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Colorectal cancer concurrent gene signature 
based on coherent patterns between genomic 
and transcriptional alterations
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Abstract 

Background:  The aim of the study was to enhance colorectal cancer prognostication by integrating single nucleo‑
tide polymorphism (SNP) and gene expression (GE) microarrays for genomic and transcriptional alteration detection; 
genes with concurrent gains and losses were used to develop a prognostic signature.

Methods:  The discovery dataset comprised 32 Taiwanese colorectal cancer patients, of which 31 were assayed for GE 
and copy number variations (CNVs) with Illumina Human HT-12 BeadChip v4.0 and Omni 25 BeadChip v1.1. Concur‑
rent gains and losses were declared if coherent manners were observed between GE and SNP arrays. Concurrent 
genes were also identified in The Cancer Genome Atlas Project (TCGA) as the secondary discovery dataset (n = 345).

Results:  The “universal” concurrent genes, which were the combination of z-transformed correlation coefficients, 
contained 4022 genes. Candidate genes were evaluated within each of the 10 public domain microarray datasets, 
and 1655 (2000 probe sets) were prognostic in at least one study. Consensus across all datasets was used to build a 
risk predictive model, while distinct relapse-free/overall survival patterns between defined risk groups were observed 
among four out of five training datasets. The predictive accuracy of recurrence, metastasis, or death was between 61 
and 86% (cross-validation area under the receiver operating characteristic (ROC) curve: 0.548-0.833) from five inde‑
pendent validation studies.

Conclusion:  The colorectal cancer concurrent gene signature is prognostic in terms of recurrence, metastasis, or 
mortality among 1746 patients. Genes with coherent patterns between genomic and transcriptional contexts are 
more likely to provide prognostication for colorectal cancer.
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Background
Colorectal cancer (CRC) is the leading cause of human 
malignancies in Taiwan and ranks third among all can-
cer deaths [1]. CRC is also a molecularly heterogeneous 
disease; microarray and reserve transcription-polymer-
ase chain reaction (RT–PCR) experiments have revealed 
a number of molecular subtypes based on gene expres-
sion (GE) profiles, with some displaying associations 
with disease prognosis or treatment response [2–11]. For 
instance, Oncotype DX (Genomic Health Inc., Redwood 
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City, CA) was developed as a 12-gene recurrence score. 
Other signatures included the 18-gene ColoPrint (Agen-
dia Inc., Irvine, CA) and ColoGuide Ex, which is a 
13-gene signature using an Affymetrix (Thermo Fisher 
Scientific, Waltham, MA) exon-based microarray. At 
the same time, CRC also shows chromosomal instability, 
with largely unknown clinical significance [12, 13].

The precise etiology of sporadic CRC remains undeter-
mined, as opposed to hereditary familial adenomatous 
polyposis (FAP) and hereditary nonpolyposis colorec-
tal cancer (HNPCC, ref. [14]). Chromosomal instability 
might be one of the critical initiatives of sporadic CRC. 
Cancers can result from progressive accumulation of 
genetic aberrations with amplified regions containing 
oncogenes and deleterious regions with tumor suppres-
sor genes. Additionally, cytogenetic analyses have iden-
tified oncogenes and tumor suppressors at breakpoints 
of recurrent chromosomal aberrations [15, 16]. In addi-
tion, genomic aberrations could impact GE by complex 
transcriptional regulation, and genes displaying coher-
ent patterns between the genome and transcriptome are 
hypothesized to serve as potential biomarkers for prog-
nostication [17, 18].

We used two high-throughput technologies, single 
nucleotide polymorphism (SNP) and GE microarrays, 
to conduct an integrated study unraveling critical genes 
with prognostication in CRC. Although a number of GE 
signatures have been proposed [2–11], there are unset-
tled concerns regarding reproducibility and clinical appli-
cability in conjunction with conventional pathological 
factors [19]. A more sophisticated methodology must be 
established before molecular signatures can be widely 

adopted in clinical practice. Herein, we presented a novel 
GE signature for CRC based on concurrent genes.

Methods
The study protocol was reviewed and approved by the 
institutional review board (IRB) of Cathay General Hos-
pital. Written informed consent was obtained from all 
the participants after explanation by the investigators 
(MHS and CCH). An overview of the study design is 
depicted in Fig. 1.

