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Abstract: A continuous-time white Gaussian channel can be formulated using a white Gaussian
noise, and a conventional way for examining such a channel is the sampling approach based on the
Shannon–Nyquist sampling theorem, where the original continuous-time channel is converted to
an equivalent discrete-time channel, to which a great variety of established tools and methodology
can be applied. However, one of the key issues of this scheme is that continuous-time feedback
and memory cannot be incorporated into the channel model. It turns out that this issue can
be circumvented by considering the Brownian motion formulation of a continuous-time white
Gaussian channel. Nevertheless, as opposed to the white Gaussian noise formulation, a link that
establishes the information-theoretic connection between a continuous-time channel under the
Brownian motion formulation and its discrete-time counterparts has long been missing. This paper is
to fill this gap by establishing causality-preserving connections between continuous-time Gaussian
feedback/memory channels and their associated discrete-time versions in the forms of sampling
and approximation theorems, which we believe will play important roles in the long run for further
developing continuous-time information theory. As an immediate application of the approximation
theorem, we propose the so-called approximation approach to examine continuous-time white
Gaussian channels in the point-to-point or multi-user setting. It turns out that the approximation
approach, complemented by relevant tools from stochastic calculus, can enhance our understanding
of continuous-time Gaussian channels in terms of giving alternative and strengthened interpretation
to some long-held folklore, recovering “long-known” results from new perspectives, and rigorously
establishing new results predicted by the intuition that the approximation approach carries.
More specifically, using the approximation approach complemented by relevant tools from stochastic
calculus, we first derive the capacity regions of continuous-time white Gaussian multiple access
channels and broadcast channels, and we then analyze how feedback affects their capacity regions:
feedback will increase the capacity regions of some continuous-time white Gaussian broadcast
channels and interference channels, while it will not increase capacity regions of continuous-time
white Gaussian multiple access channels.

Keywords: continuous-time channel; Gaussian channel; feedback; memory; sampling theorem;
network information theory; capacity; capacity region; mutual information

1. Introduction

Continuous-time Gaussian channels were considered at the very inception of information theory.
In his celebrated paper [1] birthing information theory, Shannon studied the following point-to-point
continuous-time white Gaussian channels:
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Y(t) = X(t) + Z(t), t ∈ R, (1)

where X(t) is the channel input with average power limit P, Z(t) is the white Gaussian noise with
flat power spectral density 1 and Y(t) are the channel output. Shannon actually only considered
the case that the channel has bandwidth limit ω, namely, the channel input X and the noise Z,
and therefore the output Y all have bandwidth limit ω (alternatively, as in (9.54) of [2], this can be
interpreted as the original channel (1) concatenated with an ideal bandpass filter with bandwidth limit
ω). Using the celebrated Shannon–Nyquist sampling theorem [3,4], the continuous-time channel (1)
can be equivalently represented by a parallel Gaussian channel:

Y(ω)
n = X(ω)

n + Z(ω)
n , n ∈ Z, (2)

where the noise process {Z(ω)
n } is i.i.d. with variance 1 [2]. Regarding the “space” index n as time,

the above parallel channel can be interpreted as a discrete-time Gaussian channel associated with the
continuous-time channel (1). It is well known from the theory of discrete-time Gaussian channels that
the capacity of the channel (2) can be computed as

C(ω) = ω log
(

1 +
P

2ω

)
. (3)

Then, the capacity C of the channel (1) can be computed by taking the limit of the above expression as
ω tends to infinity:

C = lim
ω→∞

C(ω) = P/2. (4)

The sampling approach consisting of (1)–(4) as above, which serves as a link between the
continuous-time channel (1) and the discrete-time channel (2), typifies a conventional way to examine
continuous-time Gaussian channels: convert them into associated discrete-time Gaussian channels,
for which we have ample ammunition at hands. Note that when P tends to 0, using the fact that when
P is “close” to 0,

ω log
(

1 +
P

2ω

)
is “close” to

P
2

,

one also reaches (4), which roughly explains the following long-held folklore within the information
theory community:

a continuous-time infinite-bandwidth Gaussian channel without feedback or memory is
“equivalent” to a discrete-time Gaussian channel without feedback or memory at low signal-to-noise
ratio (SNR). (A)

