑Cell proliferation,
↑metastasis

↓miR-26a/b, ↑HGF,
↑c-Met [89]

Human CRC (HCT116) cells
miR-25-3p,

miR-130b-3p and
miR-425-5p

Macrophages
RAW264.7

↑M2 polarization,
↑EMT, ↑liver

metastasis

↑CXCL12/CXCR4
axis, ↓PTEN,

↑PI3K-Akt signaling
[91]

Human lung cancer (SPC-A-1 and
H1299) cells miR-106b SPC-A-1 and H1229

cells
↑Migration and

invasion ↓PTEN [92]

Human esophageal cancer
(EC9706) cells miR-21 EC9706 cells ↑Metastasis ↓PDCD4, ↑MMP2,

↑MMP9 [93]

Human lung adenocarcinoma
(H1299) cells miR-1260b Human A549 cells

↑Cell invasion, ↑cell
proliferation, ↑drug

resistance

↑Wnt/β-catenin
signaling, ↓sFRP1,

↓Smad4
[94]

Human PDAC (Capan-1 and Hs
766T-L3) cells miR-222 PDAC (Capan-1 and

Hs 766T-L3 cells)
↑Cell invasion,
↑metastasis

↑Akt, ↓PPP2R2A,
↑p-P27 [95]
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Table 2. Cont.

Exosome Donor Cells Exosomal Cargo Target Cells Effects Mechanisms References

Hypoxic human CRC (HT29 and
HCT116) cells Wnt4

Endothelial
(HUVECs) and CRC

(HT29) cells

↑Proliferation,
↑angiogenesis,
↑migration

↑β-Catenin signaling [96]

TP53-mutant (HT29) colon
cancer cells

miR-1249-5p,
miR-6737-5p, and

miR-6819-5p

Human colon
fibroblasts

(CCD-18Co) cells
↑Tumor progression ↓TP53 [98]

Murine bone marrow–derived
macrophages miR-21 Human GC (MFC,

MGC-803) cells

↓Apoptosis,
↑resistance to

cisplatin

↑PI3K/AKT
signalling, ↓PTEN [99]

Co-culture of THP-1-derived
macrophages exposed to

apoptotic human BC (MCF-7 or
MDA-MB-231) cells

IL-6 Naive (MCF-7 or
MDA-MB-231) cells

↑Proliferation,
↑metastasis

↑p-STAT3, ↑cyclin
D1, ↑MMP2, ↑MMP9 [100]

Human lung cancer (A549) cells HSP70 MSCs extracted from
human adipose tissue

Pro-inflammatory
MSCs, ↑tumor

growth

↑TLR-2/NF-κB
signaling, ↑IL-6,
↑IL-8, ↑MCP-1

[101]

Human chronic myeloid leukemia
(LAMA84) cells TGF-β LAMA84 cells

↑Proliferation,
↓apoptosis, ↑tumor

growth

↑SMAD 2/3, ↑Bcl-w,
↑Bcl-xL, ↑survivin,

↓BAD, ↓BAX,
↓PUMA

[102]

Human BC (MCF-7) tamoxifen
resistant cells miR-221/222 Human BC (MCF-7)

wild type cells
↑Resistance to

tamoxifen ↓P27, ↓ERα, [103]

Human cisplatin resistant
A549 cells miR-100-5p Human A549 cells ↑Resistance to

cisplatin ↑mTOR [104]

Gemcitabine treated human
PDAC CAFs Snail and miR-146a Human pancreatic

cancer L3.6pl cells

↑proliferation,
↑resistance to
gemcitabine

↑Snail, ↑miR-146a [105]

Human HER-2-positive BC
trastuzumab resistant (SKBR-3

and BT474) cells

lncRNA
AFAP1-AS1

SKBR-3 and
BT474 cells

↑Resistance to
trastuzumab ↑ERBB2 [106]

Tamoxifen resistant BC
(LCC2) cells lncRNA UCA1 ER-positive BC

MCF-7 cells

↑Cell viability,
↑resistance to

tamoxifen
↓caspase-3 [107]

Human GC (MGC-803 and
MKN-45) cisplatin resistant cells lncRNA HOTTIP MGC-803 and

MKN-45 cells
↑Resistance to

cisplatin ↑HMGA1 [108]

Symbols: ↑, upregulated; ↓, downregulated; Abbreviations: AFAP1-AS1, actin filament associated protein1 antisense RNA 1; Akt, protein
kinase B; Bad, Bcl-2 associated agonist of cell death; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; c-Met, Mesenchymal-epithelial
transition factor; CXCL12, C-X-C motif chemokine ligand 12; CXCR4, C-X-C chemokine receptor type 4; Erα, estrogen receptor-α; ERF,
Ets2-repressor factor; ERBB2, erythroblastic oncogene B; HGF, hepatocyte growth factor; HMGA1, High-mobility group A1; HOTTIP,
HOXA transcript at the distal tip; MCP-1, monocyte chemoattractant protein-1; MMP, matrix metalloproteinase; NF-κB, nuclear factor
kappa-light-chain-enhancer of activated B cells; PDCD4, programmed cell death 4; PI3K, phosphoinositide 3-kinase; PPP2R2A, protein
phosphatase 2 regulatory subunit B alpha; PTEN, phosphatase and tensin homolog; PUMA, p53 upregulated modulator of apoptosis; sFRP,
secreted frizzled-related protein 1; STAT, signal transducer and activator of transcription; Sox-2, sex determining region Y-box 2; TGF-β,
transforming growth factor-β; TLR-2, toll-like receptor 2; TP53, tumor protein p53.

7.5. Exosomes and Drug Resistance

Exosomes form a physical barrier against drug penetration and confer drug resistance
by transfer of cargoes from resistant to sensitive cells [104]. Exosome-mediated drug
resistance may be devised through trafficking of non-coding RNAs, drug transporters and
neutralization of antibody-based drugs, which has been described in the following sections.

