
RESEARCH ARTICLE

Cyclin and DNA Distributed Cell Cycle Model
for GS-NS0 Cells
David G. García Münzer1, Margaritis Kostoglou2, Michael C. Georgiadis3, Efstratios
N. Pistikopoulos1, Athanasios Mantalaris1*

1 Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of
Chemical Engineering, Imperial College London, London, United Kingdom, 2 Department of Chemistry,
Aristotle University of Thessaloniki, Thessaloniki, Greece, 3Department of Chemical Engineering, Aristotle
University of Thessaloniki, Thessaloniki, Greece

* a.mantalaris@imperial.ac.uk

Abstract
Mammalian cell cultures are intrinsically heterogeneous at different scales (molecular to

bioreactor). The cell cycle is at the centre of capturing heterogeneity since it plays a critical

role in the growth, death, and productivity of mammalian cell cultures. Current cell cycle

models use biological variables (mass/volume/age) that are non-mechanistic, and difficult

to experimentally determine, to describe cell cycle transition and capture culture heteroge-

neity. To address this problem, cyclins—key molecules that regulate cell cycle transition—

have been utilized. Herein, a novel integrated experimental-modelling platform is presented

whereby experimental quantification of key cell cycle metrics (cell cycle timings, cell cycle

fractions, and cyclin expression determined by flow cytometry) is used to develop a cyclin

and DNA distributed model for the industrially relevant cell line, GS-NS0. Cyclins/DNA

synthesis rates were linked to stimulatory/inhibitory factors in the culture medium, which

ultimately affect cell growth. Cell antibody productivity was characterized using cell cycle-

specific production rates. The solution method delivered fast computational time that ren-

ders the model’s use suitable for model-based applications. Model structure was studied by

global sensitivity analysis (GSA), which identified parameters with a significant effect on the

model output, followed by re-estimation of its significant parameters from a control set of

batch experiments. A good model fit to the experimental data, both at the cell cycle and via-

ble cell density levels, was observed. The cell population heterogeneity of disturbed (after

cell arrest) and undisturbed cell growth was captured proving the versatility of the modelling

approach. Cell cycle models able to capture population heterogeneity facilitate in depth un-

derstanding of these complex systems and enable systematic formulation of culture strate-

gies to improve growth and productivity. It is envisaged that this modelling approach will

pave the model-based development of industrial cell lines and clinical studies.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004062 February 27, 2015 1 / 28

OPEN ACCESS

Citation: García Münzer DG, Kostoglou M,
Georgiadis MC, Pistikopoulos EN, Mantalaris A
(2015) Cyclin and DNA Distributed Cell Cycle Model
for GS-NS0 Cells. PLoS Comput Biol 11(2):
e1004062. doi:10.1371/journal.pcbi.1004062

Editor: Daniel A Beard, University of Michigan,
UNITED STATES

Received: July 28, 2014

Accepted: November 26, 2014

Published: February 27, 2015

Copyright: © 2015 García Münzer et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: Multi-scale Computational Modeling of
Chemical and Biochemical Systems (MULTIMOD)
Training Network under the grant agreement No
238013, European Commission, FP7/2007–2013.
OPTICO project funded by the European
Commission in the 7th Framework Programme under
grant agreement No 280813. http://lpre.cperi.certh.gr/
multimod/ The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004062&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://lpre.cperi.certh.gr/multimod/
http://lpre.cperi.certh.gr/multimod/


Author Summary

The cell cycle is a complex regulatory network that influences not only growth and divi-
sion, but also other relevant cellular events (e.g. death, productivity, etc.). The development
of biologically accurate cell cycle models can help to systematically study mammalian cell
cultures. However, the inclusion of segregation in biological systems usually displays a
computationally intensive nature. We propose a combined experimental and mathematical
framework that allows capturing the heterogeneity in computationally fast and biologically
accurate cell cycle models. Using multiparameter flow cytometry a cyclin blueprint is de-
rived to support the model development. Further, the mathematical formulation is reduced
to provide a fast solution, allowing its use for sensitivity analysis and model-based parame-
ter estimation. The simulation results are compared to experimental data to test the accura-
cy and predictive power of the model. This approach can easily be extended to other
culture systems, as well as to include further biological detail. The significance of this ap-
proach is not limited to industrially relevant cell lines but its application extends to cell
cycle relevant systems such as clinical problems (tumours, cancer treatments, etc.).

Introduction
Monoclonal antibodies (mAb) represent a key growth section of the high-value bio-
pharmaceuticals (biologics) market [1]. These biologics are commonly produced by mammali-
an cell culture systems due to their ability to perform human-compatible post-translation mod-
ification (glycosylation) of proteins. Mammalian cells represent complex production systems
whereby a large number of interlinked metabolic reactions control productivity and product
quality, which are influenced by culture parameters. Mammalian cell cultures are intrinsically
heterogeneous at all scales from the molecular to the bioreactor level [2–4]. The key underlying
source of heterogeneity is cell cycle segregation [5–7], which is at the centre of cellular growth,
death, and productivity, all of which vary during the different cell cycle phases. Specifically, the
cell cycle phase can influence the mAb productivity, both of which have been reported to be
cell cycle-, cell line-and promoter-dependent [8, 9]. Therefore, a better understanding and
knowledge of the cell cycle timing, transitions, and associated production profiles can aid the
development (modelling, control, and optimisation) of these industrially-relevant systems [10].
Recently, metabolic flux analysis (MFA) has become a key tool for the study of mammalian cell
cultures aiming at improving productivity and product quality. These studies [11–14] provide
valuable insight on cell behaviour and assist in understanding cell metabolism. However, they
neglect the intrinsic heterogeneity (e.g. cell cycle, genotypic, and phenotypic variations) [15, 16]
of cell culture systems. Moreover, MFA applicability to mammalian cells is limited due to their
complexity, pseudo steady-state approximation, unbalanced cell growth behaviour, and adapta-
tion to changing environments [17, 18].

Mathematical models can aid the study of the complex mammalian cell culture systems by
capturing the heterogeneity of the cell population, both at the biophase and cellular levels. A
number of studies have dealt with the development of cell cycle models and the advancement
of modelling techniques to capture the segregation of cell cultures. Alas, the development of
relevant segregated cell cycle models has proved challenging, particularly due to difficulties in
providing quantitative experimental validation. The vast majority of cell cycle models can be
classified as cell ensemble models (CEMs) or population balance models (PBMs) [19–22].
CEMs capture heterogeneity by including a large number of single cell models (SCMs) that dif-
fer according to key cellular properties. The approach is based on the assumption that a
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sufficiently large number of individual cells will represent the behaviour of the population.
When CEMs describing a small number of cells were coupled to SCMs computation time was
small [23, 24]. However, the number of cell-simulated affects both the resolution of the ob-
tained distributions and the computational burden. An alternative to model segregation is
based on the population balance equation (PBE), which describes the number distribution of
internal cell states as a function of time. This type of formulation allows the incorporation of
information on stage-to-stage transition (e.g. cell cycle) and partition of cell material upon cell
division. A detailed review of PBEs is available [25]. A series of studies [26–28] on the solution
of PBEs in biological systems showed an increased computational solution time when increas-
ing the number of variables (even with an unstructured cell model). Therefore, most of the
available PBMs in cell cultures are coupled to unstructured models in order to reduce the
computational burden. The computational time is also significantly increased when increasing
model complexity, such as number of stages, variables or structure [21, 26, 29, 30].

