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Abstract

Cancer is the result of mutagenic processes that can be inferred from tumor genomes by

analyzing rate spectra of point mutations, or “mutational signatures”. Here we present Spar-

seSignatures, a novel framework to extract signatures from somatic point mutation data.

Our approach incorporates a user-specified background signature, employs regularization

to reduce noise in non-background signatures, uses cross-validation to identify the number

of signatures, and is scalable to large datasets. We show that SparseSignatures outper-

forms current state-of-the-art methods on simulated data using a variety of standard met-

rics. We then apply SparseSignatures to whole genome sequences of pancreatic and

breast tumors, discovering well-differentiated signatures that are linked to known mutagenic

mechanisms and are strongly associated with patient clinical features.

Author summary

Cancer is a genetic disease, occurring as a result of mutagenic processes causing DNA

somatic mutations in genes controlling cellular growth and division. These somatic muta-

tions arise from processes such as defective DNA repair and environmental mutagens,

which massively increase the rate of somatic variants. As a result, due to the specificity of

molecular lesions caused by such processes, and the specific repair mechanisms deployed

by the cell to mitigate the damage, mutagenic processes generate characteristic point

mutation rate spectra which are called mutational signatures. These signatures can indi-

cate which mutagenic processes are active in a tumor, reveal biological differences

between cancer subtypes, and may be useful markers for therapeutic response. Here, we

develop SparseSignatures, a novel framework for mutational signature discovery capable

of both identifying the active signatures in a dataset of point mutations and calculating

their exposure values, i.e., the number of mutations originating from each signature in

each patient. We show that our approach outperforms current state-of-the-art methods
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on simulated data using a variety of standard metrics and then apply SparseSignatures to

whole genome sequences of pancreatic and breast tumors, discovering well-differentiated

signatures that are linked to known mutagenic mechanisms.

This is a PLOS Computational Biology Methods paper.

Introduction

Cancer is caused by somatic mutations in genes that control cellular growth and division [1].

The chance of developing cancer is massively elevated if mutagenic processes (e.g., defective

DNA repair, environmental mutagens) increase the rate of somatic mutations. Due to the

specificity of molecular lesions caused by such processes, and the specific repair mechanisms

deployed by the cell to mitigate the damage, mutagenic processes generate characteristic point

mutation rate spectra (‘signatures’) [2]. These signatures can indicate which mutagenic pro-

cesses are active in a tumor, reveal biological differences between cancer subtypes, and may be

useful markers for therapeutic response [3].

Signatures are discovered by identifying common patterns across tumors based on counts

of mutations and their sequence context. The original signature discovery method was based

on Non-Negative Matrix Factorization (NMF) [4]. While other approaches have been consid-

ered [5,6], NMF-based methods are by far the most widely used [7–9] and have resulted in a

commonly used catalog of 30 signatures across human cancers [10], available in the COSMIC

version 2 database (https://cancer.sanger.ac.uk/cosmic/signatures_v2). A recent study [11]

using two NMF-based methods presented higher numbers (49 and 60) of putative signatures,

which has now been incorporated into version 3 of the COSMIC database (https://cancer.

sanger.ac.uk/cosmic/signatures).

While some reported signatures have been associated with mutagenic processes [9,12,13],

careful examination reveals that several reported signatures are highly similar, suggesting over-

fitting rather than distinct mutagenic processes. In addition, there are several ‘flat’ signatures

of uncertain origin (non-specific signatures that include mutations of all types and sequence

contexts), and many signatures appear to be distorted by low levels of background noise. As an

example, one may consider SBS40 in COSMIC version 3, whose etiology is unclear and which

has many features in common with SBS5 [11]. Another example is represented by the four

similar signatures in COSMIC version 2 that are attributed to defective DNA mismatch repair

(signatures 6, 15, 20, and 26), which share common features and are not clearly separated.

Such uncertainty complicates the task of understanding which signatures are active in different

patients. These observations are consistent with critical weaknesses in current signature dis-

covery studies:

1. State-of-the-art NMF-based methods aim to minimize the residual error after fitting the

dataset with the discovered signatures [4,5], in an effort to fit the dataset perfectly. Conse-

quently they may overfit by including stochastic noise in the dataset as part of the signa-

tures, or by producing multiple similar signatures for the same underlying process. This

problem is exacerbated by the relatively low number of samples (hundreds or thousands)

available to most mutational signature discovery studies. LASSO regularization has been

shown to improve estimation in high dimensional problems when the sample size is small

relative to the number of parameters [14]. A method that applies LASSO regularization on
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the signatures would help alleviate the aforementioned drawbacks by favoring well-differ-

entiated signatures with low background noise, in addition to minimizing residual error.

Variants of NMF that incorporate regularization are available and have been used in other

domains [15,16], the NNLM R package on CRAN at https://cran.r-project.org/web/

packages/NNLM/index.html), and a few recent studies [17,18] have attempted to apply

these methods to signature discovery.

2. Many independent studies have found a highly dense (‘flat’) signature (SBS5) to be abun-

dant in diverse settings, including all human cancer types profiled in COSMIC [10] and

PCAWG [11], numerous cancer cell lines [19] non-cancer somatic tissues [20,21], adult

stem cell-derived organoids [22], 1000 Genomes Project SNPs from different human popu-

lations [23] and germline de novo mutations [24]. We discuss the etiology of this signature

later in the paper. Mathematically, the high density of this signature renders it difficult to

accurately extract de novo, especially under the conditions of low mutational rates, few sam-

ples, and multiple flat signatures, all of which are common. When not fitted accurately, this

signature may contaminate other signatures leading to inaccurate estimation and assign-

ment of signatures. Considering these potential issues and the ubiquity of SBS5, a recent

prominent pan-cancer study across all PCAWG samples deliberately assigned SBS5 to be

present in all samples [11]. However, SBS5 was not fixed as part of the signature discovery

method itself but was assigned to samples afterward, which does not resolve the problem of

contamination of other signatures. This procedure can be improved using matrix factoriza-

tion methods that allow for fixing some elements of the solution [16,25,26], i.e., fixing one

or more signatures as a constant.

3. State-of-the-art NMF-based methods require the number of signatures as an input

parameter but lack a principled basis for its selection. Discovering more signatures will

always tend to reduce the residual error, i.e., fit the observed data better. However, the

goal of signature discovery is not only to fit the data as well as possible, but also to iden-

tify signatures that truly reflect separate biological processes. Currently, standard ways

to choose the number of signatures are: (1) choosing a number such that more signa-

tures would not significantly reduce residual error [5]; (2) choosing a number based on

both minimizing residual error and maximizing reproducibility of signatures [4]; (3)

calling signatures hierarchically on subsets of samples, adding more signatures in order

to fit every sample [9]. The first two practices are ambiguous, while the third selects as

many signatures as needed to improve fitting of the data, with little constraint to prevent

overfitting. Overfitting can lead to many spurious signatures that actually represent

noise, making it difficult to reliably attribute mutations in a sample to any one signature,

leading to misinterpretation of the results and misleading conclusions. However, suc-

cessful methods have been developed to choose the number of factors in NMF, includ-

ing missing values imputation (the NNLM R package) and cross-validation [27]. A

recent signature discovery method, SignatureAnalyzer, uses automatic relevance deter-

mination, which starts with a high number of signatures and attempts to eliminate sig-

natures of low relevance [28].