7.5.1. By Trafficking of Non-Coding RNAs

Non-coding RNAs, including miRNAs and lncRNAs, perpetuated drug resistance
across an array of cancer cells. Exosomes from M2-macrophage exerted miR-21-mediated
upregulation of PI3K/Akt signaling and reduced apoptosis and cisplatin resistance in
GC [93]. Exosomal miR-221/222 modulated p27 and ERα for tamoxifen resistance [103] in
BC cells. Exosomes derived from cisplatin resistant cells induced resistance in cisplatin sen-
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sitive A549 cells in a miR-100-5p-dependent manner [104]. In ovarian cancer cells, exosomal
miR-443 induced senescence and resistance against paclitaxel [109]. In prostate cancer, CAF
derived exosomes conferred gemcitabine resistance via Snail and miR-146a [105]. Exoso-
mal cargo-lncRNA UCA1 mediated tamoxifen resistance [107] and lncRNA actin filament
associated protein1 antisense RNA 1 (AFAP1-AS1) conferred trastuzumab resistance by
binding to AU binding factor 1 and translating erythroblastic oncogene B2 (ERBB2) [106]
in BC cells. MSC-derived exosomes aided the transfer of lncRNA PSMA3-AS1 to myeloma
cells and exerted resistance against proteasome inhibitor [110]. In GC, exosomal lncRNA
HoxA transcript at a distal tip (HOTTIP) made sensitive GC cells cisplatin resistant [108].

7.5.2. By Trafficking of Drug Transporters and Neutralizing Antibody-Based Drugs

The exosome-mediated transfer of drug transporter molecules is intimately associated
with the spread of drug resistance across diverse cancer forms. Exosomes transported P-
glycoprotein (P-gp) from doxorubicin-resistant cells [68] and multidrug resistance protein-1
(MDR-1) from docetaxel-resistant cells [111] to confer drug resistance in sensitive BC cells.
Recently, it has been evidenced that exosome-mediated transfer of chloride intracellular
channel 1 upregulated P-gp and B cell lymphoma-2 (Bcl-2) and conferred vincristine
resistance in GC cell line SGC-7901 [112].

B-cell lymphoma derived exosomes modulated ATP-binding cassette (ABC) trans-
porter A3, carried CD20 antigen which shielded the cancer cells against therapeutic CD20
antibodies and evaded immune surveillance [113]. Exocytosis of TEXs from human epider-
mal growth factor receptor 2 (HER2) positive BC cells expressed specific decoy molecules
and conferred resistance against monoclonal antibody trastuzumab, thus depicting that
TEXs are also involved in neutralizing antibody based drugs [114].

8. Strategies against Tumor-Derived Exosomes

There have been, primarily, three approaches for the management of exosomes associ-
ated with pathogenesis, as described below.

8.1. Suppression of Exosome Biogenesis and Trafficking

Genetic knockdown of tumor suppressor TSG1 (protein involved with exosome bio-
genesis and trafficking) reduced Wnt5b-positive exosomes in colon cancer [115]. Sup-
pression of annexin A1 (responsible for membrane contact sites, inward vesiculation and
exosome biosynthesis) reduced the number of secreted exosomes in pancreatic cancer
cells [116]. Manumycin A was reported to inhibit ESCRT-dependent exosome biogenesis
by modulating Ras/Raf/ERK1/2/heterogeneous nuclear ribonucleoprotein H1 axis in
prostate cancer cells [117].

Small molecule inhibitor GW4869 against nSMase2 reduced secretion of ceramide en-
riched exosomes [118] and sensitized breast tumors by inhibition of exosomal PD-L1 [119].
Knockout of nSMase2 reduced exosome secretion, angiogenesis and metastasis in breast
tumors [120]. Another inhibitor of lipid metabolism, pantethine, a pantothenic acid (vi-
tamin B5) derivative, depleted the release of exosomes in MCF-7 variants and increased
doxorubicin responsiveness [121]. Genetic silencing of Rab27A/B reduced exosomal se-
cretion by HNSCC and macrophages, thereby minimizing metastasis in BC cells [76] and
lung metastasis in melanoma [122]. PRAS40 downregulated Akt, downstream of TGF-
β, and mediated antagonistic effects against exosome secretion and chemoresistance in
breast and lung cancer cells [123]. WEB2086, a platelet-activating factor receptor (PAFR)
antagonist, was shown to reduce gemcitabine-induced exosome release in PAFR-positive
pancreatic cancer cells [124]. Other exosome extrusion inhibitors, such as chloramidine,
bisindolylmaleimide-I, imipramine, d-pantethine, and calpeptin, and calcium chelators,
such as ethylene glycol bis (2-aminoethyl ether) tetra-acetic acid, increased responsive-
ness toward 5-FU in prostate and BC cells [125]. The inhibition of protease-activated
receptor 2 by an anticoagulant, apixaban, which binds to the tissue factor–factor VIIa
complex, downregulated the secretion of TF-bearing exosomes from pancreatic cancer
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cells [126]. Dasitinib inhibited exosome release and beclin-1/Vps34 mediated autophagy
in imatinib resistant K562 cells [127]. Reduced exosome secretion by synthetic peptide
(constructed with a derivative of the secretion modification region of HIV-1 Nef protein, a
N-terminus anchored polyethylene glycol residue and a c-terminus cluster in peptide) [128]
and by Docosahexaenoic acid (a polyunsaturated fatty acid) [34] inhibited metastasis and
angiogenesis, respectively, in BC cells.

8.2. Depletion of Exosome Uptake

A synthetic nanoparticle, which is a prototype of high-density lipoprotein, was used
as an agonist of the scavenger receptor type B-1 (SR-B1) which eliminated cholesterol
from lipid rafts and prevented exosome uptake by SR-B1 expressing cancer cells [129].
Other agents, such as heparin sulfate proteoglycans, methyl-β cyclodextrin (molecule
used for cholesterol removal from natural and artificial membranes) and dynasore (dy-
namin inhibitor), have been reported to abrogate exosome endocytosis in cancer cells [130].
Heparin and dynasore attenuated the uptake of multiple myeloma-derived exosome by
bone marrow stromal cells and inhibited phosphorylation of STAT1, STAT3, and ERK1/2
signaling pathways [131]. Radiation-derived exosomes made the recipient cancer cells
radiation-resistant and aggravated proliferation. Heparin and simvastatin attenuated
radiation-derived exosome uptake by recipient cells in in vitro and in vivo models of
glioblastoma [132].