CRC samples
CRC samples were prospectively and consecutively col-
lected during surgery. Enrollment criteria included CRC 
patients who had never received neoadjuvant therapy, 
were in clinical stages 0 (in situ) to III (no systemic 
spread) and had no concurrent secondary malignancy. 
Enrolled patients were managed according to stand-
ard guidelines with regular follow-up. All patients with 
resectable CRC were treated with curative surgeries.

The cancerous tissues were snap frozen and stored in 
liquid nitrogen below − 80 °C with RNAlater reagent 
(Qiagen, Germantown, MD) to stabilize RNA. The frozen 
samples were dissected into slices of 1-2 mm thickness, 
and more than 90% cancerous content was a prerequisite 
for microarray experiments.

Microarray experiments: GE arrays
Total RNA was extracted from frozen specimens using 
TRIzol reagent (Invitrogen, Carlsbad, CA). Purifica-
tion of RNA was performed using a RNeasy Mini Kit 
(Qiagen, Valencia, CA) according to the manufacturer’s 

Fig. 1  Overview of study design (CRC: colorectal cancer, GE: gene expression, SNP: single nucleotide polymorphism, b/w: between, TCGA-COAD: 
The Cancer Genome Atlas colon adenocarcinoma, RFS: relapse-free survival, OS: overall survival, GSE: Gene Expression Omnibus series accession 
number)
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instructions. The minimal RNA concentration was set 
to 100 ng/μl (25 μl) per sample. RNA integration was 
checked by gel electrophoresis with 2 bands of 18S and 
28S indicating satisfactory RNA quality, and an RIN 
value > 8.0 was pursued to remove heavily degraded sam-
ples. Illumina Human HT-12 BeadChip v4.0 (Illumina, 
San Diego, CA) was used for GE experiments, which 
provided genome-wide transcriptional coverage of well-
characterized genes. Each array on HumanHT-12 v4.0 
Expression BeadChip targeted more than 47,000 probes 
derived from NCBI Reference Sequence (RefSeq) Release 
38 (November 7, 2009) and other sources. GE data were 
normalized using Illumina BeadStudio software Gene 
Expression Module, and the generated final report files 
were exported for further analyses, including the AVG-
Signal spreadsheet.

Microarray experiments: SNP arrays
DNA was extracted from cancerous tissues using a 
QIAamp DNA mini kit (Qiagen, Valencia, CA) from the 
same subject undergoing GE experiments. A minimum 
of 4 μg DNA was required. A Bioanalyzer 2100 (Agi-
lent, Santa Clara, CA) was used to verify the purity and 
concentration of cancerous DNA with quality control 
indicated by OD260/280 > 1.8. Illumina Human Omni 
25 BeadChip v1.1 was used for SNP array experiments, 
which featured approximately 2.5 million markers that 
captured variants down to a minor allele frequency 
(MAF) of 2.5% and delivered whole genomic coverage 
across diverse populations. Structural variations, mainly 
copy number variants (CNVs), were detected. Illumina 
HiScan array scanners supported genotyping, CNV, and 
GE profiling. Projects created with BeadStudio were 
exported, with three spreadsheets, namely, Genotype, 
Intensity, and BAlleleFrequency, reported separately.

CNV detection
CNV detection began with segmentation of normalized 
data (Intensity spreadsheet from BeadStudio), followed 
by identification of common (recurrent) gains and losses 
across multiple SNP arrays. Circular binary segmentation 
(CBS) was used to identify regions in each chromosome 
such that copy numbers in each region were equal [20, 
21]. The significance level for the test to accept change 
points was set to 0.01, and the number of permutations 
was 1000. The Smoothing and MergeLevels algorithm 
were applied to enhance efficiency [22, 23]. Based on 
segmented log ratios, the copy number at a particular 
genomic location was determined using the median abso-
lute deviation (MAD) of log ratios of each array. High-
level CNV (amplification and homozygous deletion) was 
assigned to regions with segmentation mean log ratios 
> 1 and < − 1 timed the MAD of each corresponding 

array. The thresholds for low-level CNV (both gains 
and losses) were 0.5 and − 0.5 MAD, respectively. Path-
way enrichment analyses were based on the BioCarta 
(URL: https://​maaya​nlab.​cloud/​Harmo​nizome/​datas​et/​
Bioca​rta+​Pathw​ays) database, evaluating the associa-
tion between a pathway and regions of gain/loss with an 
empirical P-value by 1000 times random sampling.