Two main features describe the existing PBM formulations: age or mass/volume. Early re-
ports used age as the sole distribution variable [31–33]. Later, more complex formulations were
reported using age and an additional intracellular property (e.g. product, RNA) [34, 35]. Simi-
larly, relevant mass/volume based PBMs have been reported [7, 29, 36, 37], such as the cou-
pling a PBE with a SCM [30], which demonstrated the computational intensive nature of the
PBM-SCM description. Both PBE formulations for the cell cycle transition in mammalian cell
cultures, namely age and mass/volume, are non-mechanistic [38–40] and difficult to
experimentally quantify.

In mammalian cells, the cell division cycle occurs in sequential distinct phases: G1 (first
gap), S (DNA synthesis), G2 (second gap) and M (mitosis). However, cells can enter a non-
proliferating or quiescent state (G0) when conditions (internally or externally) are not favour-
able for DNA synthesis [41]. Three cell cycle checkpoints are reported [42]: at the G1-S phase
transition, at the end of the S phase, and between the G2-M phase transition. The cell cycle is
controlled mainly by two proteins, cyclin-dependent-kinases (CDKs) and cyclins [43]. The
transition checkpoints are regulated by the varying concentration of the different cyclins,
whereas the concentration of CDKs remains in constant excess throughout [44]. Specifically,
the transition between the G1-S checkpoint has been reported to be regulated by two cyclins,
cyclin D and E. Similarly, cyclin B is reported to regulate the cell’s entrance into mitosis [43].

Herein, cell population heterogeneity was captured by formulating a biologically-relevant
distributed cell cycle model for the industrial cell line (GS-NS0). The cyclin and DNA distribut-
ed cell cycle model utilised cyclin E1 as a marker for the G1 phase, DNA content for the S
phase, and cyclin B1 for the G2/M phase. Each of these markers can be quantitatively experi-
mentally validated. The model was developed using the mathematical modelling framework
previously described [45–47]. Specifically, the parameters’ effect on the model output was eval-
uated by GSA and the identified significant parameters were re-estimated using a set of batch
control experiments. The model simulations were compared to independent batch experiment
(with varying initial cell cycle distribution and inoculation density) data to test the model’s ac-
curacy and predictive power. The model can be used as a tool for cell cycle-specific (productivi-
ty) studies and model-based control and optimisation applications due to its low
computational requirements.

Results

Model Structure
The proposed model is a multivariable and multistage PBM. The PBM is coupled to an un-
structured metabolic model in order to more accurately represent the system. The model is
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cyclin distributed for the lumped phases—G1/G0 (Equation 1) and G2/M (Equation 3)—and is
DNA distributed for the S phase (Equation 2). The model formulation presented does not have
boundary conditions since the communication between the stages occurs internally through
source and sinks terms [48].

G1/G0 phase:

@NG1ðcycE; tÞ
@t

þ @rG1ðcycE; sÞNG1ðcycE; tÞ
@cycE

¼ �GG1ðcycE; sÞNG1ðcycE; tÞ

�kdðsÞNG1ðcycE; tÞ þ 2dðcycEÞ
ZcycBmax

cycBmin

GG2ðcycB; sÞNG2ðcycB; tÞdcycB
ð1Þ

S phase:

@NSðDNA; tÞ
@t

þ @rSðDNA; sÞNSðDNA; tÞ
@DNA

¼ dðDNA� 1Þ
ZcycEmax

cycEmin

GG1ðcycE; sÞNG1ðcycE; tÞdcycE � kdðsÞNSðDNA; tÞ
ð2Þ

G2/M phase:

@NG2ðcycB; tÞ
@t

þ @rG2ðcycB; sÞNG2ðcycB; tÞ
@cycB

¼ �GG2ðcycB; sÞNG2ðcycB; tÞ

�kdðsÞNG2ðcycB; tÞ þ dðcycB� cycBS�G2=MÞrSðDNA ¼ 2; sÞNSðDNA ¼ 2; tÞ
ð3Þ

The number distribution (Ni=G1,S,G2) is the number of cells distributed on a variable for
each phase. The PBM is experimentally derived from the cell’s cyclin blueprint [49], which is
used to formulate the cyclin intensity functions. The model utilises cyclin E1 (cycE, key for the
transition from G0/G1 to S phase), DNA (key for the transition between S phase and G2/M)
and cyclin B1 (cycB, key for the transition between G2/M phases to G0/G1). The cyclin growth
functions (ri = G1,G2, Equation 4) denote cyclin (E1 and B1) build-up on each phase (G0/G1 and
G2/M) and are responsible for the transition of the cells within each cyclin domain. Similarly,
the DNA growth function (ri = S, Equation 5) denotes the DNA build-up or synthesis in the S
phase and is responsible for the transit of the cells within that phase. The cyclin and DNA
growth functions (ri, Equation 4–5) are substrate/metabolite concentration (s) dependent. The
substrate/metabolite (s) stands in general for the main substrates (glucose, glutamate) and me-
tabolite (lactate). Specifically, the growth functions (ri) are glutamate-dependent (Equation 7).
This dependency was introduced since it has been reported that glutamine, or glutamate in the
GS system [50], is the main energy-yielding metabolic route [11, 51, 52] with over 90% flowing
into the TCA cycle [53]. In addition, the cyclin growth functions (ri = G1,G2) were also formulat-
ed as lactate-dependent since it has been reported [54, 55] that its concentration inhibits cell
growth. Lactate dependency was not included in the DNA growth function (ri = S), since it has
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been reported to be fairly constant in duration [56]. Therefore, the cells entered the S phase—by
means of the Dirac delta function δ(DNA-1)—with an initial DNA content and after doubling
their DNA, transit occurs immediately to the G2/M phase, i.e. GS(DNA = 2) equals to infinity.
Cyclin B1 content in the S phase is approximated, as it is not biologically relevant for the S to G2

phase transition [43]. Hence, the cells that transit from the S to the G2/M phase, enter—by
means of the Dirac delta function δ(cycB-cycBS-G2/M)—with a cyclin B1 content equal to the one
observed experimentally between these two phases. It should be noted that in the general case,
the S phase must be described by a bivariate probability density function having as internal co-
ordinates the DNA and cyclin B1 content. However, under specific conditions for the rate func-
tions a mathematical dimensionality reduction of the S equation can be achieved as detailed in
S1 Text. This dimensionality reduction is essential since it reduces the computational effort of
the model by at least 2 orders of magnitude [7, 21, 30], thus permitting its further use for
model-based applications (e.g. sensitivity analysis, parameter estimation, control, and
optimisation).

The cyclin transition functions are defined as probability of transition between the G0/G1

and S phases (Gi = G1), as well as between G2/M and G0/G1 phases (Gi = G2). The cells complete
the cycle by giving birth to two daughter cells and enter—by means of the Dirac delta function
δ(cycE)— the G1 phase with a minimum cyclin E1 content. The cyclin transition (Gi = G1,G2,
Equation 6) is formulated as a step function, which is zero below the respective cyclin threshold
for the phases G1 (cyclin E1) and G2 (cyclin B1), and becomes positive above the threshold,
though it is glucose dependent. Similar step transition functions have been recently identified
[57] in age-structured models from experimental data. The glucose dependency was intro-
duced [13] since even though glucose is not the growth limiting substrate, it does prolong the
stationary phase and delays the decline phase.