8.3. Modulation of Harmful Exosomal Cargo and Inhibition of Exosome Dissemination

Alteration of exosomal cargoes was achieved by viral manipulation or by incorpo-
ration of viral proteins/RNA into secreted exosomes [133]. Curcumin culminated the
immunosuppressive effect of exosomes in BC by deregulation of the ubiquitin-proteasome
system and cargo sorting of ILVs [134]. Subscapular sinus CD169+ macrophages bound
with exosomes restricted their interaction with B cells, promoting tumor progression [135].
Exosome release was inhibited by inhibitors like indometacin (COX2 inhibitor) in combina-
tion with rapamycin (interfere with MVB biogenesis) in B lymphoma cells, by suppressing
ATP-binding cassette sub-family A member 3 expression of the lymphoma cells and in-
duced the cells to undergo complement dependent cytolysis under the effect of drug
rituximab [113].

8.4. Removal of Exosomes

A microfluidics-based technology-microscale acoustic standing wave technology facil-
itates clearance of exosomes from circulation [136]. Innate immune system in co-operation
with opsonization effects of complement proteins may be used for elimination of exo-
somes [137]. Opsonization of exosomal markers CD9 and CD63 by targeting anti CD9 and
anti CD63 antibodies elevated exosomes representation to the macrophages, leading to
exosomes’ elimination, which suppressed lung metastasis in vivo [138]. In colorectal can-
cer, dimethyl amiloride depleted exosomes, thereby elevating cyclophosphamide efficacy
against the cancer cells [139].

9. Cancer Management with Exosomes

Exosomes have emerged as a new arena of clinical interest due to their prospective
use in diagnostic applications as potential biomarkers, for carrying specific information of
their progenitor cells, as well as for being ideal candidates for liquid biopsy [56].

9.1. Preclinical Studies on Anticancer Potential of Exosomal Cargoes

Uptake of exosomal contents does not always confer procarcinogenic signaling. There
are instances where exosomal proteins promoted anticarcinogenic signaling pathways,
e.g., exosomal uptake with payload of gastrokine1 suppressed H-Ras/Raf/MEK/ERK-
mediated gastric carcinogenesis in gastric epithelial cells [140]. The miR-375 carried by
exosomes inhibited cell proliferation and invasive capability in colon cancer cells through
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Bcl-2 blocking [141]. Exosomal miR-520b derived from normal fibroblasts cells inhibited
proliferation and migration of pancreatic cancer cells [142]. The migratory behavior of
lung cancer cells was reduced by exosomal miR-497 through suppression of growth fac-
tors, cyclin E1 and VEGF [143]. Exosomal circulating RNA circ-0051443 inhibited tumor
progression through apoptosis induction in HCC cells [144]. In BC cells, exosomal miR-100
derived from MSCs inhibited angiogenesis in vitro via modulating mTOR/HIF-1α/VEGF
signaling [145].

9.2. Exosomes as Biomarkers

Cancer cells secrete exosomes ten times higher than normal cells, which makes TEXs
major potential candidates for liquid biopsy needed for cancer diagnosis and progno-
sis [57]. The release of exosomes in the extracellular space also aids in cancer diagnosis
by examining their increased levels in various body fluids, such as blood, ascites fluid,
urine, and saliva [146]. Exosomal DNA represents the entire genome; therefore, liquid
biopsies of plasma aid in early detection of cancer-specific mutations. Exosomal CD63
and caveolin-1 served as non-invasive markers of melanoma [121]. Exosomal lncRNA,
either with miR-21 or alone, was correlated with tumor classification (III/IV), stage of
tumor and lymph node/distant metastasis in many cancer types [5]. Differential expression
of exosomal miR-150, miR-155, and miR-1246 in serum of normal individuals and acute
myeloid leukemia patients detected minimal residual disease [147]. Phosphatidylserine
present on the exosomal surface also serves as a biomarker for diagnosis of early-stage
cancer [148]. However, exosomal biomarkers are often overshadowed by highly prevalent
complex proteins of the body fluids. Exosome isolation from body fluids follows either of
the three methods, namely differential centrifugation coupled with ultracentrifugation, im-
munoaffinity pull-down, and density gradient separation. Mining of exosomal biomarkers
from body fluid of cancer patients has been explored with fluorescence-based analytical
techniques, electrochemical aptamer-based detection methods, localized surface plasmon
resonance and surface-enhanced Raman scattering [149]. Though exosome biomarker anal-
ysis has tremendous translational potential, a gold standard for exosome isolation under
clinical settings is yet to be achieved [150]. Since there is no definite consensus for isolation
of exosomes, the best suitable body fluid for exosome isolation is also under investigation.