Regions of recurrent CNV within a cohort of sam-
ples were identified using the Genomic Identification of 
Significant Targets in Cancer (GISTIC, ref. [24]). A null 
distribution of G scores was generated based on 10,000 
resamplings. The significance of CNV at a particular 
genomic location was determined based on a statistical 
test obtained from the segmentation log ratios of assayed 
samples. All bioinformatics analyses of CNV were con-
ducted with the CGH Tools v1.3, part of the BRB-Array-
Tools [21]. Results of pathway enrichment and GISTIC 
analyses were reported for CRC cases assayed for SNP 
arrays.

Concurrent gains and losses
Concurrent gains and losses were detected from com-
mon genes across SNP and GE microarrays by using 
HUGO gene symbols as identifiers. The process of map-
ping between SNP and GE microarray platforms was per-
formed with the SOURCE (URL: https://​source-​search.​
princ​eton.​edu/) or Clone/Gene ID Converter (URL: 
https://​cran.r-​proje​ct.​org/​web/​packa​ges/​IDCon​verter/​
index.​html), depending on which method provided the 
greatest number of reliable conversions. For probe reduc-
tion, multiple probes/probe sets were reduced to one per 
gene symbol by using the most variable probe/probe set 
measured by IQR across arrays.

We integrated GE and CNV data to identify genes 
whose transcriptional abundance was impacted by CNV. 
A Gene-centric table was outputted by the CGH Tools 
and detailed the average log-intensity ratio (calculated 
from all markers within a gene) rather than the discrete 
CNV status per gene, which was also used to deduce a 
value corresponding to each gene for each array in the 
array-covered genomic regions. This value was used to 
calculate correlations between CNV and GE arrays to 
distinguish concurrent genes. Concurrent gains and 
losses were declared if significant changes in a coherent 
manner were observed for both GE and SNP microar-
rays (assessed by Spearman correlation coefficients with 
P values < 0.05).

Concurrent gene signature and classification algorithms
Concurrent genes were identified from Taiwanese CRC 
and The Cancer Genome Atlas (TCGA) data. The TCGA-
COAD (colon adenocarcinoma) Project level 3 data-
set of 345 patients was assayed for both GE and CNV 

https://maayanlab.cloud/Harmonizome/dataset/Biocarta+Pathways
https://maayanlab.cloud/Harmonizome/dataset/Biocarta+Pathways
https://source-search.princeton.edu/
https://source-search.princeton.edu/
https://cran.r-project.org/web/packages/IDConverter/index.html
https://cran.r-project.org/web/packages/IDConverter/index.html
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profiles using Agilent 4502A (Agilent, Santa Clara, CA) 
and Affymetrix Genome-wide SNP 6.0 (Thermo Fisher 
Scientific, Waltham, MA) microarrays. Clinical, CNV, 
and GE data were downloaded under the synapse ID 
syn1461155 as the secondary discovery dataset from the 
URL (URL:  https://​www.​synap​se.​org/, ref. [25]). Gene 
mapping was performed as described in Method E, with 
an additional source of NetAffy (URL: https://​www.​affym​
etrix.​com/​analy​sis/​netaf​fx_​analy​sis_​center_​retir​ed.​html).

Rather than identifying common genes from both dis-
covery datasets, the “universal” concurrent gene set was 
derived statistically. Fisher’s z transformation was used 
to combine correlation estimates from concurrent genes 
identified from Taiwanese populations and those from 
the TCGA-COAD dataset with the mathematical for-
mula as follows:

The combined correlations from independent samples 
were:

where z is Fisher’s z-transformation, r is the sample 
correlation, V is variance, and n is the sample size. The 
universal concurrent gene set was filtered with the pre-
defined threshold of a 10−3 α level and was used for 
downstream prognostic model construction. SAS/STAT 
software version 15.1 (SAS Institute Inc., Cary, NC) with 
the CORR procedure was used for the estimation of 
z-transformed correlation coefficients.