The substrate/metabolite (Equation 7) dependencies were formulated observing Monod
type kinetics [58, 59]; where Glu, Glc, and Lac represent the extracellular glutamate, glucose,
and lactate concentrations, respectively. The Ki = Glu,Glc,Lac parameters represent the Monod
constant, and the exponential factors (n, m, and p) capture the sensitivity towards the respec-
tive substrate/metabolite.

Cyclins growth functions:

ri¼G1;G2ðcyc; sÞ ¼ Cycgrow � flimGlu � flimLac ð4Þ

DNA growth function:

rSðDNA; sÞ ¼ DNAgrow � flimGlu ð5Þ

Cyclins transition functions:

Gi¼G1;G2ðcyc; sÞ ¼
(

0

probi � flimGlc

; below

; above

threshold

threshold

ð6Þ
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Limiting functions:

flimGlu ¼
Glun

Glun þ KGlu
n

; flimGlc ¼
Glcm

Glcm þ KGlc
m

; flimLac ¼
KLac

p

KLac
p þ Lacp

ð7Þ

The different populations are calculated as follows, see (Equation 8).

Phase populations:

phasei¼G1;S;G2 ¼
Zphase max

phase min

NiðxiÞdxi ð8Þ

where xG1=cycE, xS=DNA, xG2=cycB

Total population:

total ¼ phaseG1 þ phaseS þ phaseG2 ð9Þ

Cell cycle fractions:

fi¼G1;S;G2 ¼
phasei
total

ð10Þ

Viable cells:

XV ¼ total
V

ð11Þ

Dead cells:

dðXDVÞ
dt

¼ kdXVV � klysXDV ð12Þ

The total population is calculated as the sum of all three distributed domains (Equation 9)
and the cell cycle distribution is estimated by Equation 10. The viable cell density (XV, Equation
11) is expressed by dividing over the reactor working volume (V). The model operates under the
standard assumption of ideal mixing and is presented in batch operation mode. The dead cell
population (XD, Equation 12) is calculated by accounting for the specific death rate (kd) of the
viable cells and the lysis specific rate (klys) of the dead cells. The specific death rate (Equation 13)
is linked to the extracellular substrate concentrations, particularly glutamate as this is an essen-
tial amino acid for the GS system [50]. The glutamate affinity death parameter (kdGlu) and the
exponential factor (q), define the sensitivity of the cell death to glutamate depletion. The growth
rate (μ, Equation 14) is calculated based on the cyclin and DNA growth functions. The calculat-
ed times of transit for each phase are based on the minimum threshold for transition and the
corresponding cyclin/DNA growth functions.
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Specific death rate:

kdðsÞ ¼ kdmax

kdGlu
kdGlu þ Glu

� �q

ð13Þ

Specific growth rate:

ti¼G1;G2 ¼
cyclin threshold

ri¼G1;G2

; tS ¼
1

rS
; m ¼ lnð2Þ

tG1 þ tS þ tG2
ð14Þ

The substrate (Equation 15), metabolite (Equation 16), and antibody (Equation 17) reactor
mass balances are specified. The biomass yield on glutamate and glucose is represented by (Yi =

Glu,Glc, Equation 15). Lactate was assumed to be produced (YLac, Equation 16) by both glucose
and glutamate consumption, as previously reported [11, 12, 51, 53]. In addition, lactate is also
consumed (QLac) [14, 55], which in this case was modelled and triggered by the depletion of
glutamate. Antibody production (qi, Equation 17) is specific for each cell cycle phase. A sum-
mary of the declared model variables can be found in Table 1.

Substrates:

Qi¼Glu;Glc ¼
m

Yi¼Glu;Glc

;
ds
dt

¼ �Qi¼Glu;GlcXVV ð15Þ

Metabolites:

dLac
dt

¼ QGlcYLacflimGlu þ QGlu

YLac

2
XVV � QLacð1� flimGluÞ ð16Þ

Antibody:

dmAb
dt

¼ ðqG1fG1 þ qSfS þ qG2fG2ÞXVV ð17Þ

The population balance model (Equation 1–3) resembles the McKendrick type epidemic
model [60] and in principle it admits large type asymptotic solutions. Nevertheless, these solu-
tions are not possible in case of coupling with the metabolic model. The metabolic model cou-
pling is essential for systems of changing substrate environments, which is the case in
industrially-relevant systems (batch & fed-batch cultures). In the general case of studying cell
distribution evolution and considering external time dependency (i.e. metabolic model) the
complete problem must be numerically solved.

The system of the hyperbolic partial integrodifferential equations (1–3) is discretised in the
cell content space using conservative first order finite differences [61, 62]. In this way it is
transformed to a system of ordinary differential equations with respect to time, as the model
structure is ideally suited to this type of discretization. The code for the solution of the underly-
ing model was originally developed and a detailed assessment was made to ensure compliance
with the Courant-Friedrichs-Lewy (CFL) stability condition. Furthermore, it was found that
the optimal time step was the one that exactly corresponded to the CFL condition (even better
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than smaller time steps) since it eliminated numerical diffusion errors. Finally, it was decided
to employ the method of lines (ODEs) combined to backwards first order finite differences in
gPROMS in order to utilise its advanced non-linear optimisation capabilities for model valida-
tion (e.g. parameter estimation) and model-based analysis (global sensitivity analysis). The sta-
bility is automatically checked by the ODE integrator by adjusting the time step in gPROMS.
The temporal accuracy is guaranteed by the ODE integrator while the spatial accuracy by mak-
ing a detailed comparison of results for different discretizations. The detailed discretization of
equations is presented below:

Table 1. Model variables.

Nomenclature Description Units

Γi=G1,G2 cyclin transition functions n/a

ΓE,i cyclin E1 transition function on sub-interval i n/a

ΓB,k cyclin B1 transition function on sub-interval k n/a

ΓS DNA transition function n/a

μ cell growth rate h-1

cycE cyclin E1 distributed content % cyclin

cycEmax maximum cyclin E1 content used for domain truncation % cyclin

cycB cyclin B1 distributed content % cyclin

cycBmax maximum cyclin B1 content used for domain truncation % cyclin

cycBmin minimum cyclin B1 content used for the domain start % cyclin

DNA DNA distributed content DNA relative content

fi = G1,S,G2M cell fraction in phase i n/a

flim Monod kinetics functions n/a

Glc extracellular glucose concentration mM

Glu extracellular glutamate concentration mM

hi = E,DNA,B resolution of a sub-interval (bin) % cyclin or DNA relative
content

Lac extracellular lactate concentration mM

mAb antibody concentration mg/L

Ni = G1,S,G2 number of cells distributed on a variable for each phase Cells

NE,i number of cells on sub-interval i of domain cyclin E1 Cells

NDNA,j number of cells on sub-interval j of domain DNA Cells

NB,k number of cells on sub-interval k of domain cyclin B1 Cells

ni = E,DNA,B number of sub-intervals (or bins) within each domain
interval

n/a

Qi = Glu,Glc substrate consumption rate mM/cells/h

ri growth functions of the distributed variable h-1

rE,i cyclin E1 growth function on sub-interval i % cyc E/h

rDNA,j DNA growth function on sub-interval j DNA/h

rB,k cyclin B1 growth function on sub-interval k % cyc B/h

total total number of viable cells cells

phasei = G1,S,

G2

number of cells in phase i cells

(s) substrate/metabolite concentration mM

V Volume mL

XV viable cell density cells/mL

XD death cell density cells/mL

doi:10.1371/journal.pcbi.1004062.t001
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The interval (0, cycEmax) is divided in nE equal size sub-intervals, the interval (DNA = 1,
DNA = 2) is divided in nDNA equal size sub-intervals, and the interval (cycBmin, cycBmax) in
nB equal size sub-intervals. Let us define:

hE ¼
cycEmax

nE

; hDNA ¼ ð2� 1Þ
nDNA

; hB ¼
ðcycBmax� cycBminÞ

nB

ð18Þ

NE;iðtÞ ¼ NG1ðihE; tÞ ; NDNA;jðtÞ ¼ NSð1þ jhDNA; tÞ ; NB;kðtÞ ¼ NG2ðcycBminþ khB; tÞ
ð19Þ

rE;i ¼ rG1ðihEÞ ; rDNA;j ¼ rSð1þ jhDNAÞ ; rB;k ¼ rG2ðcycBminþ khBÞ ð20Þ

GE;i ¼ GG1ðihEÞ ; GB;k ¼ GG2ðcycBminþ khBÞ
where i ¼ 0; 1; 2; . . .; nE ; j ¼ 0; 1; 2; . . .; nDNA ; k ¼ 0; 1; 2; . . .; nB

ð21Þ

The discretization of the equation (1) for G0/G1 phase, equation (2) for S phase, and
equation (3) for G2/M phase leads to the following system of ordinary differential equations.

G0/G1 phase:

dNE;i

dt
¼ �rE;iNE;i þ rE;i�1NE;i�1

hE

� GE;iNE;i � kdNE;i i ¼ 1; 2; 3; . . .; nE ð22Þ

dNE;0

dt
¼ �rE;0NE;0

hE

� GE;0NE;0 � kdNE;0 þ 2
hB

hE

XnB
k¼0

wkGB;kNB;k ð23Þ

S phase:

dNDNA;j

dt
¼ �rDNA;jNDNA;j þ rDNA;j�1NDNA;j�1

hDNA

� kdNDNA;j j ¼ 1; 2; 3; . . .; nDNA ð24Þ

dNDNA;0

dt
¼ �rDNA;0NDNA;0

hDNA

� kdNDNA;0 þ
hE

hDNA

XnE
i¼0

wiGE;iNE;i ð25Þ

G2/M phase:

dNB;k

dt
¼ �rB;kNB;k þ rB;k�1NB;k�1

hB

� GB;kNB;k � kdNB;k

þ 1

hB

rDNA;nDNANDNA;nDNA
d k� int

cycBS�G2=M

hB

� �� � k ¼ 1; 2; 3; . . .; nB ð26Þ

dNB;0

dt
¼ �rB;0NB;0

hB

� GB;0NB;0 � kdNB;0 ð27Þ

where wi (Equation 23) and wk (Equation 25) are the weights of the employed numerical integra-
tion scheme (trapezoidal). The cyclin B1 content between S and G2/M phase (cycBS-G2/M) is
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approximated as explained in the S1 Text and the term int(x) denotes the integer part of x. The
system of discretized equations (Equation 22–27) is coupled to the metabolic model. A schematic
representation of the discretized model is presented (Fig. 1). All simulations were performed
using a desktop computer with an Intel Core i7 CPU.

Cell Proliferation Assay
Cell proliferation assays provide a direct way to estimate the duration of cell cycle phases. A
specific population (which was active during DNA synthesis) of the culture is identified by la-
belling the DNA base analogue (e.g. EdU) introduced into its DNA. In order to estimate the av-
erage transit times based on the DNA content (i.e. G0/G1, S and G2/M phases), EdU positive
and negative cells were tracked for each time point of the frequent sampling. The shifts in the
distribution of EdU positive cells indicate a fast transit of the cells from S to G2/M (Fig. 2A);
after 2h of culture a significant increase in the G2/M fraction is observed. However, at 2h the
fraction of cells at G1/G0 remains comparable to the starting level, and only after 4h a signifi-
cant increase is observed. This indicates that the initial EdU positive population traversed the
G2/M phase in approximately 4h. In order to estimate the G1/G0 phase time, the EdU positive
fraction in the S phase was monitored (Fig. 2A). The S phase was observed to be minimal be-
tween 8–10h of culture and soon after an increase was observed (circa 12h). Such increase indi-
cated the completion of the G1/G0 phase (12h) of the initial EdU positive population (which
entered that phase at around 4h); therefore, the estimated timing for this phase is of 8h. The
S phase timing can be estimated based on the EdU negative population (Fig. 2B). After 2h,
there was a significant change in the S phase, which indicated the entrance of cells into this
phase. At around 8h, the number of cells in the S phase peaked with a concurrent increase in
the G2/M phase fraction. Therefore, the traversing estimate for the S phase is approximately

Figure 1. Schematic representation of the discretized cell cycle model.

doi:10.1371/journal.pcbi.1004062.g001
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6h. An average cell cycle time of 18h can be estimated for the GS-NS0 under the specific culture
conditions. The estimated value was in agreement with previous reported maximum growth
rates of 0.04h-1 [63], which corresponds to a doubling time of 17.3h. The cell marker Ki-67 was
used to determine the proliferative state of the cell population and discriminate between the
G0 and G1 fractions. A high proliferative state was observed with a greater than 95% positive
Ki-67 fraction over 3 days of culture (Fig. 3). After 80h of culture, cell viability started to decline
as well as the Ki-67 positive fraction, indicating that some of the cells were entering the non-
proliferative state (G0). The entrance to the G0 phase could not be confirmed to be associated
to the commitment to apoptosis (as it was not quantified), however the Ki-67 proliferation
marker showed a high correlation with the cell viability.

Cyclin Profiles
The cyclin profiles for the GS-NS0 cells under similar culture conditions have been recently re-
ported [49], which are in agreement with cyclin expression patterns and thresholds presented

Figure 2. Proliferation assay—Cell cycle distribution. A) EdU positive population; B) EdU negative population.

doi:10.1371/journal.pcbi.1004062.g002

Figure 3. Proliferation assay—Proliferation marker Ki-67 and viability.

doi:10.1371/journal.pcbi.1004062.g003
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herein. By plotting the cyclin content of the EdU positive and negative populations as they tra-
verse the different phases, the cyclin profiles and thresholds could be identified. Cyclin E1 ex-
pression profile for the EdU positive population (Fig. 4A) showed the rapid decrease of cyclin
E1 expression in the S phase (0–2h), as well as after the G1 to S phase transition (18–20h). The
cyclin E1 threshold level (between 15–20%) could be identified at the transition (18h). Similar-
ly, the EdU negative population confirmed the cyclin E1 transition threshold (18h, Fig. 4B), as
well as the rapid decrease in cyclin expression after the transit (as observed between 0–4h).