9.3. Role of Exosomes in Immunotherapy and Vaccine Development

DCs and other antigen presenting cells (APCs) derived exosomes are loaded with
specific drugs; miRNAs of interest or even exosomes alone are implemented to trigger
immune response in the recipient individuals (Figure 4). DC-based exosomes, in therapy,
are beneficial as they possess abundant surface lactadherin that helps in efficient exosome
uptake [151]. The functional moieties, such as MHC-I, MHC-II, CD40, CD80, CD86 TNF,
FasL, TRAIL and natural killer group 2D (NKG2D) ligands on the surface of DC-derived
exosomes, facilitate in imparting innate and adaptive antitumor immune response [152].
DC-derived exosomes activated NK cells in NKG2D and interkeukin (IL)-15Rα ligand
dependent mode, which restored 50% functionality of NK cells and was implemented as a
cell free vaccination strategy [153]. The administration of adjuvants, such as IFN-γ, Toll-
like receptor agonists, and polyinosinic: polycyctidylic acid, was explored for production
of mature DC-derived exosomes which showed greater potential for activation of Th1
cells [154,155]. Immunogenic cell death was induced by melphalan, an anticancer drug, in
multiple myeloma cells by increasing the damage-associated molecular pattern containing
exosomes, thus triggering NK cell cytotoxicity [156]. A histone deacetylase inhibitor, MS-
275, increased the release of Hsp70 and MHC-I polypeptide-related sequence B (MICB)-rich
exosomes which induced NK cytotoxicity and lymphocyte proliferation [157]. Heat shock
treatment increasing the immunostimulatory activities of TEXs has been demonstrated
in A20 lymphoma/leukemia cells. Heat shock tumor derived exosomes were observed
to possess more immune-stimulating activities due to elevated expression of MHC and
increased levels of cytokines, such as IL-1β, IL-12p40, and TNF-α [158].
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mechanisms against which the exosomes are implemented. Abbreviations: APCs, antigen presenting cells; DCs, dendritic 
cells; miRNA, microRNA; siRNA, small interfering RNA. 
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priming of T helper cell 1 (Th1)- and NK-mediated antitumor immune response [160]. 
Chemotherapy accompanied with hyperthermia has evolved as a new treatment mode for 
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derived from doxorubicin-treated MCF-7 cells [161]. DC-derived exosomes control tumor 
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ter transfection into murine melanoma cells created genetically modified exosomes. These 
exosomes have the ability to trigger improved antigen presentation to the DCs and other 
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immunotherapy, gene therapy, stem cell therapy and adjuvant therapy. Exosome based gene therapy is obtained by
genetically engineered exosomes loaded with miRNA, siRNA and plasmids of interest. Stem cell or DC-derived exosomes
can be implemented alone as vaccines and confer stem cell-based therapy or immunotherapy. The exosomes can also be
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administered into the patient help in triggering immune response in combating cancer by targeting and regulating the
mechanisms against which the exosomes are implemented. Abbreviations: APCs, antigen presenting cells; DCs, dendritic
cells; miRNA, microRNA; siRNA, small interfering RNA.

Exosomes have potential use in vaccine development because the surface-bound
proteins on exosomes of APCs, DCs and tumor cells originate from the progenitor cell
membranes [5]. Nanoscale immunotherapy treatments with TEX, DC-derived exosomes
and ascitic cell-derived exosomes have shown efficacy in stimulating the body’s immune
system against cancer cells [159]. Ascitic cell-derived exosomes obtained from peritoneal
cavity fluid of cancer patients triggered cancer cell lysis via activation of dendritic cells
and MHC-1-dependent T cell response. Membrane-bound Hsp70 of TEX exhibited robust
priming of T helper cell 1 (Th1)- and NK-mediated antitumor immune response [160].
Chemotherapy accompanied with hyperthermia has evolved as a new treatment mode for
cancer involving TEXs. For instance, heat stress has increased the antitumor effect of TEXs
derived from doxorubicin-treated MCF-7 cells [161]. DC-derived exosomes control tumor
growth by eliciting CD8+ and CD4+ T cell responses [162]. DC-derived exosomes incu-
bated with cancer antigen triggered cancer specific T cell response [163]. Adjuvant-based
exosomal vaccines are effective in eliciting immune response. For example, streptavidin-
lactadherin protein fused with immunostimulatory biotinylated CpG DNA (adjuvant) after
transfection into murine melanoma cells created genetically modified exosomes. These
exosomes have the ability to trigger improved antigen presentation to the DCs and other
immune cells, contributing to enhanced immune response [164]. DC-derived exosomes
have been observed to be more efficient as cell-free vaccines in treating malignancies that
respond poorly to immunotherapy. For instance, α-feto protein-rich DC derived exosomes
triggered more effective antitumor immune responses and modulated the TME in a HCC
mice model [165]. Recently, it was observed that vaccination with TEX-pulsed DC along
with cytotoxic drugs specifically targeted immunosuppressive MDSCs in pancreatic cancer
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cells [166]. DNA vaccines prepared by fusing ovalbumin antigen with lactadherin present
on exosomal surface diminished fibrosarcoma, thymoma and melanoma metastasis by
activating T lymphocytes [167].

9.4. Exosome-Based RNA Therapy

Exosome-based miRNA therapy exhibited immunosuppressive properties by control-
ling the gene expressions [19]. An early study reported that exosomes derived from human
embryonic kidney cells were effective in regressing tumor growth by delivering miR-let7a
in an EGFR-positive BC xenograft model [168]. The MSCs transfected with miR-124a
enhanced exosomes carrying the RNA of interest production, which, when implemented
against gliomas, reduced the cell viability and targeted FOXA2 that caused accumulation
of lipids [169]. Transfer of lncRNA PTEN pseudogene 1 by exosomes derived from normal
cells to bladder cancer cells reduced tumor progression in vitro and in vivo [170].

Exosomes also mediated targeted delivery of siRNA, e.g., siRNA transfected into
exosomes targeted RAD51 and RAD52 in Hela and fibrosarcoma cells, which inhibited
proliferation of the recipient cells [171]. Engineered exosomes containing IL-3 ligand
or functional siRNA for BCR-ABL were successfully used against imatinib resistance in
chronic myeloid leukemia patients [172]. Exosomes used for trafficking RNA interference
(RNAi) mediators counteracted against oncogenic KRAS and improved overall survival
in mouse models of pancreatic cancer [173]. Delivery of engineered exosome mediated
siRNA inhibited post-operative metastasis of BC, indicating a promising strategy against
tumor progression [174]. Successful delivery of antisense miRNA oligonucleotides against
miR-21 by electroporating them in exosomal membrane improved the treatment efficacy
for glioblastoma by inducing the expression of PTEN and PDCD4, resulting in decreased
tumor size [175].