Moments of reflection, however, reveals that the sampling approach for the channel capacity (with
bandwidth limit or not) is heuristic in nature: For one thing, a bandwidth-limited signal cannot be
time-limited, which renders it infeasible to define the data transmission rate if assuming a channel has
bandwidth limit. In this regard, rigorous treatments coping with this issue and other technicalities can
be found in [5,6]; see also [7] for a relevant in-depth discussion. Another issue is that, even disregarding
the above technical nuisance arising from the bandwidth limit assumption, the sampling approach
only gives a lower bound for the capacity of (1): it shows that P/2 is achievable via a class of special
coding schemes, but it is not clear that why transmission rate higher than P/2 cannot be achieved
by other coding schemes. The capacity of (1) was rigorously studied in [8,9], and a complete proof
establishing P/2 as its de facto capacity can be found in [10,11].

Alternatively, the continuous-time white Gaussian channel (1) can be examined [12] under the
Brownian motion formulation:

Y(t) =
∫ t

0
X(s)ds + B(t), (5)
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where, slightly abusing the notation, we still use Y(t) to denote the output corresponding to the
input X(s), and B(t) denotes the standard Brownian motion (Z(t) can be viewed as a generalized
derivative of B(t)); equivalently, the channel (5) can be seen as the original channel (1) concatenated
with an integrator circuit. As opposed to white Gaussian noises, which only exist as generalized
functions [13], Brownian motions are well-defined stochastic processes and have been extensively
studied in probability theory. Here we remark that, via a routine orthonormal decomposition
argument, both channels are equivalent to a parallel channel consisting of infinitely many Gaussian
sub-channels [14].

An immediate and convenient consequence of such a formulation is that many notions in discrete
time, including mutual information and typical sets, carry over to the continuous-time setting,
which will rid us of the nuisances arising from the bandwidth limit assumption. Indeed, such a
framework yields a fundamental formula for the mutual information of the channel (5) [15,16] and
a clean and direct proof [16] that the capacity of (5) is P/2; moreover, as evidenced by numerous
results collected in [12] and some recent representative work [17,18] on point-to-point Gaussian
channels, the use of Brownian motions elevates the level of rigor of our treatment, and equip us
with a wide range of established techniques and tools from stochastic calculus. Here we remark that
Girsanov’s theorem, one of the most important theorems in stochastic calculus, lays the foundation of
our rigourous treatment; for those who are interested in the technical details in our proofs, we refer
to [12,19], where Girsanov’s theorem (and its numerous variants) and its wide range of applications in
information theory is discussed in great details.

Furthermore, as elaborated in Remark 4, the Brownian motion formulation is also versatile enough
to accommodate feedback and memory; in particular, the point-to-point continuous-time white Gaussian
memory/feedback channel can be characterized by the following stochastic differential equation:

Y(t) =
∫ t

0
g(s, Ws

0 , Ys
0)ds + B(t), t ∈ [0, T], (6)

where g is a function from [0, T]× C[0, T]× C[0, T] to R. Note that (6) can be interpreted

(1) either as a feedback channel, where Ws
0 , {W(r) : 0 ≤ r ≤ s} can be rewritten as M, interpreted as

the message to be transmitted through the channel, and g(s) can be rewritten as X(s), interpreted
as the channel input, which depends on M and Ys

0 , the channel output up to time s that is fed
back to the sender,

(2) or as a memory channel, where Ws
0 can rewritten as Xs

0, interpreted as the channel input, g is
“part” of the channel, and Y(t), the channel output at time t, depends on Xt

0 and Yt
0, the channel

input and output up to time t that are present in the channel as memory, respectively.

Note that, strictly speaking, the third parameter of g in (6) should be Ys−
0 , which, however, can be

equivalently replaced by Ys
0 due to the continuity of sample paths of {Y(t)}. Note that, with the presence

of feedback/memory, the existence and uniqueness of Y is in fact a tricky mathematical problem;
however, we will in this paper simply assume that the input X is appropriately chosen such that Y
uniquely exists. For more detailed discussion about the Brownian motion formulation of continuous-time
Gaussian channels and preliminaries and known results thereof, we refer the reader to [12].