To overcome these drawbacks, we developed SparseSignatures (Fig 1A), a novel frame-

work for mutational signature discovery. Like other NMF-based methods, SparseSigna-

tures both identifies the signatures in a dataset of point mutations and calculates their

exposure values (the number of mutations originating from each signature) in each

patient.
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Results

The SparseSignatures algorithm

SparseSignatures is implemented in R and is available as a Bioconductor package at https://

bioconductor.org/packages/release/bioc/html/SparseSignatures.html. Noteworthy innovations

are:

1. It allows the user to incorporate an explicit background model of their choice by specifying

a fixed ‘background’ signature. Two preset background signatures are provided. One (Fig

1B and S1 Table) was derived from the SBS5 signature in COSMIC (see Methods), which

has been found in all studied cancer types as well as normal somatic tissue [10,20] and has

been considered a natural background signature [29]. The other (Fig 1C and S1 Table) was

derived from the human germline mutation spectrum [24], and validated in normal tissue

samples (S1 Text). For both of these, we made an empirical adjustment to CpG > TpG

mutation rates (see Methods). This is because CpG > TpG mutations are frequently caused

by cytosine deamination at sites of CpG methylation. The cosine similarity between these

two background signatures is 0.998 and they provide almost identical results. SparseSigna-

tures fixes the background signature and then discovers additional signatures representing

cancer-specific mutagenic processes (including, usually, deamination of methylated cyto-

sines). Moreover, users can choose to use no background signature, or to provide a back-

ground signature of their choice.

Fig 1. A) Schematic of the SparseSignatures method. N represents the number of tumors in the dataset, K the number

of signatures. B) Background signature derived from COSMIC SBS5. C) Background signature derived from the

human germline mutation spectrum. Vertical bars represent the probability of mutation in each of 96 categories. These

are based on 6 possible mutation types (upper gray labels) and 16 possible combinations of 5’ and 3’ flanking bases (x-

axis labels). Source data are provided in S1 Table.

https://doi.org/10.1371/journal.pcbi.1009119.g001
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2. It uses LASSO regularization [14] to reduce noise in the signatures, except for the fixed

background signature (if provided). The extent of regularization is controlled by a learned

parameter, λ, for the entire signature matrix. We note that if the underlying signatures are

very different in sparsity, this could result in a few individual signatures being too sparse or

too dense if the value of λ is not ideal for them. However, we aim to improve the overall

solution, and so our method chooses the best overall value of λ based on the complete data-

set. It is also capable of choosing λ = 0 (no LASSO penalty) if regularization does not in fact

improve the solution.

3. It implements repeated bi-cross-validation [30] to select the best values for both the regular-

ization parameter (λ) and the number of signatures (K). A randomly chosen subset of data

points is held out and signatures are discovered based on the rest of the data. The values of

the held-out data points are predicted based on the discovered signatures and their fitted

exposure values in each patient, and the mean squared error of the predictions is calculated.

This procedure is performed for different values of K and λ, and the values that minimize

the error in predicting held-out data points are chosen. The goal is to avoid overfitting, by

ensuring that the discovered signatures not only fit the data used for discovery but also pre-

dict unseen values with high accuracy. In contrast to several previous methods, this pro-

vides a clear, unambiguous metric to choose the number of signatures.

SparseSignatures accurately deciphers signatures in simulated data

We compared SparseSignatures to two existing NMF-based methods for signature discovery,

SigProfiler [4,11] and SignatureAnalyzer [28]. SigProfiler and SignatureAnalyzer were the

basis for a recent pan-cancer study [11] resulting in 49 and 60 putative signatures. We also

included signeR [31], a Bayesian approach. In Simulation 1, we generated 50 simulated data-

sets of 116 patients each with 4 underlying mutational signatures, based on curated WGS data

from a cohort of Prostate cancer patients (see Methods). The underlying mutational signatures

included a dense signature (COSMIC SBS3) as well as relatively sparse signatures (COSMIC

SBS1, SBS18). We applied all four methods for signature discovery to this simulated dataset.

On this simulated data, SparseSignatures is most effective at discovering the correct number

of signatures (Fig 2A and S2 Table). SignatureAnalyzer consistently overfits the data, i.e., it

overestimates the number of signatures and discovers an excessive number of sparse signatures

that fit the data well but do not represent the actual underlying processes.

When comparing the overall residual error obtained by the four methods, SignatureAnaly-

zer fits the input matrix with the least residual error (Fig 2B and 2C and S2 Table). However,

this is the result of overfitting as the method infers too many signatures. To provide a clearer

measure, we assessed how well each method deciphers the input signatures by matching each

of the input signatures to the most similar signature produced by the method, and assessing

the cosine similarity between these pairs of signatures. We did not include the background sig-

nature in this comparison. Compared to all other methods, SparseSignatures reconstructs the

input signatures more accurately (Fig 2D and S2 Table). S1 and S2 Figs, along with S3 Table,

show the simulated patient counts, original signatures, and signatures predicted by each

method, for one of the 50 simulated datasets. We also compared the original exposure values

for each input signature to the exposure values produced by the method for the closest deci-

phered signature, and found that SparseSignatures shows the lowest error in reconstructing

the original exposure values (Fig 2E and S2 Table).

Appropriate regularization of the signatures based on a learned parameter (λ) is one reason

for the higher accuracy of our approach. The sparsity of signatures deciphered by SparseSigna-

tures closely matches that of the input signatures (Fig 2F and S2 Table). In comparison,
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Fig 2. Comparison between SparseSignatures and other methods on simulated data. A) Bar and line plot showing, for each method, the

number of simulations in which it selected each value of K (number of signatures). The x-axis shows values of K and the y-axis shows the

number of times each value was selected. Each method was run on 50 simulated datasets. In all cases, the correct value of K was 4. B) Box plots

showing the residual error for the solutions produced by each method, over 50 simulations. Residual error was measured as the mean squared

error (MSE) in reconstructing the original count matrix. C) Box plots showing the fraction of variance in the count matrix explained by the

solutions produced by each method, over 50 simulations. D) Box plots showing the cosine similarity in reconstructing the 3 non-background

input signatures, over 50 simulations. E) Box plots showing the mean squared error in reconstructing the exposure values for the 3 non-

background input signatures, over 50 simulations. F) Box plots showing the sparsity of the signatures produced by each method, over 50

simulations. Sparsity was measured as the fraction of cells in the signature matrix whose value is<10−3. SS: SparseSignatures. SP: SigProfiler.

SA: SignatureAnalyzer. SR: signeR. SS-BG: SparseSignatures without fixed background. Source data are provided in S2 Table.

https://doi.org/10.1371/journal.pcbi.1009119.g002
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SigProfiler and signeR tend to discover signatures with the addition of considerable noise,

while SignatureAnalyzer produces excessively sparse signatures. We also demonstrated that

the superior performance of SparseSignatures depends upon the inclusion of a fixed back-

ground signature; if this signature is not fixed, SparseSignatures is unable to accurately recon-

struct it and other signatures, and the performance of our method is reduced across all metrics

(Fig 2A–2F and S2 Table).