Microarray datasets
Publicly available microarray datasets were retrieved and ful-
filled the purpose of training and validation of the risk pre-
dictive model. The primary outcomes were relapse-free or 
overall survival, and the secondary outcomes were adverse 
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events following curative therapy, such as recurrence, metas-
tasis, or mortality (all were dichotomous outcomes with-
out survival data). Datasets that met the outcome variables 
were retrieved and are detailed in Supplementary Table  1 
(GSE12945, GSE14333, GSE17538, GSE39582, and TCGA_
COAD with survival data) and Supplementary Table  2 
(GSE5206, GSE9348, GSE18088, GSE18105, and GSE64857 
with dichotomous outcomes but without survival data).

Risk predictive model
A CRC risk predictive model for relapse-free/overall 
survival was constructed using supervised principal 
component regression [26]. Concurrent genes were 
first filtered by the univariate Cox proportional hazards 
regression, and significant genes within a stringent α 
level of 0.001 were further used to synthesize the first 
principal component (supergene), which was subse-
quently used in risk prediction. A continuous prog-
nostic index score was calculated based on the first 
principal component for each subject within a dataset, 
and the high- and low-risk groups were defined by the 
50th percentile prognostic index score (noninforma-
tive prior). A sensitivity analysis was performed with 
the prognostic index score cutoff between the predicted 
high- and low-risk group determined by the lowest cen-
sored percentage across all studies (the 75th percentile, 
Supplementary Table 6).

For dichotomous outcomes such as recurrence, 
metastasis or death, differentially expressed concurrent 
genes were identified using the univariate two-sample 
t test at a 0.001 significance level. A global multivari-
ate permutation test (α level of 10− 3) was further used 
to control false positivity. Multiple methods, including 
compound covariate predictor, diagonal linear discrim-
inative analysis, 3 nearest neighbors, nearest centroid, 
and support vector machine (SVM, with default penalty 
of LIBSVM, ref. [27]), were used to evaluate the pre-
diction accuracy of the CRC risk model (class predic-
tion functions of the BRB- ArrayTools, ref. [21]). For 
all class prediction methods, leave-one-out cross-val-
idation (LOOCV) was used to calculate the misclassi-
fication rate with a permutation P-value reported. For 
each random permutation of class labels, the entire 
cross-validation procedure was repeated to calculate 
the cross-validated misclassification rate with the final 
P value determined from the proportion of the random 
permutations giving the least misclassification rate. A 
minimum of 1000 permutations was required.

As distinct statistic/bioinformatics tools were 
adopted with different underlying hypotheses and cor-
responding scenarios, there was no uniform alpha-level 
across all these tests. Consequently, default alpha-level 

https://www.synapse.org/
https://www.affymetrix.com/analysis/netaffx_analysis_center_retired.html
https://www.affymetrix.com/analysis/netaffx_analysis_center_retired.html
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of each test from the BRB-ArrayTools was followed. 
Usually reduced α levels were required for multiple 
testing (Bonferroni correction). Model training and 
LOOCV were performed within each study, and con-
sensual genes across all microarray datasets were used 
to build the CRC risk predictive model. Genes were 
median-centered first within each dataset to avoid 
introducing bias from extremely high intensities as well 
as batch effects.

Results
Taiwanese CRC cohort
A total of 88 CRC patients were recruited during the 
study period between October 2013 and May 2016. There 
were 51 males and 37 females, with a median age of 63 
(range: 33-88) years. There were 81 adenocarcinomas, 2 
mucinous adenocarcinomas, and 5 in  situ lesions. The 
anatomical distributions were ascending (21), transverse 
(9), descending (10), sigmoid (19), rectosigmoid (9), ano-
rectum (18), and overlapping lesions (2). There were 46 
low-, 32 intermediate-, and 7 high-grade cases. During 
the follow-up period of up to 4 years, there were 7 recur-
rences and 14 metastases.