9.5. Exosomes in Stem Cell Therapy

Normal stem cell-derived exosomes are free of tumorigenic factors and are potential
candidates for stem cell therapy [176]. MSC-derived exosomes can protect their cargoes
from degradation, facilitate easier uptake by recipient cells, elicit low toxicity and immuno-
genicity, and these exosomes can be modified to enhance cell type-specific targeting and
may be a prospective tool for cell-free based therapeutic approaches [177]. Exosomal miR-
144 derived from bone marrow derived MSC retarded the spread of NSCLC by targeting
cyclin E1 or E2 [178]. Exosomes released from miR-101-3p overexpressing MSCs negatively
affected the proliferation and migration of oral cancer cells by targeting the collagen type X
α1 chain [179]. MSC-derived exosomes were genetically engineered by loading them with
polo-like kinase 1 (PLK-1)-siRNA and were utilized for PLK1 gene silencing in bladder
cancer [180]. The primary hurdles of stem cell-based therapy, such as teratoma formation
and embolization, are less frequent with exosome-based stem cell therapeutics. Exosomes
secreted from induced pluripotent stem cells may exert better therapeutic effects [163].

9.6. Exosomes in Drug Delivery

Normal cell derived exosomes exhibit excellent biodistribution, biocompatibility, low
immunogenicity, capacity to cross the blood–brain barrier and high target specificity, which
make them potential candidates for drug delivery in cancer [5]. The exosomal surface
proteins regulate efficient drug delivery because of their involvement in exosomes uptake
by the tumorigenic recipient cells [181]. Exosomes derived from androgen-sensitive hu-
man prostate adenocarcinoma cells carrying paclitaxel negatively affect the cancer cells’
viability [182]. DC-derived exosomes in BC and macrophage-derived exosomes in lung
cancer were loaded with the drugs trastuzumab and paclitaxel, respectively, and success-
fully delivered to the recipients [183,184]. Moreover, exosomes loaded with doxorubicin
conjugated with gold nanoparticles showed anticancer effect against lung cancer cells [185].
Exosomes with A disintegrin and metalloproteinase 15 (ADAM15) expression (A15-Exo)
co-delivered with doxorubicin and cholesterol-modified miRNA 159 exhibited anticancer
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effect in BC cells [186]. Paclitaxel loaded exosomes showed sensitivity towards MDR
cancer cells via by-passing P-gp-mediated drug efflux and also inhibited metastasis in
a lung cancer xenograft model [187]. Unmodified exosomes encapsulated with doxoru-
bicin reduced tumor proliferation in a mouse mammary carcinoma xenograft model [137].
Exosomal delivery of doxorubicin induced its therapeutic activity in xenograft models
of breast and ovarian cancer [188]. Exosomes isolated from engineered immature DCs
(expressed Lamp2b fused with αv integrin-specific iRGD peptide (CRGDKGPDC)) loaded
with doxorubicin successfully targeted αv integrin-positive breast tumor cells [189]. Exo-
some encapsulated gemcitabine exhibited anticancer properties in autologous pancreatic
cancer cells and in a xenograft model [190].

Phytochemicals, administered via an exosome-mediated drug delivery system, can
provide health benefits and anticancer properties [56]. Pancreatic adenocarcinoma cell-
derived exosomes aided curcumin in inflicting its anticancer properties among tumor
cells [191]. Milk-derived exosomes encapsulated with anthocyanidins exhibited antiprolif-
erative effect in a xenograft lung carcinoma model [192]. Exosomal formulations of black
bean extract exhibited pronounced antiproliferative effect in many cancer cells [193]. Exo-
somal formulations with berry anthocyanidins exhibited anticancer properties in ovarian
cancer with enhanced sensitivity in chemoresistant tumors [194]. Exosomal encapsulation
of celastrol (a triterpenoid) exhibited antiproliferative effect in lung cancer cells and in a
xenograft model [195]. Recent studies on exosomal drug delivery of chemotherapeutic
drugs and phytochemicals are listed in Table 3.

9.7. Induction of Chemosensitivity with Exosomes

TEXs impart drug resistance but may also be used for inducing drug sensitivity.
Dimethyl amiloride augmented ABC transporter containing exosome secretion revived the
cyclophosphamide sensitivity of cancer cells [31]. Downregulation of the GAIP-interacting
protein C terminus mediated secretion of ABCG2 drug transporters containing exosomes
and suppressed gemicitabine resistance in pancreatic cancer cells [196]. In oral squamous
cell carcinoma, exosomal miR-155 increased chemoresistivity in cisplatin-sensitive cancer
cells [197]. The exosomes loaded with CRISPR/Cas9 induced apoptosis and cisplatin
chemosensitivity in ovarian cancer cells [198]. An increase in apoptosis and chemosen-
sitivity was observed in cisplatin-resistant human gastric adenocarcinoma cells through
treatment with si-c-Met containing exosomes derived from human kidney epithelial cell
line [199]. Normal intestinal FHC cell-derived exosomes transferred miR-128-3p into
oxiplatin resistant CRC cells which induced their chemosensitivity and decreased motil-
ity [200]. miR-122-transfected adipose tissue-derived MSCs (AMSCs) released exosomes
carrying miR-122 and, when cocultured with hepatocyte carcinoma cells, induced sorafenib
chemosensitivity [201]. miR-567 induced chemosensitivity in resistant BC cells towards
trastuzumab and blocked autophagy [202]. Exosomal miR-200c induced chemosensitivity
towards docetaxel and apoptosis in tongue squamous cell carcinoma [203]. Coculture
of miR-199a carrying exosomes derived from AMSCs with HCC cells downregulated
mammalian target of rapamycin (mTOR) pathway and induced chemosensitivity towards
doxorubicin [204]. Various recent reports on exosome-mediated reversal of chemosensitiv-
ity have been listed in Table 4.
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Table 3. Exosomes as delivery system for therapeutic implications against cancer.