Finally, while SparseSignatures is the most accurate method at discovering the correct num-

ber of signatures, we also compared the performance of all three methods if the correct num-

ber of signatures is already known. When all four methods were given the correct number of

signatures, SparseSignatures was still the most accurate at reconstructing the input signatures

and exposures (S3 Fig and S4 Table).

To provide additional validation of the robust performance of SparseSignatures, we per-

formed three additional simulation experiments with different types of underlying signatures.

1. Simulation 2: We generated 50 simulated datasets of 116 patients each with 4 underlying

mutational signatures as in Simulation 1, but including a wider range of noise.

2. Simulation 3: We generated 50 simulated datasets, each of which used 4 randomly selected

signatures from the COSMIC version 3 database.

3. Simulation 4: We generated 50 simulated datasets, each of which used 4 randomly selected

signatures from the COSMIC version 3 database, limited to relatively dense signatures

where>75% of the 96 mutation types contribute to the signature.

4. Simulation 5: We generated 50 simulated datasets, each of which used 4 randomly selected

signatures from the COSMIC version 3 database, limited to relatively sparse signatures

where<50% of the 96 mutation types contribute to the signature.

5. Simulation 6: We generated 50 simulated datasets, each of which contained 100 simulated

patients with 8 underlying mutational signatures selected from the COSMIC version 3

database.

In all these additional simulations, we obtained similar results (S4–S8 Figs and S5–S9

Tables). SignatureAnalyzer performs poorly at discovering the number of signatures; Sparse-

Signatures, SigProfiler, and signeR all perform better, frequently identifying the correct num-

ber of signatures or coming close (S4A, S5A, S6A, S7A and S8A Figs). However,

SparseSignatures is more accurate than SigProfiler at reconstructing both the input signatures

(S4D, S5D, S6D, S7D and S8D Figs) and exposures (S4E, S5E, S6E, S7E and S8E Figs). While

signeR also performs well at reconstructing the signature matrix, SparseSignatures consistently

exceeds the performance of signeR at reconstructing the exposure matrix (S4E, S5E, S6E, S7E

and S8E Figs). It is particularly notable that across all simulations, both SigProfiler and signeR

recover signatures with considerable background noise. This is in clear contrast to Sparse-

Signatures, which, due to the combination of regularization and fixing the background signa-

ture, minimizes background noise and recovers signatures of the correct sparsity (S4F, S5F,

S6F, S7F and S8F Figs). Overall, SparseSignatures exceeds the performance of all the other

methods. This shows the robust performance of SparseSignatures and its ability to accurately

reconstruct input signatures and exposures from datasets with different characteristics.

We also examined the ability of SparseSignatures to accurately reconstruct signatures that

occur in only a fraction of patients in the population. The simulated datasets for Simulation 3

were generated such that, in each dataset, some signatures were present in only a subset of

patients. We found that SparseSignatures was able to reconstruct both rare and abundant sig-

natures in these simulated datasets with high accuracy (S9A Fig and S10 Table). In fact,
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SparseSignatures recovered rare signatures that were present in <35% of simulated patients

with a median cosine similarity of 0.972; this is higher than the cosine similarities obtained by

other methods (SigProfiler = 0.881, signeR = 0.913, SignatureAnalyzer = 0.971) although these

differences are not statistically significant. Similarly, SparseSignatures was able to accurately

reconstruct signatures that contributed relatively few (<6,000) mutations to the dataset (S9B

Fig and S10 Table).

SparseSignatures discovers well-differentiated signatures in pancreatic

cancer data

We applied SparseSignatures to a dataset of patients affected by pancreatic cancer from

PCAWG, including 147 curated whole genomes (S11 Table). Our goal was to discover muta-

tional signatures that can be reconstructed with high accuracy and confidence. We therefore

limited our analysis only to high-quality genomes with at least 1000 point mutations.

SparseSignatures discovered 8 signatures in addition to the background (Fig 3A and S12

and S13 Tables) along with their exposure values for each patient (S14 Table). We named these

discovered signatures in the format “PC-SS”, for “Pancreatic Cancer—SparseSignatures”. We

compared these signatures to literature on known mutational mechanisms and to the signa-

tures described in the COSMIC database. Remarkably, most of the signatures can be associated

with a known mutational process (Table 1). For example, PC-SS1 is caused by deamination of

methylated cytosine in CpG contexts, and PC-SS2 and PC-SS4 by APOBEC enzymes.

We ran SigProfiler, SignatureAnalyzer, and signeR on the same dataset for comparison. All

of these methods discovered 8 signatures (S10–S12 Figs and S15–S17 Tables). Compared to all

other methods, SparseSignatures provides the best fit to the input data, in terms of overall

residual error (Table 2) and also at the level of individual patients (Tables 2 and S18), including

patients with low as well as high mutation counts (S13 Fig). Further, the signatures discovered

by SparseSignatures are sparser, and show the lowest similarity between signatures, indicating

that they are more clearly differentiated from each other (Table 2). They also show the lowest

similarity between the background and the non-background signatures, suggesting that the

other sets contain noise due to imperfect separation of the background signature (Table 2).

This is supported by visual inspection of the signatures predicted by the four methods. The

signatures predicted by SigProfiler and signeR appear to contain visible background noise

(S10 and S12 Figs). In addition, SPR7 (SigProfiler; S10 Fig) and SIP7 (signeR; S12 Fig) seem to

result from imperfect separation of one of the well-known APOBEC mutagenesis signatures

(PC-SS4), while SPR4 (SigProfiler; S10 Fig) and SIP5 (signeR; S12 Fig) show a low level of con-

tamination with the CpG deamination signature (PC-SS1). The signatures produced by Signa-

tureAnalyzer appear to lack the low level of background noise throughout, but show similar

imperfect separation of APOBEC signatures in SIA3 and SIA7 (S11 Fig).

Exposures predicted by SparseSignatures identify pancreatic cancer

subtypes and correlate with clinical features

We next examined the exposure values produced by SparseSignatures for the background and

8 newly predicted signatures in pancreatic cancer samples. PC-SS1 (cytosine deamination at

sites of CpG methylation) is the dominant signature, followed by the background signature

and PC-SS6 (possibly reactive oxygen species) (Fig 3B and S14 Table).

We clustered all 147 tumors using CIMLR [32] based on these exposure values in order to

identify subpopulations of tumors with similar mutagenic mechanisms. Using a bootstrap-

based approach (S1 Text) [33,34], we identified 10 clusters (S14 Fig and S19 Table) with differ-

ent underlying exposures to the signatures (Fig 3D). C10 is high for PC-SS3 (likely
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representing defective homologous recombination-based DNA damage repair). The back-

ground signature is high in cluster 9, PC-SS6 is high in cluster 7, while cluster 8 seems to have

high exposure to APOBEC signatures (PC-SS2 + PC-SS4).