CNV of 32 Taiwanese CRC patients
The number of unique markers delivered by the Illu-
mina SNP array was 2,267,360, and the frequencies 
of CNV among 32 Taiwanese CRC patients (31 also 
assayed for GE) are displayed in Fig. 2. Supplementary 
Fig.  1 summarizes gain and loss calls on the genome 
detected on each array. Pathway enrichment analy-
sis with BioCarta showed that there was one pathway 

enriched in genes with gain and two pathways enriched 
in genes with loss (Supplementary Table  3, ref. [28]). 
Frequent CNVs (gain regions) identified by GIS-
TIC are detailed in Supplementary Table  4, including 
13q12.2-q12.3 (PDX1, ATP5EP2, CDX2, PRHOXNB, 
FLT3, LOC100288730, PAN3, and FLT1) and 17q12-
q21.2 (NEUROD2, PPP1R1B, STARD3, TCAP, PNMT, 
PGAP3, ERBB2, C17orf37, GRB7, IKZF3, ZPBP2, 
GSDMB, ORMDL3, and LOC728129).

Consensus of universal concurrent genes
The number of concurrent genes was 1582 (P < 0.01) 
and 2974 (P < 0.01) from the Taiwanese (n = 31 for CRC 
patients assayed for both platforms) and TCGA-COAD 
(n = 345) cohorts, respectively, resulting in a common 
concurrent gene set of 307 genes. The universal concur-
rent genes, which were synthesized from the combined 
correlation coefficients with z-transformation, con-
tained 4022 genes at the P < 0.001 level. These candidate 
genes were evaluated within each of the 10 microar-
ray datasets, and 1655 (2000 probe sets) were filtered 
as being prognostic in at least one study (Table 1). The 
consensual genes across studies were used to build a 
CRC risk predictive model with a significance level 
determined by a nominal univariate test at 0.01 α 
level. Candidate genes decreased from 1365 to 1 when 
the number of agreeing datasets increased from 1 to 
5 (Table  2). Finally, a subset of 49 consensual concur-
rent genes were incorporated into the CRC prognostic 
model, which was determined by cross-validation. A 
complete list of the 49 constitutional genes is detailed in 
Supplementary Table 5.

Fig. 2  Frequency plot of CNV among 32 Taiwanese CRC patients (CNV: copy number variation, CRC: colorectal cancer)
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Survival analysis
A supervised principal component encompassing 49 con-
sensual concurrent genes was used for survival analysis, 
with the threshold of the 50th percentile of the prognos-
tic index score for risk group construction with LOOCV. 
Figure  3A to E show relapse-free/overall survival pat-
terns from the GSE12945, GSE14333, GSE17538, TCGA_
COAD, and GSE39582 datasets. Except for GSE12945 
(log-rank test: P = 0.82), survival discrepancies were 
observed in 4 out of 5 studies between defined high- and 
low-risk groups (log-rank test: P < 0.0001, P = 0.0059, 
P = 0.049 and P = 0.0361, respectively). In order to evalu-
ate the impact of the 50th percentile thresholding, Table 3 
summarizes area under the curve (AUC) from time-
dependent receiver operating characteristic (ROC) curve, 
as well as censored/uncensored number from each study. 

The highest AUC, 0.824, was reported from TCGA_
COAD cohort; it should be noticed that it was also this 
cohort contributed much more samples during the discov-
ery of concurrent genes. A differential bias toward favora-
ble prognostic power for this cohort should be considered.

To further evaluate the impact of different thresholds on 
risk grouping, a sensitivity analysis was performed with 
a different cutoff of the 75th percentile. Supplementary 
Table  6 shows the number of predicted high−/low-risk 
patients and censored cases within each risk group while 
survival patterns and AUC are detailed in Supplementary 
Fig. 2. It deserved noticed that with an informatic prior of 
one-quarter of the assayed samples with the highest prog-
nostic index score being high-risk, discerning ability of the 
purposed signature was much compromised, and only two 
out of the five studies with follow-up data showed a sig-
nificant log-rank test (Supplementary Table 6). These two 
studies, GSE14333 and GSE 17538, were with a proportion 
of censored cases most similar to the pre-selected 75th per-
centile cutoff and reported an optimistic survival advantage 
among CRC patients predicted into the low-risk group 
(Supplementary Fig. 2B and C).

Predictive accuracy of CRC risk model
Table  4 shows the predictive accuracy of the concurrent 
gene-based CRC prognostic model with multiple meth-
ods predicting adverse events of recurrence, metastasis, or 
death during the follow-up period. In general, the Bayesian 
compound covariate model delivered the best predictive 
accuracy, with a cross-validation AUC reaching 0.833.