As opposed to the white Gaussian noise formulation, under the Brownian motion formulation,
memory and feedback can be naturally translated to the discrete-time setting: the pathwise continuity
of a Brownian motion allows the inheritance of temporal causality when the channel is sampled (see
Section 2) or approximated (see Section 3). On the other hand, the white Gaussian noise formulation is
facing inherent difficulty as far as inheriting temporal causality is concerned: in converting (1) to (2),
while X(w)

n are obtained as “time” samples of X(t), Z(w)
n are in fact “space” samples of Z(t), as they are

merely the coefficients of the (extended) Karhunen–Loeve decomposition of Z(t) [20–22]; see also [23]
for an in-depth discussion on this.
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On the other hand, though, as opposed to the white Gaussian noise formulation, a link
that establishes the information-theoretic connection between the continuous-time channel (6) and
its discrete-time counterparts has long been missing, which may explain why discrete-time and
continuous-time information theory (under the Brownian motion formulation) have largely gone
separate ways with little interaction for the past several decades. In this paper, we will fill this
gap by establishing causality-preserving connections between the channel (5) and its associated
discrete-time versions in the forms of sampling and approximation theorems, which we believe will
serve as the above-mentioned missing links and play important roles in the long run for further
developing continuous-time information theory, particularly for the communication scenarios when
feedback/memory is present.

As an immediate application of the approximation theorem, we propose the approximation
approach to examine continuous-time Gaussian feedback channels with the average power constraint
and infinite bandwidth (again, by comparison, the conventional sampling approach cannot handle
feedback). It turns out that this approach, when complemented by relevant tools from stochastic
calculus, can greatly enhance our understanding of continuous-time Gaussian channels in terms of
giving alternative and strengthened interpretations to the low SNR equivalence in (A), recovering
“long known” results (Theorems 7 (for the non-feedback case), 8 and 10) from new and rigorous
perspectives, and deriving new results (Theorems 7 (for the feedback case), 9, 11 and 12) inspired by
the intuition that the approximation approach carries.

Below, we summarize the contributions of this paper in greater details.
In Section 2, we prove Theorems 1 and 2, sampling theorems for a continuous-time Gaussian

feedback/memory channel, which naturally connect such a channel with their sampled discrete-time
versions. In addition, in Section 3, we prove Theorems 3 and 4, the so-called approximation theorems,
which connect a continuous-time Gaussian feedback/memory channel with its approximated
discrete-time versions (in the sense of the Euler-Maruyama approximation [24]). Roughly speaking, a
sampling theorem says that a time-sampled channel is “close” to the original channel if the sampling
is fine enough, and an approximation theorem says that an approximated channel is “close” to the
original channel if the approximation is fine enough, both in an information-theoretic sense. Note that,
as elaborated in Remark 3, certain version of the approximation theorem boils down to the sampling
theorem when there is no memory and feedback in the channel.

Apparently a sampling theorem, whose spirit is in line with the Shannon–Nyquist sampling
theorem, is of practical and theoretical value due to the fact it deals with the “real” values of the
channel output; and, as will be elaborated later, approximation theorems seem to be surprisingly
useful in a number of respects despite the fact it only deals with the “approximated” values of the
channel output: it can certainly provide alternative rigorous tools in translating results from discrete
time to continuous time; more importantly, as elaborated in Section 4, it lays the foundation for the
approximation approach, which gives us the intuition in the point-to-point continuous-time setting,
which will further help us to deliver rigorous treatments of multi-user continuous-time Gaussian
channels in Section 5.