The exposure-based clusters correlate with clinical features; cluster C1 with high PC-SS1 is

enriched for females (Hypergeometric test p = 0.0066), while cluster C10 has younger patients

than the rest of the population (Wilcoxon test p = 0.0333). Finally, patient relapse-free survival

is significantly different between clusters, showing the potential clinical value of accurate sig-

nature discovery (Fig 3C). In contrast, the exposure values predicted by SignatureAnalyzer

and signeR do not cluster patients into survival-associated subtypes, whereas clusters based on

SigProfiler present a less significant association with survival (S15 Fig and S20 Table).

SparseSignatures discovers a signature that characterizes BRCA-positive

breast cancers

Finally, we applied SparseSignatures to a dataset of 560 breast tumors (ICGC Project

BRCA-EU available from ICGC Data Portal https://icgc.org) (S21 Table). This dataset includes

several different subtypes of breast cancer (118 triple-negative tumors, 293 ER+/HER2- tumors

and 71 HER2+ tumors, as well as 36 tumors with BRCA1 and 39 tumors with BRCA2 muta-

tions). Thus, this example illustrates the performance of SparseSignatures on a large and

diverse dataset.

Fig 3. A) The 9 mutational signatures obtained by applying SparseSignatures to a dataset of 147 pancreatic tumors. We report the number and correlation of

the most similar (correlation higher than 0.70) corresponding signature from COSMIC (https://cancer.sanger.ac.uk/cosmic/signatures). Source data are

provided in S13 Table. B) Boxplots showing fitted values for exposure to each of the 9 signatures obtained by SparseSignatures for the 147 pancreatic tumors.

Boxplots represent the fraction of mutations per tumor (on the y-axis) contributed by the given signature (on the x-axis). Source data are provided in S14

Table. C) Relapse-free survival analysis of patients belonging to the 10 clusters. D) Clustering of patients based on their exposure values. Boxplots show the

fraction of mutations per tumor contributed by each signature (x- axis) to each of 10 clusters. Source data are provided in S19 Table.

https://doi.org/10.1371/journal.pcbi.1009119.g003

Table 1. Signatures (including background) discovered by SparseSignatures in real cancer data, and their pro-

posed etiology.

Signature Proposed etiology Basis for proposed etiology

Pancreatic cancer (147 whole genomes)

PC-SS1 Cytosine methylation / deamination Experimental evidence [13]

PC-SS2 APOBEC dysregulation Experimental evidence [13]

PC-SS3 Defective homologous recombination-based DNA damage repair Hypothesised [11]

Background DNA replication error Experimental evidence [24]

PC-SS4 APOBEC dysregulation Experimental evidence [13]

PC-SS5 Oxidative damage Hypothesized [40]

PC-SS6 Damage by reactive oxygen species Hypothesised [11]

PC-SS7 Defective DNA mismatch repair Hypothesised [11]

PC-SS8 Possible sequencing artefact Hypothesised [11]

Breast cancer (560 whole genomes)

BRCA-SS1 Cytosine methylation / deamination Experimental evidence [13]

BRCA-SS2 APOBEC dysregulation Experimental evidence [13]

BRCA-SS3 Defective homologous recombination-based DNA damage repair Hypothesised [11]

Background DNA replication error Experimental evidence [24]

BRCA-SS4 APOBEC dysregulation Experimental evidence [13]

BRCA-SS5 Oxidative damage Hypothesized [40]

BRCA-SS6 Damage by reactive oxygen species Hypothesised [11]

BRCA-SS7 Defective DNA mismatch repair Hypothesised [11]

https://doi.org/10.1371/journal.pcbi.1009119.t001
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SparseSignatures discovers 7 well-differentiated signatures in addition to the background, all of

which can be associated with known mutagenic processes in breast cancer (Fig 4A and Tables 1

and S22 and S23). As with pancreatic cancer, these results also include well-characterized muta-

tional signatures associated with C>T deamination at CpG methylation sites and APOBEC

enzymes. Moreover, SparseSignatures discovered a dense signature (BRCA-SS3), similar to COS-

MIC SBS3, that was significantly elevated in BRCA1/2 mutated tumors (Fig 4B and S24 Table,

one-sided Wilcoxon test p< 2.2 x 10−16); this demonstrates its ability to recover signatures present

in a small subset of tumors, as well as to recover dense signatures in addition to the background.

We compared the performance of SparseSignatures on this dataset to that of the other three

methods. SigProfiler discovers 12 signatures in total (S16 Fig and S25 Table), allowing it to fit the

dataset with a lower MSE than SparseSignatures; however, SparseSignatures still fits the counts

of individual patients better (Table 2), regardless of the number of mutations in the tumor (S17

Fig and S26 Table); it also provides sparser, better differentiated signatures (Table 2). Moreover,

while SparseSignatures, SignatureAnalyzer and signeR all discovered dense, BRCA-specific sig-

natures close to SBS3 (see SIA3 and SIR3 in S18 and S19 Figs), sigProfiler did not.

SignatureAnalyzer also discovers 12 signatures (S18 Fig and S27 Table), but fits the data

poorly (Table 2); moreover, it discovers a highly sparse signature that is not associated with any

known mutagenic mechanism nor with any signature in COSMIC (SIA11, S18 Fig), and is likely

to be an artifact owing to the tendency of this method to discover too many signatures. Finally,

signeR discovers 7 signatures (S19 Fig and S28 Table) which are similar to those found by Spar-

seSignatures. However, SparseSignatures fits the observed data better and presents sparser and

better-differentiated signatures. Moreover, while SigProfiler and SignatureAnalyzer discover

signatures similar to the background (SPR3 and SIA4 respectively in S17 and S18 Figs), signeR

is unable to differentiate the background from the other signatures. Instead, it produces the sig-

nature SIR1, which is a mix of the CpG methylation signature and the background signature

(S19 Fig; cosine similarity 0.86 with COSMIC Signature 1 and 0.72 with COSMIC Signature 5).

This further validates our choice to fix the background signature in our method.

Discussion

SparseSignatures is a novel approach designed to discover the best number of clearly differen-

tiated mutational signatures with minimal background noise, which have robust statistical

Table 2. Comparison of signatures predicted by four signature discovery methods on real tumor sequencing data. Sparsity is measured as the fraction of cells in the

signature matrix with value< 10−4. Cross-signature similarity is measured as the mean cosine similarity between all pairs of predicted signatures. Background contamina-

tion is measured as the mean cosine similarity between the background signature and all non-background predicted signatures. Median per-patient correlation is mea-

sured as the median Pearson’s correlation coefficient between the observed mutation spectrum and the predicted mutation spectrum for each patient, indicating how well

each method fits the observed mutations in individual patients.

Source Number of

signatures

MSE Sparsity

(signatures)

Cross-signature

similarity

Background

contamination

Median per-patient

correlation

Pancreatic cancer (147 whole genomes)

SparseSignatures 9 1189.521 0.317 0.193 0.373 0.9916

SigProfiler 8 52564.38 0.0762 0.384 0.514 0.9910

SignatureAnalyzer 8 52606.28 0.245 0.240 0.447 0.9911

signeR 8 52733.45 0.003 0.320 0.502 0.9908

Breast cancer (560 whole genomes)

SparseSignatures 8 1515.373 0.154 0.254 0.387 0.9762

SigProfiler 12 1034.204 0.060 0.275 0.452 0.9360

SignatureAnalyzer 12 72191.45 0.449 0.158 0.300 0.9805

signeR 7 72390.55 0.115 0.317 0.458 0.9735

https://doi.org/10.1371/journal.pcbi.1009119.t002
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support by repeated cross-validation on unseen data points and are not likely due to

overfitting.