Discussion
CRC is a major gastrointestinal malignancy, while its 
development and progression involves a complex process 
with multiple genetic changes. Therefore, deciphering the 
molecular heterogeneity of CRC will contribute to accurate 
risk assessment and identify effective therapies. Mainstays 
of CRC management include early detection by screening 
(fecal occult blood testing), complete surgical resection of 
the lesion with regional lymph node dissection, and adjuvant 
systemic therapy based on the diagnostic stage. Adjuvant 
therapy, usually with the form of cytotoxic chemotherapy, 
is mainly determined by the pathological staging system 
including depth of tumor invasion, regional node involve-
ment and distant metastatic status. Usually stage I CRC is 
managed with regular surveillance, stage III is deemed with 

Table 1  The number of prognostic concurrent genes (probe 
sets) within each training dataset

Dataset Number of prognostic 
probe-sets

Percentage of 
prognostic probe-
sets

GSE12945 25 1.25%

GSE14333 251 12.55%

GSE17538 53 2.65%

GSE18088 1005 50.25%

GSE18105 48 2.4%

GSE39582 1 0.05%

GSE5206 338 16.9%

GSE64857 68 3.4%

GSE9384 168 8.4%

TCGA_COAD 43 2.15%

Table 2  The number of consensual concurrent genes among 
training datasets

Number of consensual datasets Number of 
concurrent 
genes

5 1

4 4

3 44

2 241

1 1365

Fig. 3  A to E Relapse-free/overall survival analysis from microarray datasets of GSE12945 (A top left), GSE14333 (B top right), GSE17538 (C middle 
left), TCGA_COAD (D middle right), and GSE39582 (E bottom) with leave-one-out cross-validation. The high−/low-risk group was defined by the 
50th percentile of the prognostic index score determined by the supervised principal component composed of 49 concurrent genes. All survival 
times were measured in months, except for 3D, which was measured in days

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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adjuvant therapy; while for stage II disease, there remains 
a lack of prognostic biomarkers for risk assessment except 
dMMR (mismatch repair deficiency) status [29].

Beyond anatomical staging, GE patterns of CRC may 
provide additional prognostication, which is complemen-
tary to pathological features. This biological staging will 
not be achievable without a transcriptome-based molec-
ular profiling. The current study evaluated the prognostic 
value of concurrent gene sets specific for CRC, and a risk 
predictive model was proposed. We developed an ana-
lytical approach to identify genes with coherent patterns 
between transcriptome and CNV profiles using matched 
GE and SNP microarray data to reduce false discoveries 
in concurrent gene signatures.

CRC is heterogeneous in terms of molecular aberra-
tions, and oncogenesis could originate from chromo-
somal CNV and manifest as transcriptional alterations. 
However, relationships between DNA structural vari-
ations and mRNA abundance are not always linear, 
and complex regulatory mechanisms have rarely been 
addressed, further highlighting the necessity of identify-
ing genes underpinning CRC tumorigenesis. GE studies 
using microarray, RT–PCR, or digital RNA counting have 
been advocated and performed widely to search bio-
markers for cancer prognostic prediction [2–11, 17, 18]. 
Fresh frozen samples of newly diagnosed CRC patients 
were assayed in an integrated approach to synthesize 
the purposed concurrent gene signature, which could 
be used to improve CRC risk stratification, further aug-
menting treatment outcomes.

The 32 Taiwanese CRC patients assayed with SNP 
microarrays showed that the most frequent CNVs by 
GISTIC were 13q12.2-q12.3, and 17q12-q21.2. SNP 
array-based CNV analysis, which is a molecular cytoge-
netic method, can detect abnormalities in the number 
of copies of segments of tumor DNA, with losses or 
gains from assayed samples indicated from spots show-
ing aberrant intensity signal ratios. Whole-genome 
SNP arrays can provide insight into the fundamental 

process of chromosomal instability leading to CRC 
oncogenesis [30].