More specifically, in Section 5, we derive the capacity regions of a continuous-time white
Gaussian multiple access channel (Theorem 7), a continuous-time white Gaussian interference channel
(Theorem 8), and a continuous-time white Gaussian broadcast channel (Theorem 10). Here, we note
that when there is no feedback, as discussed in Remark 5, the results above are “long known” in
the sense that they are roughly suggested by the conventional sampling approach, or alternatively,
the low SNR equivalence in (A). However, to the best of our knowledge, explicit formulations and
statements of such results are missing in the literature and their rigourous proofs are non-trivial (for
instance, when establishing Theorem 10, we have to resort to the continuous-time I-minimum mean
square error (MMSE) relationship [25], which has been established only recently). By comparison, the
presence of feedback necessitates the use of the approximation approach, which help us to connect
relevant results and proofs in discrete time to analyze how feedback affects the capacity regions of



Entropy 2019, 21, 67 5 of 51

families of continuous-time multi-user one-hop Gaussian channels: feedback will increase the capacity
regions of some continuous-time Gaussian broadcast channels (Theorem 12) and interference channels
(Theorem 9), while it will not increase capacity regions of a continuous-time physically degraded
Gaussian broadcast channel (Theorem 11) and a continuous-time Gaussian multiple access channels
(Theorem 7).

2. Sampling Theorems

A very natural question is whether, similarly for the white Gaussian noise formulation, sampling
theorems hold for continuous-time white Gaussian channels under Brownian motion formulation.
In this section, we will establish sampling theorems for the channel (6), which naturally connect such
channels with their discrete-time versions obtained by sampling.

Consider the following regularity conditions for channel (6):

(a) The solution {Y(t)} to the stochastic differential Equation (6) uniquely exists;
(b)

P
(∫ T

0
g2(t, Wt

0, Yt
0)dt < ∞

)
= P

(∫ T

0
g2(t, Wt

0, Bt
0)dt < ∞

)
= 1;

(c) ∫ T

0
E[|g(t, Wt

0, Yt
0)|]dt < ∞.

Note that all the three above conditions are rather weak: Condition (a) is necessary for the channel to
be meaningful, and Conditions (b) and (c) are very mild integrability assumptions.

Now, for any n ∈ N, choose time points tn,0, tn,1, . . . , tn,n ∈ R such that

0 = tn,0 < tn,1 < · · · < tn,n−1 < tn,n = T,

and let ∆n , {tn,0, tn,1, . . . , tn,n}. Sampling the channel (6) over the time interval [0, T] with respect to
∆n, we obtain its sampled discrete-time version as follows:

Y(tn,i) =
∫ tn,i

0
g(s, Ws

0 , Ys
0)ds + B(tn,i), i = 0, 1, . . . , n. (7)

For any time-point sequence ∆n, we will use δ∆n to denote its minimal stepsize, namely,

δ∆n , max
i=1,2,...,n

(tn,i − tn,i−1).

∆n is said to be evenly spaced if tn,i− tn,i−1 = T/n for all feasible i, and we will use the shorthand notation
δn to denote its stepsize, i.e., δn , tn,1 − tn,0 = T/n. Apparently, evenly spaced time-point sequences are
natural candidates with respect to which a continuous-time Gaussian channel can be sampled.

We are primarily concerned with the mutual information for the channel (6), whose standard
definition (see, e.g., [12,26]) is given below:

I(WT
0 ; YT

0 ) =

E
[
log dµWY

dµW×µY
(WT

0 , YT
0 )
]

, if dµWY
dµW×µY

exists ,

∞, otherwise ,
(8)

where the subscripted µ denotes the measure induced on C[0, T] or C[0, T] × C[0, T] by the
corresponding stochastic process and dµWY/dµW × µY denotes the Radon-Nikodym derivative of µWY
with respect to dµW × µY. Here we note that the same definition with appropriately modified sample
spaces applies to the degenerated case when WT

0 and/or YT
0 are random variables.
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Roughly speaking, the following sampling theorem states that for any sequence of “increasingly
refined” samplings, the mutual information of the sampled discrete-time channel (7) will converge to
that of the original channel (6).

Theorem 1. Assume Conditions (a)–(c). Suppose that ∆n ⊂ ∆n+1 for all n and that δ∆n → 0 as n tends to
infinity. Then, we have

lim
n→∞

I(WT
0 ; Y(∆n)) = I(WT

0 ; YT
0 ),

where Y(∆n) , {Y(tn,0), Y(tn,1), . . . , Y(tn,n)}.

Proof. The proof is rather technical and thereby postponed to Appendix A.