Exosome Source Modification of Exosomes with Drugs Loading Method Target Cells Effect Mechanism References

Chemotherapeutic drugs

Human mammary
adenocarcinoma cells

(M-CF-7), mouse mammary
carcinoma cells (4T1), and

human prostate
adenocarcinoma cells (PC3)

Doxorubicin Incubation 4T1 tumor-bearing
BALB/c mice

↓Tumor growth, but no
significant reduction in tumor
growth with exosomes loaded
with doxorubicin compared to

free drug

- [137]

Human prostate cancer
(LNCaP and PC-3) cells Paclitaxel Incubation LNCaP and PC-3 cells ↑Cytotoxic effect of paclitaxel - [182]

Human NSCLC (H1299) cells Exo-gold nanoparticles-doxorubicin Incubation Human NSCLC (H1299 and
A549) cells ↑DNA damage, ↑apoptosis ↑caspase-9, ↑ROS [185]

Human monocyte (THP-1
cells)-derived macrophages

A15-Exo-doxorubicin-cho-miR159
Mixing in triethylamine

solution overnight,
Incubation

αvβ3+ and αvβ3- human BC
(MDA-MB-231 and

MCF-7) cells
↓Cell proliferation, ↑apoptosis ↓TCF7, ↓MYC

[186]
MDA-MB-231 tumor-bearing

BALB/c-nu mice
↓Tumor growth, ↑survival

of mice ↓TCF7, ↓MYC, ↓Ki67, ↓CD31

Mouse immature dendritic
cells (imDCs) Doxorubicin Electroporation MDA-MB-231 tumor-bearing

BALB/c nude mice ↓Tumor growth - [189]

Human pancreatic cancer
(Panc-1) cells

Gemcitabine Sonication
Panc-1 and A549 cells ↓Cell viability -

[190]

Panc-1 tumor-bearing
BALB/c nude mice ↓Tumor volume

↓Alanine aminotransferase,
↓aspartate aminotransferase,

↓TNF-α, ↓IL-6 in
exo-gemcitabine group

compared to gemcitabine

Mouse (RAW 264.7)
macrophages Paclitaxel Sonication

Murine Lewis lung carcinoma
cell subline (3LL-M27 cells),
Madin-Darby canine kidney

(MDCK-WT) and
(MDCK-MDR1) cells

↑Drug cytotoxicity,
↑chemosensitization of MDR

cells
-

[187]
8FlmC-FLuc-3LL-M27 tumor

bearing C57BL/6 mice ↓Metastasis -

Human BC (MDA-MB-231)
cells and mouse ovarian

cancer (STOSE) cell
Doxorubicin Electroporation MDA-MB-231 and STOSE

tumor bearing FVB/N mice
↑Doxorubicin efficacy,

↓tumor volume - [188]
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Table 3. Cont.

Exosome Source Modification of Exosomes with Drugs Loading Method Target Cells Effect Mechanism References

Phytochemicals

Human pancreatic
adenocarcinoma (PANC-1,

MIA PaCa-2) cells
Curcumin Incubation PANC-1 and MIA PaCa-2 cells ↓Cell viability, - [191]

Pooled raw milk from
Jersey cows

Anthocyanidins By mixing in a solution of
acetonitrile: ethanol (1:1

v/v) and PBS

Human pancreatic cancer
(PANC1 and Mia PaCa2), lung

cancer (A549 and H1299),
colon cancer (HCT116), BC
(MDA-MB-231 and MCF7),
prostate cancer (PC3 and

DU145), and ovarian cancer
(OVCA432) cells

↓Cell proliferation,
↓cell survival ↓NF-κB

[192]
A549 tumor bearing female
athymic nude (nu/nu) mice ↓Tumor growth –

MCF7, PC3, human liver
(HepG2), colon cancer

(Caco2) cells
Black bean extract Electroporation MCF7, PC3, HepG2 and

Caco2 cells ↓Cell viability – [193]

Mature bovine milk Anthocyanidins By mixing

Human ovarian cancer
(A2780, A2780/CP70,

OVCA432, and
OVCA433) cells

↓Cell survival -

[194]
A2780 tumor-bearing female

athymic nude mice ↓Tumor volume -

Milk from pasture-fed
Holstein and Jersey cows Celastrol By mixing

Human lung cancer (H1299
and A549) cells ↓Cell survival, -

[195]
H1299 and A549

tumor-bearing female athymic
nude mice

↓Tumor volume -

Symbols: ↑, upregulated; ↓, downregulated; Abbreviations: MYC, master regulator of cell cycle entry and proliferative metabolism; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ROS,
reactive oxygen species; TCF7, transcription factor 7; TNF-α, tumor necrosis factor-α.
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Table 4. Reversal of chemoresistance in resistant cancer cells with exosomal cargoes.

Exosome Source Modification in Exosomal
Cargo Content Target Cells Effects Mechanisms References

Human mesenchymal
stem cells (MSCs) Anti-miR-9 Glioblastoma (U87 and

T98G) cells

↑Apoptosis
↑chemosensitivity

towards
temozolomide

↑Caspase-3
↓P-gp
↓MDR1

[151]

Human kidney
epithelial

(HEK293T) cells
si-c-Met

Human gastric
adenocarcinoma

(SGC7901and
SGC7901/DDP) cells

↑Apoptosis
↑chemosensitivity
towards cisplatin

↓c-Met gene [199]

Normal intestinal foetal
human cells (FHC) miR-128-3p

Human oxiplatin
resistant colorectal cancer

(HCT116OxR) cells

↑Oxiplatin
accumulation
↑apoptosis

↓proliferation
↓self-renewal

↓Bmi1
↓MRP5

↓N-cadherin
↑E-cadherin

[200]

Human adipose tissue
derived mesenchymal

stem cells (AMSCs)
miR-122 Human HCC (HepG2,

Huh7) cells

↑Apoptosis
↑cell cycle arrest
↑chemosensitivity
towards sorafenib

↑G0/G1 arrest
↓CCNG1
↓ADAM10
↑Caspase-3

↑Bax

[201]

Human normal breast
epithelial (MCF

10A) cells
miR-567

Human trastuzumab
resistant BC (SKBR-3/TR

and BT474/TR) cells

↑Chemosensitivity
towards trastuzumab

↑autophagy

↓ATG5
↑p62

↓LC3-11
[202]

Human normal tongue
epithelial (NTECs) cells miR-200c

Docetaxel resistant
hepatic stellate cells

(HSC-3DR) cells

↑Chemosensitivity
towards docetaxel

↑apoptosis

↓TUBB3
↓PPP2R1B [203]