Complementing its methodological innovations, SparseSignatures offers users the option to

model a constant background signature. While users can supply a signature of their choice, we

offer a background based on the COSMIC SBS5 signature, which, owing to its ubiquity in can-

cer and non-cancer tissues and cell lines, its correlation with age of diagnosis in cancers from

multiple tissues [10], and its correlation with donor age in adult stem cells [22], has been

hypothesized to represent clock-like mutational processes. Studies of human germline de novo
mutations [23,24] and 1000 Genomes Project SNPs in different populations [23] show that the

human germline mutational spectrum can be largely explained by SBS5 along with SBS1. We

calculated a cosine similarity of 0.98 between SBS5 and the human germline mutational spec-

trum from trio studies [24], reinforcing the hypothesis that this signature represents a com-

mon spectrum of replication errors occuring in the normal course of cell division. Although

the exact molecular causes of this signature are unknown, it may be a combination of several

processes including proofreading errors by DNA polymerases and transcription-coupled

repair [35].

While the use of the fixed background signature contributes to the strong performance of

SparseSignatures in simulations (Fig 2), it must be treated with caution when applied to real

data. Since the studies supporting this signature do not capture the full diversity of the human

Fig 4. A) The 8 mutational signatures obtained by applying SparseSignatures to a dataset of 560 breast tumors. We

report the number and correlation of the most similar (correlation higher than 0.70) corresponding signature from

COSMIC (https://cancer.sanger.ac.uk/cosmic/signatures). Source data are provided in S23 Table. B) Boxplots showing

fitted values for exposure to each of the 8 signatures obtained by SparseSignatures for BRCA1/2-mutated and non-

mutated tumors. Boxplots represent the fraction of mutations per tumor (on the y-axis) contributed by the given

signature (on the x-axis). Source data are provided in S24 Table.

https://doi.org/10.1371/journal.pcbi.1009119.g004
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population, it may not represent understudied populations with equal accuracy. We anticipate

that additional data from diverse human populations will help improve our model. There may

also exist some patients where this signature is altered, due to variation in its underlying pro-

cesses, e.g., proofreading enzymes. Along with manual examination of discovered signatures,

careful examination of residual error and per-sample correlation metrics can diagnose whether

some samples in a dataset are not fitted well due to the assumptions of the model. In our analy-

ses on pancreatic and breast tumors, the background signature was consistently abundant (S14

and S24 Tables and Figs 3B and 4B), and SparseSignatures presented extremely accurate

reconstruction of all individual samples (Tables S18 and S26 and 2), as well as low mean

squared error across the entire datasets (Table 2).

The density and complexity of the SBS5/background signature renders it particularly diffi-

cult to distinguish de novo from the low number of samples typically available in cancer stud-

ies. If not distinguished accurately, components of this signature can be mixed with other

signatures, leading to inaccurate results. An example can be observed in our analysis of breast

cancer, where signeR was unable to distinguish the background signature, instead combining

it with the well-known SBS1 (S19 Fig). Although caution is necessary, we believe that fixing

the background signature is a useful option that can benefit many studies.

Further, our method supports the discovery of sparse signatures by applying a LASSO pen-

alty to the signatures matrix. We also offer the option to apply a similar penalty to regularize the

exposure matrix, since it is also reasonable to believe that only a limited number of mutational

processes will be active in each patient. However, this option presents a high computational

cost, and our experiments thus far show that it produces a relatively minor improvement in

results. We are currently incorporating an option to allow multiple fixed signatures in addition

to the background, such as the signature of cytosine deamination or other signatures that are

known to exist in the cancer type being studied, as suggested by previous literature [26]. Future

work could also be directed at incorporating indels and doublet base substitutions [11], espe-

cially when larger datasets become available to support analyses of these rarer events.

Multiple experiments on simulated data show that SparseSignatures outperforms current

state-of-the-art methods. It provides the most accurate and least ambiguous estimation of the

number of signatures, and reconstructs the original signatures and exposures most accurately.

In comparison, other methods tend to discover too many signatures or retain noise in the dis-

covered signatures. Further, we have applied SparseSignatures to whole genome sequences

from 147 pancreatic tumors and 560 breast tumors. Compared to other methods, we success-

fully obtain a good fit to the observed data, while at the same time obtaining signatures that are

sparse, differentiated, have reduced noise, and are attributable to known biological processes

while at the same time preventing overfitting. The signatures discovered by SparseSignatures

are predictive of patient survival in pancreatic cancer (Fig 3C), and associated with known bio-

logical subtypes in breast cancer (Fig 4B). We anticipate that the availability of larger datasets

comprising curated, uniformly processed whole genome sequences may allow us to validate

those signatures and discover new ones.

In conclusion, we suggest that future work be directed at greater numbers of patients for

whole genome sequencing and the simultaneous collection of other omic data to connect

mutagenesis with molecular phenotype and eventually mechanistic cause.

Methods

Mathematical framework for mutational signature discovery

The mathematical framework developed for signature extraction [4] is as follows. First, all

point mutations are classified into 6 groups (C>A, C>G, C>T, T>A, T>C, T>G; the original
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pyrimidine base is listed first). Then, these are subdivided into 16 x 6 = 96 categories based on

the 16 possible combinations of 5’ and 3’ flanking bases. Each tumor sample is described by

the count of mutations in each of the 96 categories. This forms a count matrix M, where the

rows are the tumor samples and the columns are the 96 categories.

Signature extraction aims to decompose M into the multiplication of two low-rank matri-

ces: the exposure matrix α and the signature matrix β.

M � ab ð1Þ

Here, α is the exposure matrix with one row per tumor and K columns, and β is the signa-

ture matrix with K rows and 96 columns. K is the number of signatures. Each row of β repre-

sents a signature, and each row of α represents the exposure of a single tumor to all K

signatures, i.e., the number of mutations contributed by each signature to that tumor. In NMF,

this equation is solved for α and β by minimizing the squared residual error (some methods

use Kullback–Leibler divergence instead) while constraining all elements of α and β to be non-

negative.

min jjM � abjj2F subject to a � 0; b � 0

Improvements to the NMF framework in SparseSignatures

In SparseSignatures, we incorporate a background signature by modifying Eq (1) as follows:

M � a0b0 þ ab ð2Þ

Here, β0 is the known ‘background’ signature of point mutations caused by replication

errors during cell division, and α0 is the vector of exposures of all tumors to that signature.

The dimensions of α0 are (number of tumors x 1) and the dimensions of β0 are 1 x 96.

To enforce sparsity in the discovered signatures, we use the LASSO [14]. This is done by

adding an additional regularization term to the cost function to be minimized:

min jjM � ða0b0 þ abÞjjF
2
þ ljjbjj1 subject to a � 0; b � 0; a0 � 0

The parameter λ controls the extent to which sparsity is encouraged in the signature matrix

β. If the value of λ is set too low, it is ineffective, whereas if it is set too high, the signatures are

forced to be too sparse and no longer accurately fit the data.