Chromosomal aberrations seem to play a major role in 
regulating transcription [31, 32]. Since genomic imbal-
ance would have a substantial impact on GE, the inter-
play between CNV and certain GE patterns for sporadic 
CRC might shed light on underlying molecular processes 
and the discovery of cancer-related prognostic genes. 
The main hypothesis underpinning the concurrent gene 
signature is that cancer may be bred at the chromosomal 
level with CNV and modulate subsequent GE profiles. 
Concurrent genes, which were designated to those dis-
playing coherent patterns between tumor genomic and 
transcriptional alterations, were the filtered candidates 
for prognostic signature synthesis.

With the prevalence of high-throughput GE studies, 
hundreds of thousands of genes were measured in a single 
experiment, and gene filtering became inevitable to derive 
a clinically applicable signature from high-dimensional GE 
data [33]. In the current study, concurrent genes were the 
selection criteria for biomarker discovery and classifier 
development to identify potential candidates through algo-
rithms integrating SNP and GE microarrays. Both CNV 
and GE data were available in 31 subjects with Spearman’s 
correlation coefficients calculated for each gene, resulting 
in 1582 concurrent genes (P < 0.01). The secondary discov-
ery cohort, comprising 345 patients from TCGA-COAD 
project, revealed 2974 concurrent genes using the same 
algorithm (P < 0.01). Instead of using the 307 intersecting 
genes, we combined correlations from two independent 
cohorts using z-transformation, and 4022 genes were fil-
tered (P < 0.001). Calling pipelines were the same for both 
discovery cohorts once the GE abundance and CNV were 
summarized from a gene-by gene basis, despite different 
microarray platforms were adopted within each study. 
The z-transformed correlation coefficients were used 
to identify the universal concurrent genes in an effort to 
overcome the unbalanced sample size between two dis-
covery cohorts. This sophisticated statistical framework 

Table 3  Summary of censored case numbers in high- and low-risk groups and area under the curve (AUC) from time-dependent 
receiver operating characteristic (ROC) curve from survival analysis (gene only model, RFS Relapse-free survival, OS Overall survival, CRC​ 
Colorectal cancer, GEO Gene expression omnibus)

CRC case 
number

GEO Outcome Predicted high−/low-
risk patients

Censored in high-
risk group

Censored in low-
risk group

Landmark
time

AUC​

51 GSE12945 RFS 24/27 22(91.7%) 25(92.6%) 49 0.672

226 GSE14333 RFS 113/113 74(65.5%) 102(90.3%) 38.5 0.643

200 GSE17538 RFS 101/99 64(63.4%) 81(81.8%) 39 0.63

174 TCGA_COAD OS 89/85 79(88.8%) 79(92.9%) 30.5 0.824

557 GSE39582 RFS 279/278 182(65.2%) 198(71.2%) 43 0.519
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addressed the sample size discrepancy between two dis-
covery cohorts without losing generalizability.

Publicly available CRC microarray studies were gath-
ered from the NCBI’s Gene Expression Omnibus. Stud-
ies reporting relapse-free survival or overall survival, as 
well as those with dichotomous prognostic outcomes, 
were included. Processed data were downloaded and 
analyzed without further modification except for gene 
centering, since prognostic comparisons were performed 
within each dataset to avoid batch effects across micro-
array studies. The 4022 candidate concurrent genes were 
evaluated within each of the 10 microarray datasets, and 
1655 (2000 probe sets) were recognized as being prog-
nostic in at least one study. The final prognostic model 
was the consensus across 10 microarray datasets. Dis-
tinct relapse-free or overall survival patterns were evi-
dent from four out of five datasets, and the predictive 
accuracy of adverse events was between 61 and 86% 
from another five independent studies. It deserves notice 
that GE-based predicted risk is always continuous, that’s 
why an arbitrary threshold for dichotomous stratifica-
tion is needed for prognostication. The 50th percentile 
was selected as an uninformative prior, which meant that 
there was equal chance of being censored/event dur-
ing survival analysis. With high variability of censored 
cases across studies (68% ~ 92%), our sensitivity analyses 
showed that an uninformative prior set to the 50th per-
centile of the prognostic index score might be a better 
choice to enhance generalizability for real-world practice. 
The built-in multiple-methods of the BRB-ArrayTools 
were adopted for class prediction. For high-dimensional 
GE data, there is no gold standard for which is the best 
method for class prediction, so we conducted exhaustive 
bioinformatics approaches to identify the best model.