Figure 4. Proliferation assay—Cyclin expression profiles. A) Cyclin E1 expression—EdU positive cells, B) Cyclin E1 expression—EdU negative cells,
C) Cyclin B1 expression—EdU positive cells, D) Cyclin B1 expression—EdU negative cells, E) Average cyclin E1 (for G1/G0 phase) and cyclin B1 (for G2/M)
expression before and after glutamate exhaustion.

doi:10.1371/journal.pcbi.1004062.g004
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Cyclin B1 expression profile for the EdU positive population (Fig. 4C), identified the rapid cy-
clin increase following S to G2/M transition at 2h and 18–20h. A comparable profile was ob-
served for the EdU negative population (Fig. 4D). Cyclin B1 build-up in the S phase started at
minimum levels to approximately 15% (at 8h). Soon after transition to G2/M, cyclin B1 expres-
sion builds-up rapidly and peaks between 40–60%, after which cells transit to G1. The average
cyclin E1 and cyclin B1 expression before (i.e. 0 to approximately 68h of culture) and after
(i.e. after 68h of culture) glutamate exhaustion is shown in Fig. 4E. Both cyclins had a signifi-
cantly lower expression (p<0.05) after the glutamate was exhausted from the media.

Model Analysis and Parameter Estimation
As outlined in the mathematical modelling development framework [45–47], following the de-
velopment of the model type and structure, the influence of parameter uncertainty on model
output was evaluated. GSA was applied in order to systematically evaluate output variability
due to the nonlinear nature of the model. Prior to GSA, the conservation of entities in the sys-
tem was verified. The birth term was fixed to 1 (to avoid generation), the death rate was fixed
to zero (kdmax=0) and the interaction with the nutrients was neglected (flimGlu/Glc/Lac = 1).
A uniform distribution was applied for all domains (cyclin E1 between 0–95%, DNA between
1–2, and cyclin B1 between 0–95%). The full range of 24 parameters was varied ±50% [30]
from their nominal value and evaluated in over 100 scenarios to test the entities conservation.
The nominal values were taken from experimental data (e.g. cell cycle blueprint) and when
data were not available, approximated order-of-magnitude values were assigned [30, 63]. The
number of bins for the cyclin E1 and B1 domains was increased in order to ensure that over
99% of the entities remained in the system after 120h of simulation. The selected number of
bins was 200, both for cyclin E1 and cyclin B1. After fixing the number of bins, GSA was per-
formed on the system. In order to evaluate the relative influence of the uncertainty of the param-
eters in the outputs, a large number of sampling points is typically required. The parameters
were varied ±50% from their nominal value (restoring the birth term, death rate, and limiting
functions) and the sampling points were generated using the sobolset function in Matlab. Each
scenario was evaluated using the go:MATLAB tool of the gPROMs modelling software. A total
of 40,000 scenarios were evaluated and the sensitivity indexes (SIs) were calculated using the
GUI-HDMR software [64]. Five outputs were evaluated (Xv, fG1, fS, fG2, andmAb) at three simu-
lation time points (36, 72, and 120h). The SIs are the result of the GSA and vary between 0 and 1,
with 0 being not significant. To evaluate the results of the GSA a threshold of 0.1 was selected,
representing an experimental error of 10% [65]. Therefore, if the SI is above the threshold, the
parameter is identified as significant and re-estimated. The non-significant parameters can be
fixed at their nominal value.

The entities conservation test facilitated the selection of an appropriate number of bins to
minimize particle loses during GSA. A trade-off between the number of bins and the solution
time is generally observed. Despite selecting a considerable number of bins (i.e. 200) for each
cyclin domain and 20 for the DNA domain, the computational time was low (<4s). This en-
abled completion of the sensitivity analysis (40,000 simulations) in less than 30h using a desktop
pc. Both the time for a single run (<4s, two fold faster [7]) and to complete the GSA (<30h)
were fast compared to previous reports [7, 21, 26, 30]. Out of the initial 24 parameters, 9 were
identified as significant (Fig. 5). The viable cell population output (Xv) was found to be sensitive
to the cyclin and DNA growth rates (at early culture time 36h). Also it showed increasing sensi-
tivity (frommid stage 72h towards late stage 120h) to the biomass yield on glutamate (YGlu) and
maximum death rate (kdmax). The G1/G0 cell fraction output (fG1) showed recurrently (at all
stages) sensitivity towards the cyclin E1 growth rate (CycEgrow) and DNA growth rate
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(DNAgrow). However, the cyclin E1 growth rate proved to be the most influential parameter for
this cell fraction. At mid/late stages also it was found to be sensitive to the cyclin B1 growth rate
(CycBgrow) stressing the link to the previous cell cycle phase (G2/M). The S phase fraction out-
put (fS) showed a constant and recurrent sensitivity to the cyclin E growth rate for all stages.
However, the DNA growth rate was more significant throughout. The G2/M cell fraction output
(fG2) showed sensitivity towards the cyclin E1 growth rate at early stage, whereas a constant sen-
sitivity throughout all stages for the DNA growth rate (preceding cell cycle phase) was observed.
Also an increasing sensitivity (from early to late stages) towards the cyclin B1 growth rate
(CycBgrow) was observed. Finally, the antibody titre output (mAb) was sensitive to all the cell
cycle specific productivities (qi = G1,S,G2) at early stage (36h). At mid stage it was sensitive to
only S and G1 phase specific productivity (qS and qG1) whereas at late stage (120h) only to the
G1 phase specific productivity (qG1). The identified 9 significant parameters were then re-
estimated in order to minimize the uncertainty in the model outputs. Specifically, the control
runs for thymidine and dimethyl sulfoxide (DMSO) experiments [49] were used to re-estimate
the identified significant set of parameters, while setting the remaining parameters to their nom-
inal value. The model showed good agreement between simulation and experimental results

Figure 5. GSA indexes.Outputs: XV = viable cell density, fG1 = G1/G0 cell fraction, fS = S cell fraction, fG2 = G2/M cell fraction, and mAb = antibody titre.

doi:10.1371/journal.pcbi.1004062.g005
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after parameter re-estimation for the cell growth kinetics, peak and decline, as well as the decline
in viability (Fig. 6A) for both control runs. The glucose/lactate (Fig. 6B) and glutamate/mAb
(Fig. 6C) profiles were also satisfactorily captured. In addition, the model simulated correctly
the cell cycle distribution (Fig. 6D) trends, particularly at early stages of the culture. The simula-
tion results were expected to be comparable between the two sets of experiments as the experi-
mental differences are minimal and linked mainly to the initial conditions (cell cycle
distribution, centrifugation steps prior to start, glucose concentration [49]).

Modelling of Arrest Release Experiments
The model was then tested against the experiments performed after an arrest release [49]. Al-
though the initial substrates/metabolites conditions were similar to the control runs, the arrest
release experiments provided significant different initial cell cycle distribution scenarios. Fol-
lowing thymidine arrest, the cell growth was comparable to the control run, which was re-
flected by the good model prediction (Fig. 7A). Furthermore, the glucose (Fig. 7B), glutamate,
and mAb (Fig. 7C) model simulations showed a good fit. However, the lactate profile (Fig. 7B)
showed some discrepancies at early stage (24h) whereas after 48h good agreement was obtained.
A plausible explanation to the experimental high lactate levels at 24h has been reported [49].
Nonetheless, the cell cycle distribution (Fig. 7D) showed good agreement with the experimental
data. The sharp changes at the early stages of the culture (first 10h), right after the thymidine re-
lease, were captured by the model. The good cell cycle fit validated the overall modelling ap-
proach and stressed the relevance of the cyclin distribution on the cell cycle transitions.