It should be noted that unlike the standard LASSO, the objective function we minimize

here is non-convex. But it is bi-convex (convex in α with β fixed and vice-versa). Hence the

alternating algorithm described below is natural and yields good solutions. A standard issue

with all NMF algorithms is non-identifiability: if we scale β by c and α by 1/c, the product αβ
remains unchanged. One can change the relative magnitudes of α and β at convergence by

changing their relative magnitudes at initialization. To remove this ambiguity, we initialize β
so that each row (signature) sums to 1. The choice of 1 is not important: if we had instead ini-

tialized β so that each row sums to c, the signatures we obtain at algorithm convergence would

be equivalent (up to proportionality) to those obtained by initializing β with all rows summing

to 1 and λ set to λ/c.

Implementation of SparseSignatures

SparseSignatures discovers mutational signatures by following the steps below.

Step 1: Build the Count Matrix M by counting the number of mutations of each of the 96 cate-

gories in each sample.
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Step 2: Remove samples with less than a minimum number of mutations. In the analysis described

in this paper, we have used a minimum number of 1000 mutations per tumor genome.

Step 3: Choose a range of values to test for K (number of signatures) and λ (level of sparsity).

Step 4: For each value of K in the chosen range, obtain a set of K initial signatures using repeated

NMF [36] to obtain a more robust estimation. This is an initial value for the matrix β. We use

these NMF results as a starting point (although other starting points such as randomly gener-

ated signatures may also be chosen) and further refine the signatures. In practice, the final dis-

covered signatures are often very different from those produced by the initial NMF.

Step 5: For each pair of parameter values (K and λ), perform cross-validation as follows [27]:

5a. Randomly select a given percentage of cells from M. Based on simulations (S1 Text and

S29 Table), we currently use 1% of the points in the dataset for cross-validation; however,

the method appears robust to large variations in this value.

5b. Replace the values in those cells with 0.

5c. Consider the NMF results for the chosen value of K as an initial value of β. Add the back-

ground signature (β0). Then use an iterative approach to discover signatures with sparsity.

Each iteration involves two steps:

5c(i). While keeping fixed the values of β0 and β, fit α0 and α by minimizing:

min jjM � ða0b0 þ abÞjjF
2 subject to a � 0; a0 � 0

5c(ii). While keeping fixed the values of β0, α0 and α, fit β by minimizing:

min jjM � ða0b0 þ abÞjjF
2
þ ljjbjj

1
subject to b � 0

These steps are repeated for a number of iterations (set to 20 by default; in all our experiments

we found that this was sufficient to reach convergence).

5d. Use the obtained signatures to predict the values for the cells that were set to 0 (we do this

by calculating the matrix α0β0+αβ and taking the entries corresponding to the cross-valida-

tion cells). Then replace the values in these cells with the predicted values and repeat step

5c. We repeat step 5c a number of times (set to 5 by default), each time discovering signa-

tures and then replacing the values of the cross-validation cells by the predicted values.

After each iteration, the predictions improve, as the algorithm converges, making the mean

squared errors used in the next step more stable.

5e. At the last iteration of step 5d, measure the mean squared error (MSE) of the prediction.

5f. Repeat the entire cross-validation procedure (steps 5a-5d) a number of times (set to 10 by

default) and calculate the MSE for all cross-validations. Since we randomly select a different

set of cells for cross-validation each time, this allows us to obtain a robust measure of MSE.

Step 6: Choose the values of K and λ that correspond to the lowest MSE in most of the cross-

validations.

Step 7: Using the selected values for K and λ, repeat sparse signature discovery (step 5c) on the

complete matrix M (without replacing any cells with 0). This generates the final values of

α0, α and β.
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Background signature

SparseSignatures offers two preset options for the background signature. The first is derived

from the germline mutation spectrum calculated by [24]. To validate this, we independently

calculated the germline mutational spectrum using whole-genome sequencing data from nor-

mal tissue samples (see S1 Text for details), and the spectrum thus obtained had a high cosine

similarity of 0.98 with that calculated by [24]. We then adjusted the rates of ACG>ATG,

CCG>CTG, GCG>GTG and TCG>TTG mutations to be equal to the rates of ACA>ATA,

CCA>CTA, GCA>GTA and TCA>TTA mutations respectively, in order to separate the

effects of DNA methylation from the background signature. The second is derived from the

SBS5 signature in COSMIC v3, which has been found across diverse human tumor types and

has been associated with cellular turnover and aging. Here, we once again empirically adjusted

the rates of ACG>ATG, CCG>CTG, GCG>GTG and TCG>TTG mutations. For the experi-

ments described here, we used the germline-derived signature.

Definition of the λ parameter

This parameter tunes the desired level of regularization to be obtained by LASSO. For any

analysis by LASSO, one can compute a maximal value of the LASSO penalty after which all the

coefficients of the regression get shrunk to zero [37]. As this maximal value can vary depend-

ing on the problem, our λ parameter represents the fraction of the actual maximal value to be

used. Values closer to 1 result in higher regularization.

Simulations

We performed 6 simulated experiments all including 50 simulated datasets. The first five simu-

lations included 4 signatures and simulation 6 included 8 signatures. In Simulation 1, we used

real data to perform simulations and specifically we considered 116 curated WGS data of pros-

tate cancer samples obtained from PCAWG (https://dcc.icgc.org/pcawg) with at least 1000

mutations, and selected a set of 4 signatures from COSMIC known to be active in prostate

[11]; we then used deconstructSigs [38] to fit such signatures on the data and generate their

assignments to samples. Furthermore, we performed three additional experiments (Simula-

tions 2–4) where we randomly selected signatures from COSMIC, considering all of them

(Simulation 2) as well as the subset of dense (Simulation 3) or sparse (Simulation 4) signatures;

we then generated random assignments of such signatures to samples, for a total of 100 sam-

ples per experiment. In Simulation 5, we used the same settings of Simulation 1, but including

both additive and subtractive noise; finally in Simulation 6, we used a similar configuration to

the one of Simulation 2, this time including a total of 8 signatures chosen randomly from COS-

MIC database.

We ran four methods for de novo signature discovery (SparseSignatures, SigProfiler, Signa-

tureAnalyzer, and signeR) on each of the 50 datasets and evaluated their performance. These

methods were executed with the configurations suggested by the authors in the respective

manuscripts. Specifically, SignatureAnalyzer was performed 10 times and the solution with

best posterior was chosen; SigProfiler pipeline was performed 10 times with 100 iterations

each. Details are provided in the S1 Text. To evaluate the accuracy with which discovered sig-

natures reconstructed the original signatures, we matched each input signature to its closest

discovered signature and evaluated the match by mean squared error. We then also measured

the mean squared error between the exposure values of the input signature and the discovered

exposure values for its most similar discovered signature. Further details are given in the

S1 Text.
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Real data

We obtained a dataset of point mutations in pancreatic tumors from ICGC (see S11 Table for

the full list of samples). We selected only whole-genome sequencing data and removed samples

with less than 1000 point mutations. After this preprocessing, a total of 147 samples remained.