As pointed out by Marshall et al. from a review article 
regarding multi-omics, after 10 years’ progress of tumor 
mutational and transcriptional profiling in CRC, the prog-
nostic power of modern genetic testing brings only mod-
est benefits in terms of treatment guidance, i.e., who will 
benefit from adjuvant chemotherapy and if so, what is the 
optimal duration or intensity? [34]. Indeed, there remains 
an unmet need of precise risk estimation for proper man-
agement of CRC patients while our study provided a 
plausible multi-gene expression signature for such task. 
Survival rate of stage II CRC is around 60 to 85% while 
25% of patients of this stage will relapse, and once relapse 
happened, their survival rate will drop drastically. Conse-
quently, guiding the decision of adjuvant cytotoxic chem-
otherapy for CRC is one of the major priorities for the 
application of multi-gene expression-based testing.

Therefore, we developed the prognostic model for CRC as 
an initiative toward personalized and precision medicine.

The biological relevance of the 49 constitutional genes 
was deciphered. KDM6B (JMJD3) is an epigenetic gene 
coding for a histone demethylase and is also a VDR co-
target that partially mediates the effects of 1,25-(OH)2D3 
on the human colon [35]. ATAD5 mediates the cellular 
response to DNA damage [36]. HIP1R has been har-
vested from sera of CRC but not from normal blood 
donors [37]. PBK is a serine/threonine kinase, and its 
expression is elevated in breast cancer, prostate can-
cer, and CRC [38]. PBK/TOPK interacts with the DBD 
domain of the tumor suppressor p53 and modulates 
the expression of transcriptional targets, including p21 
[39]. PIAS2 regulates the IFN-gamma signaling path-
way, affecting tumor development in non-small-cell lung 
cancer [40]. FLNA, DUSP14, and FAS are implicated in 
the MAPK pathway [41]. FAS is relevant to p53 and the 
apoptosis pathway [42], and THBS1 interacts with TGF-
beta in glioblastoma [43]. POLD2 is involved in DNA 
replication and mismatch/base excision repair [44]. 
Finally, CSTF1 participates in mRNA polyadenylation 
[45]. In addition, many signature genes remained unde-
termined regarding their roles in CRC pathogenesis, 
while our integrated analysis was an initial step toward 
understanding their relevance in CRC initiation and 
progression.

There were some limitations of the study. First, as 
sequencing was not conducted, it was not possible to 
evaluate the impact of tumor DNA sequence variants 
upon GE; consequently, genes impacted by both muta-
tions and CNV were not selected for signature con-
struction. Future prospective validation studies using 
retrospective formalin-fixed paraffin-embedded (FFPE) 
samples are warranted to show the true prognostic value 
of concurrent gene signatures. The benefits of FFPE 
samples include readily available pathological archives, 
affordable quantitative RT–PCR testing or digital RNA 
counting rather than much more expensive microar-
rays, and an abundance of clinical information from ret-
rospective cohorts. We hope the integrated approach 
could lead to the discovery of potential biomarkers with 
prognostic value for CRC to determine the most efficient 
adjuvant therapy based on risk stratification, especially 
for stage II patients [46]. With prognostic validation of 
the concurrent gene signature, those predicted into the 
high-risk group should be managed with postoperative 
adjuvant therapy to reduce their risk of recurrence and 
metastasis and should be assayed by targeted sequencing 
of actionable mutations such as KRAS and BRAF [47]. 
On the other hand, stage II CRC patients categorized 
into the low-risk group by concurrent gene signature 
may avoid toxic chemotherapy under regular postopera-
tive surveillance.
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Conclusions
The concurrent gene risk predictive model is prognos-
tic for CRC recurrence, metastasis, or mortality as well 
as relapse-free/overall survival from 1746 patients. CRC 
oncogenesis might originate from tumor CNV and mani-
fest through transcription as GE profiles. Genes with 
coherent patterns between chromosomal and transcrip-
tional contexts are more likely to serve as potential bio-
markers for sporadic CRC. With prognostic validation of 
the concurrent gene signature, more precise risk assess-
ment will be achieved to overcome the molecular het-
erogeneity of CRC, and the results will provide further 
opportunities for personalized therapy.
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