The DMSO arrest release experiment was also modelled. The overall trends for cell growth
and viability were in good agreement (Fig. 8A, grey lines), although there was systematic differ-
ence between model predictions and experimental data (due to the pronounced experimental
lag phase). However, the glucose/lactate Fig. 8B, grey lines) and glutamate (Fig. 8C, grey lines)
profiles were satisfactorily predicted. Conversely, the modelled mAb profile (Fig. 8C, grey
lines) illustrated a significant deviation from the experimental data (overestimating the final
titre). The mAb deviation could be attributed to the higher cell density predicted. Similarly, the
cell cycle modelled distributions (Fig. 8D) showed significant differences. Although the trends
were correct, the model failed to predict the proper timing to restart proliferation. DMSO has
been shown to produce imbalances in the G1 cyclins [66]. Therefore, the hypothesis of a slower
G1 phase completion during the first 24h due to DMSO’s effect was tested in the model. For
this purpose, the cyclin E1 growth rate (cycEgrow) was decreased. In order to make the simula-
tion comparable to the initial scenario, the biomass yield on glutamate (YGlu) and the biomass
yield on glucose (YGlc) were adjusted by the same factor. The estimated decreased factor for the
cyclin E1 growth rate was found to be ~2.3. The three parameters were modified (DMSO delay
simulation values, Table 2) for the first 24h of simulation. After 24h, when the effect of DMSO
was considered negligible, the modified parameters were set back to their initial values (nomi-
nal or estimated values, Table 2). All other model parameters were kept at the reported values.
The delay growth simulations showed a marked improvement in the agreement with the exper-
imental data. The cell growth and viability (Fig. 8A) showed an improved fit. Particularly, cell
growth and initial lag phase were satisfactorily captured. The glucose/lactate (Fig. 8B) and glu-
tamate (Fig. 8C) profiles showed comparable results to the initial simulation. The modelled
mAb titre showed improved prediction when compared to the experimental data (Fig. 8C), al-
though still over predicted the final mAb titre. The slower growth in the G1 phase during the
first 24h, did seem to improve the cell cycle distribution prediction (Fig. 8E). The model satis-
factorily captured the timing for restarting the proliferation and the sharp oscillating cell
cycle fractions.
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Figure 6. Modelling of control experiments. A) Cell growth and viability, B) Glucose and lactate concentration profiles, C) Glutamate and mAb
concentration profiles, D) Cell cycle distribution.

doi:10.1371/journal.pcbi.1004062.g006
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Model Prediction of an Undisturbed Cell Cycle Experiment
An experiment with different starting cell density (2 fold higher) and undisturbed cell cycle dis-
tribution was used to test the predictive power of the validated model. The model was able to
capture the cell growth kinetics, peak timing, and decline (Fig. 9A). Similarly, viability was
closely predicted. Glucose (Fig. 9B) as well as glutamate and mAb (Fig. 9C) profiles were also
satisfactorily predicted. At the late stages of the culture (~96h), glutamate seemed to be either
produced by the viable cells or released by cell lysis, both of which the model did not account
for. The lactate profile (Fig. 9B) showed a good agreement the first 48h of culture whereas at
later stages, although the decreasing trend was captured by the model, the decrease in the ex-
perimental data was significantly steeper. The observed lactate decrease between 48 and 72h in-
dicated a shift in the cell metabolism. The modelled cell cycle distribution (Fig. 9D) showed a
fair prediction. Although the trends were correct a lack of fit was observed during the first 12h,
particularly for the G1 phase. Despite trying out different initial distribution scenarios, the dif-
ferences could not be resolved.

Discussion
The presented model represents a methodical approach to capture the cell culture heterogene-
ity by including relevant complex cell cycle mechanisms for an industrially relevant cell line.
By using the mathematical modelling framework [45, 47, 58, 65, 67] it was possible to evaluate

Figure 7. Modelling of after thymidine arrest release experiment. A) Cell growth and viability, B) Glucose and lactate concentration profiles, C) Glutamate
and mAb concentration profiles, D) Cell cycle distribution.

doi:10.1371/journal.pcbi.1004062.g007
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the structure and sensitivity of the model outputs in a systematic manner. Particularly, global
sensitivity analysis guided model development and experimentation by identifying key model
interactions and parameters, thus reducing experimental costs.

The fact that none of the transition probabilities were identified as significant is not evident.
The model uses transition probabilities to determine dispersion around the thresholds. There-
fore, as long as there is a positive transition value, the value itself of the parameter is not as sig-
nificant. It should be noted that if a different model structure for the transition probability was

Figure 8. Modelling of after DMSO arrest release experiment. A) Cell growth and viability, B) Glucose and lactate concentration profiles, C) Glutamate
and mAb concentration profiles, D) Cell cycle distribution, E) Cell cycle distribution delay simulation. Grey lines: simulation with estimated parameters; Black
lines: simulation with DMSO delay parameters (Table 2)

doi:10.1371/journal.pcbi.1004062.g008
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formulated or other outputs were evaluated, it could probably be significant. Similarly, the
thresholds for the cyclins were not identified as significant. This does not imply that the transi-
tions are independent of the threshold. The justification is that once a cell reaches the threshold
(regardless of its value), the cell becomes a candidate to proceed to the next stage. Therefore,
cyclin thresholds and cyclin growth function act as a biologically relevant, mechanistically ac-
curate, and quantifiable substitute to the previously employed variables (e.g. age/mass/volume).
Moreover, these markers can be meaningfully coupled with the bioprocessing variables (e.g. sub-
strate availability, chemical arrest agents). In this context, the cyclin blueprint is relevant not for
its absolute values of cyclin expression but also in identifying the patterns, timings, and sched-
ule of expression, as this will determine which biomarkers to use in model formulation. None-
theless, should model validation be extended to cyclin distribution values or considered as an
output in the sensitivity analysis, cyclin thresholds might be identified as significant parame-
ters. The relevance of the cyclins and their distribution is evident by their ability to predict cell
cycle variations. Finally, the sensitivity of the mAb titre output to the specific cell cycle produc-
tivities, although expected, suggests some association. The G1 phase specific productivity was
the only identified consistently throughout the mAb output as significant. This result suggests
a significant correlation of the G1/G0 phase (compared to the other two phases, i.e. S and
G2/M) to the total productivity. A similar outcome is observed if the productivity is evaluated
in terms of the cumulative cell hours [68] and the analysis is broken down per cell cycle phase
[10]. Both a partially growth associated productivity and a better correlation towards the
G1/G0 phase is observed.

Table 2. Model parameters values.

Parameter Nominal Value Units Estimated Value 95% Conf. Interval DMSO delay simulation

critE threshold 15 % cyc E

critB threshold 37 % cyc B

probG1 0.6 n/a

probG2 0.6 n/a

CycEgrow 3.33 % cyc E/h 3.49 1.46E-01 1.52

DNAgrow 0.15 DNA/h 0.16 4.76E-03

CycBgrow 8.22 % cyc B/h 8.07 2.99E-01

kdmax 3.0E-02 h-1 2.31E-02 1.90E-03

klys 5.0E-03 h-1

KLac 50 mM

QLac 2.5E-11 mM/h

kdGlu 0.05 mM

YGlc 2.1E+08 cell/mM 9.1E+07

KGlc 5 mM

YGlu 1.8E+09 cell/mM 1.80E+09 7.20E+07 7.4E+08

KGlu 0.20 mM

Ylac 2.3 n/a

qG1 5.0E-10 mg/(cell*h) 9.57E-10 2.10E-09

qS 5.0E-10 mg/(cell*h) 1.00E-10 4.30E-09

qG2 5.0E-10 mg/(cell*h) 1.00E-11 2.00E-09

m = expglc 2 n/a

n = expglu 1 n/a

q = expdeath 2 n/a 2

p = explac 1 n/a

doi:10.1371/journal.pcbi.1004062.t002
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Overall, the GSA identified the key parameters that need to be experimentally refined in
order to reduce the model’s output uncertainty. This systematic approach is in agreement with
previous reports [69] that clearly stress the importance of mathematical models and tools for
the analysis and understanding of biological systems.