Further, we obtained a dataset of point mutations from ICGC (see S21 Table for the full list of

samples) comprising whole-genome sequencing for a total of 560 samples.

Software

The experiments carried out in this paper were performed using the SparseSignatures v2.0.0 R

package and R version 4.0.3. The software is available for download on Bioconductor at

https://bioconductor.org/packages/release/bioc/html/SparseSignatures.html. This package in

its current version makes use of external R packages NMF v0.21.0 [39], nnls v1.4 and nnlasso

v0.3.

Supporting information

S1 Text. Supplementary information of the experiments presented in the manuscript.

(DOCX)

S1 Fig. A) Average mutational counts for 116 simulated patients in each of 96 mutational cate-

gories. This dataset is one of 50 datasets simulated as part of Simulation 1. Error bars represent

standard deviation. B) 4 original signatures in the simulated dataset. C) 4 signatures deci-

phered by SparseSignatures from the simulated dataset. D) 4 signatures deciphered by Sparse-

Signatures from the simulated dataset, without the fixed background. Source data are provided

in S3 Table.

(PDF)

S2 Fig. A) 4 signatures deciphered by SigProfiler from the simulated dataset shown in S1A

Fig. B) 4 signatures deciphered by SignatureAnalyzer from the simulated dataset. C) 4 signa-

tures deciphered by signeR from the simulated dataset. Source data are provided in S3 Table.

(PDF)

S3 Fig. Comparison between SparseSignatures and other methods on simulated data when

the correct number of signatures is known. A) Box plots showing the residual error for the

solutions produced by each method, over 50 simulations. Residual error was measured as the

mean squared error (MSE) in reconstructing the original count matrix. B) Box plots showing

the fraction of variance in the count matrix explained by the solutions produced by each

method, over 50 simulations. (C) Box plots showing the cosine similarity of reconstructing the

3 non-background input signatures, over 50 simulations. D) Box plots showing the mean

squared error in reconstructing the exposure values for the 3 non-background input signa-

tures, over 50 simulations. E) Box plots showing the sparsity of the signatures produced by

each method, over 50 simulations. Sparsity was measured as the fraction of cells in the signa-

ture matrix whose value is<10−3. SS: SparseSignatures. SP: SigProfiler. SA: SignatureAnalyzer.

SR: signeR. Source data are provided in S4 Table.

(PDF)

S4 Fig. Comparison between SparseSignatures and other methods on simulated data with

both additive and subtractive noise (see S1 Text for details). A) Bar and line plot showing,

for each method, the number of simulation runs in which it selected each value of K (number

of signatures). The x-axis shows values of K and the y-axis shows the number of times each

value was selected. Each method was run on 50 simulated datasets. In all cases, the correct
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value of K was 4. B) Box plots showing the residual error for the solutions produced by each

method, over 50 simulations. Residual error was measured as the mean squared error (MSE)

in reconstructing the original count matrix. C) Box plots showing the fraction of variance in

the count matrix explained by the solutions produced by each method, over 50 simulations. D)

Box plots showing the cosine similarity of reconstructing the 3 non-background input signa-

tures, over 50 simulations. E) Box plots showing the mean squared error in reconstructing the

exposure values for the 3 non-background input signatures, over 50 simulations. F) Box plots

showing the sparsity of the signatures produced by each method, over 50 simulations. Sparsity

was measured as the fraction of cells in the signature matrix whose value is<10−3. SS: Sparse-

Signatures. SP: SigProfiler. SA: SignatureAnalyzer. SR: signeR. Source data are provided in S5

Table.

(PDF)

S5 Fig. Comparison between SparseSignatures and other methods on simulated data gen-

erated from 4 randomly selected COSMIC signatures. A) Bar and line plot showing, for each

method, the number of simulation runs in which it selected each value of K (number of signa-

tures). The x-axis shows values of K and the y-axis shows the number of times each value was

selected. Each method was run on 50 simulated datasets. In all cases, the correct value of K was

4. B) Box plots showing the residual error for the solutions produced by each method, over 50

simulations. Residual error was measured as the mean squared error (MSE) in reconstructing

the original count matrix. C) Box plots showing the fraction of variance in the count matrix

explained by the solutions produced by each method, over 50 simulations. D) Box plots show-

ing the cosine similarity of reconstructing the 3 non-background input signatures, over 50

simulations. E) Box plots showing the mean squared error in reconstructing the exposure val-

ues for the 3 non-background input signatures, over 50 simulations. F) Box plots showing the

sparsity of the signatures produced by each method, over 50 simulations. Sparsity was mea-

sured as the fraction of cells in the signature matrix whose value is<10−3. SS: SparseSignatures.

SP: SigProfiler. SA: SignatureAnalyzer. SR: signeR. Source data are provided in S6 Table.

(PDF)

S6 Fig. Comparison between SparseSignatures and other methods on simulated data gen-

erated from 4 randomly selected dense COSMIC signatures. A) Bar and line plot showing,

for each method, the number of simulations in which it selected each value of K (number of

signatures). The x-axis shows values of K and the y-axis shows the number of times each value

was selected. Each method was run on 50 simulated datasets. In all cases, the correct value of K

was 4. B) Box plots showing the residual error for the solutions produced by each method,

over 50 simulations. Residual error was measured as the mean squared error (MSE) in recon-

structing the original count matrix. C) Box plots showing the fraction of variance in the count

matrix explained by the solutions produced by each method, over 50 simulations. D) Box plots

showing the mean squared error in reconstructing the 3 non-background input signatures,

over 50 simulations. E) Box plots showing the mean squared error in reconstructing the expo-

sure values for the 3 non-background input signatures, over 50 simulations. F) Box plots show-

ing the sparsity of the signatures produced by each method, over 50 simulations. Sparsity was

measured as the fraction of cells in the signature matrix whose value is<10−3. SS: SparseSigna-

tures. SP: SigProfiler. SA: SignatureAnalyzer. SR: signeR. Source data are provided in S7 Table.

(PDF)

S7 Fig. Comparison between SparseSignatures and other methods on simulated data gen-

erated from 4 randomly selected sparse COSMIC signatures. A) Bar and line plot showing,

for each method, the number of simulations in which it selected each value of K (number of
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signatures). The x-axis shows values of K and the y-axis shows the number of times each value

was selected. Each method was run on 50 simulated datasets. In all cases, the correct value of K

was 4. B) Box plots showing the residual error for the solutions produced by each method,

over 50 simulations. Residual error was measured as the mean squared error (MSE) in recon-

structing the original count matrix. C) Box plots showing the fraction of variance in the count

matrix explained by the solutions produced by each method, over 50 simulations. D) Box plots

showing the cosine similarity of reconstructing the 3 non-background input signatures, over

50 simulations. E) Box plots showing the mean squared error in reconstructing the exposure

values for the 3 non-background input signatures, over 50 simulations. F) Box plots showing

the sparsity of the signatures produced by each method, over 50 simulations. Sparsity was mea-

sured as the fraction of cells in the signature matrix whose value is<10−3. SS: SparseSignatures.