Regarding the assumptions of Theorem 1, as mentioned before, Conditions (a)–(c) are very weak,
but the condition that “∆n ⊂ ∆n+1 for all n” is somewhat restrictive, which, in particular, is not satisfied
by the set {∆n} of all evenly spaced time-point sequences. We next show that this condition can be
replaced by some extra regularity conditions: The same theorem holds as long as the stepsize of the
sampling tends to 0, which, in particular, is satisfied by the set of all evenly spaced sampling sequences.

Below and hereafter, defining the distance ‖Us
0 −Vt

0‖ between Us
0 and Vt

0 with 0 ≤ s ≤ t as

‖Us
0 −Vt

0‖ , sup
r∈[0,s]

|U(r)−V(r)|+ sup
r∈[s,t]

|U(s)−V(r)|, (9)

we may assume the following three regularity conditions for the channel (6):

(d) Uniform Lipschitz condition: There exists a constant L > 0 such that for any 0 ≤
s1, s2, s3, t1, t2, t3 ≤ T, any UT

0 , VT
0 , YT

0 and ZT
0 ,

|g(s1, Us2
0 , Ys3

0 )− g(t1, Vt2
0 , Zt3

0 )| ≤ L(|s1 − t1|+ ‖Us2
0 −Vt2

0 ‖+ ‖Y
s3
0 − Zt3

0 ‖);

(e) Uniform linear growth condition: There exists a constant L > 0 such that for any WT
0 and any YT

0 ,

|g(t, Wt
0, Yt

0)| ≤ L(1 + ‖Wt
0‖+ ‖Yt

0‖),

where
‖Wt

0‖ = sup
r∈[0,t]

|W(r)|, ‖Yt
0‖ = sup

r∈[0,t]
|Y(r)|;

(f) Regularity conditions on W: There exists ε > 0 such that

E[eε‖WT
0 ‖2

] < ∞,

and for any K > 0, there exists ε′ > 0 such that

E[eK sup|s−t|≤ε′ (W(s)−W(t))2
] < ∞,

and there exists a constant L > 0 such that for any ε′′ > 0,

E[sup|s−t|≤ε′′(W(s)−W(t))4] ≤ L(ε′′)2.

The following lemma, whose proof is postponed to Appendix B, says that Conditions (d)–(f)
are stronger than Conditions (a)–(c). We however remark that Conditions (d)–(f) are still rather mild
assumptions: The uniform Lipschitz condition, uniform linear growth condition and their numerous
variants are typical assumptions that can guarantee the existence and uniqueness of the solution
to a given stochastic differential equation. In theory, these two conditions are considered mild in
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the sense there are examples that the corresponding stochastic differential equation may not have
solutions at all if these two conditions are not satisfied (see, e.g., [27]). Note that the third condition is
a mild integrability condition; as a matter of fact, for a feedback channel where W is interpreted as the
message, this condition is trivially satisfied. All three conditions above will be taken for granted in
most practical communication situations: as might be expected, the signals employed in practice will
be much better-behaving.

Lemma 1. Assume Conditions (d)–(f). Then, there exists a unique strong solution of (6) with initial value
Y(0) = 0. Moreover, there exists ε > 0 such that

E[eε‖YT
0 ‖2

] < ∞, (10)

which immediately implies Conditions (b) and (c).

Roughly speaking, the following sampling theorem states that if the stepsizes of the samplings
tend to 0, the mutual information of the channel (7) will converge to that of the channel (6). Note that
in this theorem, we do not need the assumption that “∆n ⊂ ∆n+1 for all n”, which is required in
Theorem 1.

Theorem 2. Assume Conditions (d)–(f). For any sequence {∆n} with δ∆n → 0 as n tends to infinity, we have

lim
n→∞

I(WT
0 ; Y(∆n)) = I(WT

0 ; YT
0 ).

Proof. The proof is rather technical and lengthy, and thereby postponed to Appendix C. We note that,
as detailed in Remark A1, the arguments in the proof can be adapted to yield a sampling theorem in
estimation theory.