Model formulation of a PBM coupled to an unstructured metabolic model in conjunction
with model reduction demonstrated clear benefits. The computational times were at least two
fold faster [7, 28] and enabled the completion of model-based applications, such as GSA, in
just over 1 day. This is significantly faster when compared to the 3000h (in a 25 PCs cluster)
for the completion of the GSA of a PBM-SCM [30]. The identified significant parameters were
re-estimated by tailored made experiments such as the proliferation assay. This experiment al-
lows extracting most of the required data for the model formulation, such as estimated cell
cycle times, cyclins’ thresholds, and cyclin/DNA growth rates. Herein, the reported cyclin levels
are in agreement with the levels previously reported [49]. The observed cyclin blueprint is cell
line and culture condition dependent. These results confirmed the cyclin blueprint without the
need to perform any kind of cell synchronisation, and support the cyclin distributed model de-
velopment. A key aspect included in the model is the link between cyclin expression levels and
the culture environment (i.e. substrate and metabolite concentrations). Several reports [70, 71]
have addressed the link of the cyclin D family of proteins with the culture environment (growth
factors). Although cyclin D is not explicitly formulated in the model, it is expected that cyclin
D expression will cascade on the other cyclins (e.g. cyclin E1, B1) and this is explicitly

Figure 9. Model prediction of an undisturbed cell cycle experiment. A) Cell growth and viability, B) Glucose and lactate concentration profiles,
C) Glutamate and mAb concentration profiles, D) Cell cycle distribution.

doi:10.1371/journal.pcbi.1004062.g009
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formulated. The experimental data did suggest that the relative expression levels decrease
along the batch culture for both cyclins, particularly after the depletion of key energy/anabolic
yielding substrates such as glutamate. Nonetheless, due to the employed media formulation
(serum-containing), further studies are required. In particular, use of chemically defined media
would enable the refinement of the modelled cyclin-extracellular substrate/
metabolite concentrations.

The lumped G1/G0 phases assumption in the model development was supported by a high
proliferating cell fraction (Ki-67 positive population). As observed, the cells maintained a high
proliferative state as long as key substrates are available. Similarly, the lumped G2/M is justified
by the short length of the M phase when compared to the other cell cycle phases [72]. However,
it should be noted that the cyclin B1 is responsible for the G2 to M transition, and herein is ap-
proximated to be used for the G2/M to G1 transition. However, the model can be further re-
fined by segregating the G2/M lumped phases (if considered necessary) as M phase markers are
also available [73].

The benefits of the presented modelling approach extend to several levels. In first place, the
model allows to segregate the population throughout biologically relevant markers. Therefore,
the model predictive power is extended to both (un)-disturbed cell cycle conditions, as the cell
markers can account for such mechanistic effects. In particular, the impact of the segregation is
fully appreciated in the after arrest release experiments. The cyclin segregation provided the
right markers to account for the different cell cycle profiles. In particular, after the DMSO ar-
rest release the model did partially capture the experimentally observed delay to restart the pro-
liferation based on the low cyclin E1 expression. More importantly, the model allows us to
hypothesize the reason for the delayed start of proliferation and in silico postulate a plausible
explanation. Herein, by simulating a slower G1 transit (capturing indirectly the several mecha-
nistic imbalances caused by the DMSO [66]) for the first 24h in silico, was possible to validate
and explain the experimentally delayed cell growth, lower peak density and partially account
for the lower productivity. Previous models would fail to predict such variations as size/volume
cannot account for the delays in the cell cycle transition.

Some model simulations discrepancies were observed in the lactate profiles. Although, the
model formulation accounts for the lactate being produced both from glucose and glutamate, it
is evident that other sources might be available (e.g. pyruvate readily available in the media
[74]). In addition, the included lactate consumption triggered by the glutamate exhaustion
showed a fair prediction.

Although, there are no literature reports that directly link lactate consumption and gluta-
mate exhaustion, the selection was based on: 1) in-house experiments of the mid-exponential
growing GS-NS0 cells (in the presence of glutamate) showing lactate consumption when cul-
tured on spent medium (without glutamate, S2 Text) and 2) the well-characterised central cel-
lular metabolism that includes glutamate and lactate. The adopted metabolic link herein is
supported by studies that report a high conversion of glutamine into lactate [74] and the accu-
mulation of glutamate when lactate is consumed [75]. Similarly, lactate consumption has been
correlated to the cessation of rapid growth [55], which occurs in batch mode after the exhaus-
tion of key substrates (such as glutamate) [50]. However, lactate consumption has been shown
to be independent of the residual glucose and lactate concentrations in industrial fed-batch cul-
tures [76]. Nonetheless, there is a need to perform additional experiments to confirm the events
that trigger such metabolic shifts.

Model prediction of the undisturbed cell cycle experiment showed overall good agreement
with the experimental results. However, the need to improve the metabolic description was
also noticed. Particularly, a significant deviation was observed in the lactate profile after the
glutamate exhaustion, when lactate was noticeably consumed. The observed lactate switch has
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been reported [14, 55], which as observed has an impact on the proliferation and therefore, on
the cell cycle. Specifically, the metabolic switch seemed to be responsible for the lower cell den-
sity and provides an opportunity to link key metabolites (carbon source dependent growth
rates) to the cell cycle progression. This type of links will help to further develop our under-
standing of the effect of substrate and metabolites complementing the MFA approach.

Ultimately, the development of cell culture models accounting for the population heteroge-
neity via mechanistically relevant markers is now possible. The proposed model structure cap-
tures the cell population heterogeneity, which can easily accommodate further biological detail
(e.g. apoptosis, cell metabolism, energy requirements, and proliferation cessation, among
others).

The presented model can be extended to fed-batch processes of industrial relevance. Typi-
cally, during fed-batch operation viable biomass, viability, and culture longevity are targeted
for production optimisation without considering culture segregation (heterogeneity) [77].
However, the presented model can aid in the selection of optimal proliferation control strate-
gies accounting for culture heterogeneity, which is linked to cell growth limitations, cell cycle
distribution, and cell cycle-specific productivity. A key aspect of the presented model is its abil-
ity to accommodate for various proliferation control strategies, such as temperature shifts
(temperature dependent cyclin/DNA growth rates), variation of medium osmolarity (slowing
growth and increasing productivity) [78, 79], and chemical approaches for cell cycle arrest
(shown herein). The model could be used to optimise different targets, including the time for
arrest induction (either by temperature shifts or chemical addition), maximization of the inte-
gral of viable cells (temperature, osmotic effects), or maximizing productivity (temperature
shifts, osmotic effects, or chemical addition). Cell cycle segregation relevance in fed-batch pro-
cesses accounts for cessation of proliferation despite the avoidance of substrate exhaustion. In
addition, the model can be coupled to a glycosylation model [80] in order to capture product
quality concerns. Several studies have reported changes [81–84], even improvements, on the
glycosylation patterns linked to the cell culture environment (e.g. temperature, pH). Although
the effects have been attributed mainly to the environmental changes rather than the effects on
proliferation [85], the glycosylation coupled model would enable a systematic study of any po-
tential associations between cell cycle and glycosylation. Therefore, the model can accommo-
date for environmental factors as well as proliferation control strategies, which can include
mechanistic effects in the segregated model formulation and cell cycle-specific productivity.