SP: SigProfiler. SA: SignatureAnalyzer. SR: signeR. Source data are provided in S8 Table.

(PDF)

S8 Fig. Comparison between SparseSignatures and other methods on simulated data gen-

erated from 8 randomly selected COSMIC signatures. A) Bar and line plot showing, for each

method, the number of simulations in which it selected each value of K (number of signa-

tures). The x-axis shows values of K and the y-axis shows the number of times each value was

selected. Each method was run on 50 simulated datasets. In all cases, the correct value of K was

8. B) Box plots showing the residual error for the solutions produced by each method, over 50

simulations. Residual error was measured as the mean squared error (MSE) in reconstructing

the original count matrix. C) Box plots showing the fraction of variance in the count matrix

explained by the solutions produced by each method, over 50 simulations. D) Box plots show-

ing the cosine similarity of reconstructing the 7 non-background input signatures, over 50

simulations. E) Box plots showing the mean squared error in reconstructing the exposure val-

ues for the 7 non-background input signatures, over 50 simulations. F) Box plots showing the

sparsity of the signatures produced by each method, over 50 simulations. Sparsity was mea-

sured as the fraction of cells in the signature matrix whose value is<10−3. SS: SparseSignatures.

SP: SigProfiler. SA: SignatureAnalyzer. SR: signeR. Source data are provided in S9 Table.

(PDF)

S9 Fig. Performance of SparseSignatures and other methods at reconstructing rare signa-

tures, using the same data as S5 Fig. A) Boxplots showing the cosine similarity of signature

reconstruction for signatures, separated by the fraction of patients in the population in which

the signature is present. B) Boxplots showing the cosine similarity of signature reconstruction

for signatures, separated by the number of mutations contributed by the signature in the over-

all dataset. Source data are provided in S10 Table.

(PDF)

S10 Fig. 8 signatures predicted by SigProfiler on 147 pancreatic tumors. Source data are

provided in S15 Table.

(PDF)

S11 Fig. 8 signatures predicted by SignatureAnalyzer on 147 pancreatic tumors. Source

data are provided in S16 Table.

(PDF)

S12 Fig. 8 signatures predicted by signeR on 147 pancreatic tumors. Source data are pro-

vided in S17 Table.

(PDF)
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S13 Fig. Boxplots representing the Pearson Correlation between observed and predicted

mutation counts in 96 categories, for individual patients in the dataset of 147 pancreatic

tumors. The x-axis shows the total number of mutations in the tumor. SS: SparseSignatures.

SP: SigProfiler. SA: SignatureAnalyzer. SR: signeR. Source data are provided in S18 Table.

(PDF)

S14 Fig. A) CIMLR was first run on the original dataset; then clustering was repeated 100

times on datasets generated by bootstrap resampling. The figure reports mean normalized

mutual information (NMI) between cluster assignments across the bootstraps; higher values

indicate stable results. B) CIMLR number of clusters for SparseSignatures.

(PDF)

S15 Fig. A) Survival curves for pancreatic cancer patients, divided into CIMLR clusters based

on SigProfiler results. B) Survival curves for pancreatic cancer patients, divided into CIMLR

clusters based on SignatureAnalyzer results. C) Survival curves for pancreatic cancer patients,

divided into CIMLR clusters based on signeR results. Source data are provided in S20 Table.

(PDF)

S16 Fig. 12 signatures predicted by SigProfiler on 560 breast tumors. Source data are pro-

vided in S25 Table.

(PDF)

S17 Fig. Boxplots representing the Pearson Correlation between observed and predicted

mutation counts in 96 categories, for individual patients in the dataset of 560 breast

tumors. The x-axis shows the total number of mutations in the tumor. SS: SparseSignatures.

SP: SigProfiler. SA: SignatureAnalyzer. SR: signeR. Source data are provided in S26 Table.

(PDF)

S18 Fig. 12 signatures predicted by SignatureAnalyzer on 560 breast tumors. Source data

are provided in S27 Table.

(PDF)

S19 Fig. 7 signatures predicted by signeR on 560 breast tumors. Source data are provided in

S28 Table.

(PDF)

S1 Table. Preset background signatures offered with SparseSignatures.

(XLSX)

S2 Table. Performance metrics for signature discovery methods applied to simulated data

(Simulation 1).

(XLSX)

S3 Table. Average mutational counts, true signatures, and discovered signatures for one

simulated dataset in Simulation 1.

(XLSX)

S4 Table. Performance metrics for signature discovery methods applied to simulated data

(Simulation 1) given the correct number of signatures.

(XLSX)

S5 Table. Performance metrics for signature discovery methods applied to simulated data

(Simulation 2).

(XLSX)
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S6 Table. Performance metrics for signature discovery methods applied to simulated data

(Simulation 3).

(XLSX)

S7 Table. Performance metrics for signature discovery methods applied to simulated data

(Simulation 4).

(XLSX)

S8 Table. Performance metrics for signature discovery methods applied to simulated data

(Simulation 5).

(XLSX)

S9 Table. Performance metrics for signature discovery methods applied to simulated data

(Simulation 6).
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S10 Table. Cosine similarity between non-background reconstructed signatures and origi-

nal signatures in Simulation 3.

(XLSX)

S11 Table. List of 147 Pancreatic cancer samples used for signature discovery.

(XLSX)

S12 Table. Results of cross-validation to choose the best values of K and λ on pancreatic

cancer data, using 1% of the cells in the matrix for cross-validation. We tested values of K

ranging from 2 to 18 and values of lambda of 0.01, 0.025, 0.05, 0.075 and 0.1. Cross-validation

was repeated 500 times with 5 restarts each. The entries in the table represent the median

mean square error (MSE) in fitting the unseen data points across the 500 repetitions.

(XLSX)

S13 Table. 9 signatures (including the background signature) discovered by applying Spar-

seSignatures to pancreatic cancer data.

(XLSX)

S14 Table. Fitted values for exposure to each of the 9 signatures (including the background
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(XLSX)

S15 Table. 8 signatures discovered by applying SigProfiler to pancreatic cancer data.

(XLSX)

S16 Table. 8 signatures discovered by applying SignatureAnalyzer to pancreatic cancer

data.

(XLSX)

S17 Table. 8 signatures discovered by applying signeR to pancreatic cancer data.

(XLSX)

S18 Table. Mean correlation of observed and predicted counts for each of the 147 pancre-

atic cancer tumors.

(XLSX)

S19 Table. Cluster assignments generated by CIMLR for each pancreatic tumor sample.
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S20 Table. Number of patients at risk at each time point, according to various clusters

defined by predicted exposures, in survival curves of 147 pancreatic cancer patients.

(XLSX)
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S22 Table. Results of cross-validation to choose the best values of K and λ on breast cancer

data, using 1% of the cells in the matrix for cross-validation. We tested values of K ranging

from 2 to 18 and values of lambda of 0.01, 0.025, 0.05, 0.075 and 0.1. Cross-validation was

repeated 500 times with 5 restarts each. The entries in the table represent the median mean

square error (MSE) in fitting the unseen data points across the 500 repetitions.
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