3. Approximation Theorems

In this section, we will establish approximation theorems for the channel (6), which naturally
connect such channels with their discrete-time versions obtained by approximation. As elaborated
in later sections, the approximation theorem will underpin the approximation approach that will be
introduced in Section 4.

An application of the Euler-Maruyama approximation [24] with respect to ∆n to (6) will yield a
discrete-time sequence {Y(n)(tn,i) : i = 0, 1, . . . , n} and a continuous-time process {Y(n)(t) : t ∈ [0, T]},
a linear interpolation of {Y(tn,i)}, as follows: Initializing with Y(n)(0) = 0, we recursively compute,
for each i = 0, 1, . . . , n− 1,

Y(n)(tn,i+1) = Y(n)(tn,i) +
∫ tn,i+1

tn,i

g(s, Wtn,i
0 , Y(n),tn,i

0 )ds + B(tn,i+1)− B(tn,i), (11)

Y(n)(t) = Y(n)(tn,i) +
t− tn,i

tn,i+1 − tn,i
(Y(n)(tn,i+1)−Y(n)(tn,i)), tn,i ≤ t ≤ tn,i+1. (12)

We are now ready to prove the following theorem:

Theorem 3. Assume Conditions (d)–(f). Then, we have

lim
n→∞

I(WT
0 ; Y(n)(∆n)) = I(WT

0 ; YT
0 ),

where Y(n)(∆n) , {Y(n)(tn,0), Y(n)(tn,1), . . . , Y(n)(tn,n)}.
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Proof. The proof is rather technical and lengthy, and thereby postponed to Appendix D. We note
that, as detailed in Remark A2, the arguments in the proof can be adapted to yield an approximation
theorem in estimation theory.

For any {∆n}, let W(n)(t) denote the piecewise linear version of WT
0 with respect to ∆n;

more precisely, for any i = 0, 1, . . . , n, W(n)(tn,i) = W(tn,i), and for any tn,i−1 < s < tn,i with s =

λtn,i−1 + (1− λ)tn,i where 0 < λ < 1, W(n)(s) = λW(tn,i−1) + (1− λ)W(tn,i). The following modified
Euler-Maruyama approximation with respect to ∆n applied to the channel (6) yields a discrete-time
sequences {Y(n)(tn,i) : i = 0, 1, . . . , n} and a continuous-time processes {Y(n)(t) : t ∈ [0, T]} as follows:
Initializing with Y(n)(0) = 0, we recursively compute, for each i = 0, 1, . . . , n− 1,

Y(n)(tn,i+1) = Y(n)(tn,i) +
∫ tn,i+1

tn,i

g(s, W(n),tn,i
0 , Y(n),tn,i

0 )ds + B(tn,i+1)− B(tn,i), (13)

Y(n)(t) = Y(n)(tn,i) +
t− tn,i

tn,i+1 − tn,i
(Y(n)(tn,i+1)−Y(n)(tn,i)), tn,i ≤ t ≤ tn,i+1. (14)

Now, using a parallel argument in the proof of Theorem 3, we have the following approximation theorem.

Theorem 4. Assume Conditions (d)–(f). Then, we have

lim
n→∞

I(W(n)(∆n); Y(n)(∆n)) = I(WT
0 ; YT

0 ).

Remark 1. When the channel (6) is interpreted as a feedback channel, both W(n) and W are precisely M.
When the channel (6) is interpreted as a memory channel, Theorem 4 states that the mutual information between
its input and output is the limit of that of its approximated input and output (in the sense of the above-mentioned
modified Euler-Maruyama approximation).

Other variants of the Euler-Maruyama approximation can also be applied to the channel to yield
variants of the approximation theorem. For instance, under Conditions (d)–(f), for the following
variant of the Euler-Maruyama approximation,

Y(n)(tn,i+1) = Y(n)(tn,i) +
∫ tn,i+1

tn,i

g(tn,i, Wtn,i
0 , Y(n),tn,i

0 )ds + B(tn,i+1)− B(tn,i), (15)

a parallel argument as in the proof of Theorem 3 will give the following variant of Theorem 3:

Theorem 5. Assume Conditions (d)–(f). Then, we have

lim
n→∞

I(WT
0 ; Y(n)(∆n)) = I(WT

0 ; YT
0 ). (16)