Moreover, the low computational requirements enable the use of the model for model-
based applications of industrial relevance such as control and optimisation. Similarly, the used
model development framework provides a systematic platform for the development of biologi-
cal models and quantitatively analysis of the experimental data. The presented approach helps
to close the gap between the development of experimental techniques and modelling ap-
proaches of cell cultures. Particularly, cell culture systems that need to account for their hetero-
geneity, such as co-cultures and mixed cultures can benefit from the presented approach. Thus,
the methodology can be extended to accommodate more than one cell line/type in describing
the population dynamics. The significance of this approach is not limited to industrial scenari-
os (where the cell cycle productivity or cell growth can be optimised) but also to clinical envi-
ronments (tumours growth models, design and optimisation of cancer treatments, etc.).

For the first time, to our knowledge, a biologically mechanistic and experimentally quantifi-
able cell cycle distributed model is formulated. The key role of the cyclins is confirmed at differ-
ent levels accounting for the proliferative state and as a quantifiable marker. The presented
model formulation with its low computational requirements and associated to experimental
techniques provide a versatile toolbox that can be further refined to capture the complex het-
erogeneity and multi-scale nature of mammalian cell culture systems. The developed model
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satisfactorily predicted different experimental scenarios and can be used as a systematic com-
puter-aided tool to derive optimal operating policies to improve product titre while satisfying
tight operating constraints and product specifications. Thus, the overall integrated modelling
framework ultimately will pave the development of relevant cell cycle model both at the indus-
trial and clinical environments.

Materials and Methods

Cell Culture
Batch cultures over 5 days of GS-NS0 cells (kindly provided by Lonza; passage 5) with expres-
sion of a chimeric B72.3 IgG4 antibody were performed as previously described [49].

Cell Culture Analysis
Cell counts and viability were determined manually using the dye exclusion method (Erythro-
sin-B; ATCC) and a haemocytometer on a Leica DM-IL inverted phase microscope (Leica).
Samples (1.5–2mL) were centrifuged at 800rpm for 5min. The cell-free supernatant was stored
at -20°C for metabolic profiling and antibody (IgG4) titre determination. The cell pellets were
used for flow cytometry analysis. Metabolic profiles concentrations were measured from the
stored supernatant samples with the Nova BioProfile 400 Analyzer (Nova Biomedical). Mono-
clonal antibody (IgG4) quantification was performed using a high pressure liquid chromatog-
raphy (HPLC) Agilent 1260 Infinity system (Agilent Technologies). The supernatant was
filtered through a 13mm syringe filter with 0.22μm PTFE membrane (VWR, 28145–491) prior
to injection. The affinity column, Bio-Monolith Protein A (Agilent Technologies, 5069–3639)
was used to quantify IgG4 antibody through the use of a calibration curve. The samples (50μL)
were loaded at a flowrate of 1mL/min in a phosphate buffered saline (PBS) mobile phase
(pH 7.4) for 2 minutes. Thereafter, a change in gradient was performed using an acetic acid
(0.5M, pH 2.6) mobile phase to elute, which was maintained for 5 minutes. Finally the column
was again conditioned with a PBS (pH 7.4) mobile phase for 2 minutes. Elution was monitored
with a UV detector at 280nm.

Cell Proliferation Assay
Cells in mid-exponential growth were exposed to 30μM of 5-ethynyl-2 ́ -deoxyuridine (EdU,
Invitrogen C10419), which is a nucleoside analogue to thymidine and is incorporated into
DNA during active DNA synthesis, for a period of 3 hours. After the exposure, the cells were
washed twice with PBS and re-suspended in the standard growth media (in the absence of
EdU) and cultured in batch mode for 5 days. A parallel control group was established (includ-
ing all the centrifugation and washing steps without exposure to EdU). Samples were taken
every 2h for the first 24h and every 24h afterwards.

Flow Cytometry
1 × 106 cells were fixed and stored prior to flow cytometric analysis as previously described
[49]. Preparation for analysis included removing the fixing agent and washing the cells with a
rinsing solution followed by centrifugation, as described [49]. Cell membrane permeabilisation
was achieved using 50μL of a saponin-based wash reagent (component E, C10419, Invitrogen)
for 15min at room temperature as per the vendor’s instructions. The EdU was detected by add-
ing 0.5mL of the click-IT reaction cocktail (prepared as per vendor instructions). Incubation
(room temperature in the dark for 30min) was followed by washing (rinsing solution). The rins-
ing solution was removed after centrifugation followed by addition of 50μL of a saponin-based
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wash reagent. Then 20μL of a PE mouse anti-human Ki-67 or the isotype (BD, 556087) were
added to stain for the proliferation marker. Incubation (room temperature in the dark for
30min) was followed by washing (rinsing solution). After centrifugation, the rinsing solution
was removed and 50μL of a saponin-based wash reagent was added. Antibodies were used for
cyclin staining according to supplier instructions as previously reported [49]. Briefly, incubation
(room temperature in the dark for 30min) was followed by washing (rinsing solution) and cen-
trifugation. After removing the rinsing solution, 1mL of rinsing solution was added and DNA
was stained by adding 1μL of FxCycle violet stain (Invitrogen, F10347). Controls (isotypes, sin-
gle colours, and isotypes) were also prepared. Flow cytometry was performed on a LSRFortessa
(BD) collecting 10,000 events/sample. The following flow cytometry configuration was used:
405nm excitation wavelength and 450/50 filter collection for the violet stain; 488nm excitation
and 530/30 filter collection for FITC; 561nm excitation and 582/15 filter collection for PE;
640nm excitation and 670/14 filter collection for Alexa647. FlowJo software (Tree Star Inc) was
used for data analysis. Analysis included selection of the cell population from the forward ver-
sus side scatter plot, followed by doublet discrimination analysis [49]. Apoptotic cells, debris,
and aggregates were gated out from the DNA histogram. Bivariate plots (cyclin vs. DNA) were
used to extract the cyclin expression profiles as reported [49]. The proliferating population was
gated above the Ki-67 isotype control region (bivariate plots Ki-67 vs. DNA); the G0 population
was identified in the isotype region. The EdU positive population is gated above the negative
EdU population (bivariate plots EdU vs. DNA, cells treated with click-IT reaction cocktail but
that were not exposed to EdU).

Statistical Analysis
All experiments presented were carried out simultaneously in triplicate and the shown values
represent the mean ± standard deviation (SD). SigmaStat (Systat Software Inc.) was used for
statistical analysis performing analysis of variance (ANOVA) with a level of significance of
p<0.05 on data drawn from a normally distributed population. The Kruskal-Wallis ANOVA
on ranks with a significance of p<0.05 (Student-Newman-Keuls method) was used when data
were drawn from a non-normally distributed population or with unequal variances in order to
make multiple comparison.
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