Human adipose tissue
derived mesenchymal

stem cells (AMSCs)
miR-199a

Human colorectal cancer
(CRC) (Huh7,
SMMC-7721,

PLC/PRF/5) cells

↑Chemosensitivity
towards doxorubicin ↓mTOR [204]

Symbols: ↑, upregulated; ↓, downregulated; Abbreviations: ADAM10, A disintegrin and metalloproteinase 10; ATG5, autophagy related
5 protein; Bax, Bcl-2-associated X protein; BC, breast cancer; c-MET, mesenchymal epithelial transition factor; CCNG1, Cyclin G1; LC3,
microtubule associated protein PIA/IB-light chain 3-I; MDR1, multidrug resistance protein-1; MRP5, multidrug resistant associated protein
5; mTOR, mammalian target of rapamycin; P-gp, P-glycoprotein; PPP2R1B, protein phosphatase 2 scaffold subunit 1β; TUBB3, class III
β-tubulin gene.

9.8. Exosomes in Clinical Trials

According to the National Institutes of Health website, a large number of clinical trials
are being conducted with exosomes (Table 5). In a study, plant exosomes were modified
to deliver curcumin in colon cancer patients (ClinicalTrials.gov Identifier: NCT01294072).
Phase I and II clinical trials with DC-derived exosomes indicated activation of T cell-
and NK cell-based immune responses in NSCLC patients [154]. A phase II clinical trial
(ClinicalTrials.gov Identifier: NCT01159288) on NSCLC observed that exosomes derived
from TLR4L-or interferon-γ (IFN-γ)-maturated DCs enriched with MHC I- and MHC
II-restricted cancer antigens as maintenance immunotherapy subsequent to first-line
chemotherapy [205]. A study on HER2-positive BC patients measured HER2-HER3 dimer
expression in exosomes (ClinicalTrials.gov Identifier: NCT04288141). Another trial led
to a therapeutic analysis on cancer-derived exosomes via treatments with lovastatin and
vildagliptin in thyroid cancer patients (ClinicalTrials.gov Identifier: NCT02862470). Char-
acterization of exosomal non-coding RNAs was carried out in cholangiocarcinoma patients
(ClinicalTrials.gov Identifier: NCT03102268). Another study reported exosome-mediated
intercellular signaling in pancreatic cancer (ClinicalTrials.gov Identifier: NCT02393703). In
metastatic pancreatic adenocarcinoma, exosomes with KrasG12D siRNA were used to treat
pancreatic cancer with KrasG12D mutation (ClinicalTrials.gov Identifier: NCT03608631). In
head and neck cancer, the effects of metformin hydrochloride on cytokines and exosomes
were investigated (ClinicalTrials.gov Identifier: NCT03109873). A phase I clinical trial
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(ClinicalTrials.gov Identifier: NCT01668849) investigated the ability of plant exosomes to
prevent oral mucositis induced by combined chemotherapy and radiation in head and neck
cancer patients. However, more clinical trials are needed with modified exosomes which
may exhibit anticancer effect.

Table 5. Clinical trials on exosomes.

Trial No.
(ClinicalTrials.gov

Identifier:)
Study Type Cancer Type Study Perspective Study Design Status

NCT01294072 Phase I Colon cancer Interventional
Investigation of the ability of
plant-derived exosomes to

deliver curcumin
Active, not recruiting

NCT01159288 Phase II Non-small cell
lung cancer Interventional

Trial of a vaccination with
exosomes derived from

dendritic cell loaded with
tumor antigen

Completed

NCT04288141 Observational

Early
HER2-positive
BC, Metastatic
HER2-positive

BC

Prospective

Assessment of HER2-HER3
dimer expression in exosomes
from HER2-positive patients

receiving HER2 targeted
therapies

Recruiting

NCT02862470 Observational

Anaplastic
thyroid cancer,

Follicular thyroid
cancer

Prospective

Analysis of cancer-derived
exosomes via lovastatin and
vildagliptin treatments and
prognostic study through
urine exosomal markers

Active, not recruiting

NCT03102268 Observational Cholangiocarcinoma Prospective

Characterization of exosomal
non-coding RNAs from

cholangiocarcinoma patients
before anticancer therapies

Unknown

NCT02393703 Observational Pancreatic cancer Prospective Investigation of exosome
mediated disease recurrence Active, not recruiting

NCT03608631 Phase I

Metastatic
pancreatic

adenocarcinoma,
Pancreatic ductal
adenocarcinoma

Interventional

Study of the mesenchymal
stromal cells-derived

exosomes with KrasG12D
siRNA (iExosomes) for

pancreatic cancer patients
having KrasG12D

Not yet recruiting

NCT03109873 Early phase I Head and neck
cancer Randomized

Assessment of the effect of
metformin hydrochloride on
cytokines and exosomes in

cancer patients

Completed

NCT01668849 Phase I Head and neck
cancer Interventional

Investigation of the ability of
plant-derived exosomes to

prevent oral mucositis
induced by combined

chemotherapy and radiation

Active, not recruiting

10. Current Limitations and Challenges

Exosomes mediate intercellular communication and play significant roles in both
physiological and pathological processes. A new hypothesis suggested that the target
cells inhibit the incoming signals by forming exosome dimers based on the particle size,
zeta potential and/or ligand–receptor pairs which facilitates cancer metastasis, cancer
immunoregulation, intraocular pressure homoeostasis, tissue regeneration and many
others [206].

Exosomes released by normal and malignant cells are endowed with heterogeneity
and pleiotropic physiological and pathological effects. Inhibition of the release of TEXs
may have both anti-carcinogenic and pro-carcinogenic effects. The majority of the exo-
some released inhibitors are not cancer-specific and also affect normal cells. Therefore,
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inhibition of exosome release may act as a double-edged sword which should be carefully
manipulated for minimal adverse effects [34].

Isolation of pure and specific exosomes is limited by technical constraints, the availabil-
ity of suitable biomarkers for specific exosomes, and expensive technologies [5]. A major
hurdle in the execution of liquid biopsy is isolation of exosomes by an economic user-
friendly tool. Protein contaminated and heterogenous exosome pool is obtained using
ultracentrifugation. Asymmetric flow field-flow fractionation, though a prospective tool,
needs technical expertise and requires a huge amount of initial sample. Other exosome iso-
lation methods like microfluidic devices, sucrose gradients, size exclusion chromatography,
and affinity-based exosome isolation kits are accompanied with both advantages and dis-
advantages like lack of robustness and specificity [31]. A perfect exosome isolation method
should be robust, reproducible, specific, economic and user friendly as a diagnostic tool.

Detailed research of exosome biogenesis, functional diversity of exosomes and the
identification of cancer specific biomarkers may be effective for exosome-based therapeutic
approaches with minimum adverse effects [34]. Determination of exosomal cargo sorting
and releasing mechanisms holds great potential for the development of various applications
in cancer research [31].

Normally, less than 1 µg of exosomal protein is yielded from 1 mL of culture medium,
whereas the majority of studies have reported 10–100 µg of exosomal protein as an effective
dose for in vivo models [163]. The introduction of exosome-mimetic vesicles (100–200 nm
in diameter) has conquered exosomal limitations like low loading efficiency and low yields.
These nanovesicles have been used for delivery of chemotherapeutic drugs [204,205] and
RNAi [207] to target cancer cells. Hybrid nanocarriers formed by the fusion of exosomes
with liposomes changed the exogenous lipid composition and was effective in the delivery
of chemotherapeutic drugs [208].

11. Conclusions

It may be deciphered that the intercellular communication via exosomes is evident
throughout cancer progression. Apart from cancer pathogenesis, exosome biology heralds
the future arena of non-invasive diagnostic tools for cancer management, especially in
the spheres of liquid biopsy, immunotherapy and vaccine development, RNA therapy,
stem cell therapy, drug delivery, and reversal of chemoresistance. Preclinical studies
have undoubtedly proven the immense potential of exosomes in cancer therapeutics,
but a number of clinical trials have failed to achieve this success. These inconsistent
results indicate major challenges including in-depth knowledge of exosome biogenesis
and protein sorting, perfect and pure isolation of exosomes, large scale production, better
loading efficiency targeted delivery of exosomes. These hurdles have to be confronted
before successful implementation of exosomes for the diagnosis and therapy of cancer.
This review has attempted to envisage the implication of exosomes in cancer pathogenesis
and cancer therapeutics along with the current limitations so that researchers may be
made aware of the existing lacunae with regard to exosomes in their use against cancer.
This knowledge may help scientists to improvise innovative technologies for successful
translation of the exosome-mediated diagnosis and treatment of malignant neoplasms.
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ABC ATP-binding cassette;
ABCA3 ATP-binding cassette sub-family A member 3;
ADAM10 A disintegrin and metalloproteinase 10;
AFAP1-AS1 actin filament associated protein1 antisense RNA 1;
Akt protein kinase B;
ALIX ALG-2 interacting protein X;
AMSCs adipose tissue-derived MSCs;
APC antigen presenting cell;
ARF6 ADP ribosylation factor 6;
ATG5 autophagy related 5 protein;
CAFs cancer-associated fibroblasts;
CCNG1 cyclin G1;
CRC colorectal cancer cells;
CXCR4 C-X-C chemokine receptor type 4;
DCs dendritic cells;
ECM extracellular matrix;
EGFR epidermal growth factor receptor;
EMT epithelial mesenchymal transition;
ERBB2 erythroblastic oncogene B2;
ERF Ets2-repressor factor;
ERK extracellular signal-regulated kinase;
ERα estrogen receptor-α;
ESCRT endosomal sorting complexes required for the transport;
GC gastric cancer;
HCC hepatocellular carcinoma;
HER2 human epidermal growth factor receptor 2;
HGF hepatocyte growth factor;
HNSCC head and neck squamous cell carcinoma;
HOTTIP HoxA transcript at a distal tip;
Hsps heat shock proteins;
ICAM intercellular adhesion molecule;
IL-6 interleukin-6;
ILV intraluminal vesicles;
LAMP-1 lysosome-associated membrane glycoprotein-1 LncRNAs
LncRNAs long non-coding RNAs;
MAPK mitogen activated protein kinase;
MDR-1 multidrug resistance protein-1;
MDSCs myeloid-derived suppressor cells;
MHC major histocompatibility complex;
miRNAs microRNA;
MMP matrix metalloproteinase;
mRNA messenger RNA;
MSCs mesenchymal stem cells;
mtDNA mitochondrial DNA;
MVB multivesicular bodies;
NF-κB nuclear factor κ-light-chain-enhancer of activated B cells;
NK natural killer cells;
NKG2D natural killer group 2D;
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NSCLC non-small cell lung carcinoma;
PAFR a platelet-activating factor receptor;
PDAC pancreatic ductal adenocarcinoma;
PDCD4 programmed cell death 4;
PD-L1 programmed death ligand 1;
P-gp P-glycoprotein;
PI3K phosphoinositide 3-kinase;
PLD2 phospholipase D2;
PLK-1 polo-like kinase 1;
PM plasma membrane;
PPP2R1B protein phosphatase 2 scaffold subunit 1β;
PTEN phosphatase and tensin homolog;
rRNA ribosomal RNA;
SNARES soluble NSF attachment protein receptors;
Sox2ot SOX2 overlapping transcript;
SR-B1 scavenger receptor type B-1;
STAT1 signal transducer and activator of transcription 1;
TAMs tumor-associated macrophages;
TEX tumor derived exosomes;
TGF-β transforming growth factor-β;
TGN trans-Golgi network;
TLR-2 toll like receptor-2;
TME tumor microenvironment;
Tregs T regulatory cells;
TUBB3 class III β-tubulin gene;
UFC1 Ubiquitin-fold modifier conjugating enzyme 1;
VEGF-A vascular endothelial growth factor A;
Vps4 vacuolar protein sorting associated protein 4;
ZFAS1 zinc finger antisense 1.
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