Moreover, for

Y(n)(tn,i+1) = Y(n)(tn,i) +
∫ tn,i+1

tn,i

g(tn,i, W(n),tn,i
0 , Y(n),tn,i

0 )ds + B(tn,i+1)− B(tn,i), (17)

we have the following variant of Theorem 4:

Theorem 6. Assume Conditions (d)–(f). Then, we have

lim
n→∞

I(W(n)(∆n); Y(n)(∆n)) = I(WT
0 ; YT

0 ). (18)

Regarding the approximation theorem and its variants, we make the following several remarks.
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Remark 2. Continuous-time directed information has been defined in [18] for continuous-time white Gaussian
channels with positively delayed feedback. In this remark, we show that our approximation theorem can be used to give
an alternative definition of continuous-time directed information, even for the case that the feedback is instantaneous.

Consider the following continuous-time Gaussian feedback channel:

Y(t) =
∫ t

0
X(s, M, Ys

0)ds + B(t), t ∈ [0, T]. (19)

For any ∆n, we define X̃(n)(·) as follows: for any t with tn,i ≤ t < tn,i+1,

X̃(n)(t) =
i−1

∑
j=0

∫ tn,j+1

tn,j

X(s, M, Y
(n),tn,j
0 )ds +

∫ t

tn,i

X(s, M, Y(n),tn,i
0 )ds,

Writing X̃(t, M, Y(n),t
0 ) as X̃(n)(t) for simplicity, (11) can be rewritten as

Y(n)(tn,i+1) = Y(n)(tn,i) + X̃(n)(tn,i+1)− X̃(n)(tn,i) + B(tn,i+1)− B(tn,i),

for which it can be readily checked that

I(X̃(n)(∆n)→ Y(n)(∆n)) = I(M; Y(n)(∆n)). (20)

Theorem 3 and the above observation can be used to define continuous-time directed mutual information. To be
more precise, the continuous-time directed information from XT

0 to YT
0 of the channel (19) can be defined as

I(XT
0 → YT

0 ) , lim
n→∞

I(X̃(n)(∆n)→ Y(n)(∆n)). (21)

Consider the following continuous-time Gaussian channel with possibly delayed feedback:

Y(t) =
∫ t

0
X(s, M, Ys−D

0 )ds + B(t), t ∈ [0, T], (22)

where D ≥ 0 denotes the delay of the feedback. In [18], the notion of continuous-time directed information from
XT

0 to YT
0 is defined as follows:

ID(XT
0 → YT

0 ) = inf
∆n

n

∑
i=1

I(Xtn,i
tn,0

; Ytn,i
tn,i−1
|Ytn,i−1

tn,0
). (23)

It is proven that for the case D > 0, using this notion, a connection between information theory and estimation
theory can be established as follows:

ID(XT
0 → YT

0 ) =
1
2

∫ T

0
E[(X(t)−E[X(t)|Yt

0])
2]dt. (24)

On the other hand though, it is easy to see that for the case D = 0, i.e., there is no delay in the feedback as in (19),
the definition in (23) and the equality as in (24) may run into some problems: Consider the extreme scenario and
choose X(t) = −Y(t) for any feasible t, then clearly the right-hand side of (24) should be equal to 0. On the
other hand, though, for the left-hand side, each small interval in (23) will yield

ID=0(Xtn,i+1
tn,0

; Ytn,i+1
tn,i
|Ytn,i

tn,0
) = ID=0(Y

tn,i+1
tn,i

; Ytn,i+1
tn,i
|Ytn,i

tn,0
) = ID=0(Y

tn,i+1
tn,i

; Ytn,i+1
tn,i
|Y(tn,i)),

where for the last equality, we have used the fact that under the assumption that X(t) = −Y(t), {Y(t)} is
an Ornstein–Uhlenbeck process, which is a Gaussian Markov process. Noting that given Y(ti) = y(ti),
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the Radon-Nikodym derivative dµ
Y

ti+1
ti

Y
ti+1
ti

/dµ
Y

ti+1
ti

× µ
Y

ti+1
ti

does not exist, we conclude, by referring to the

definition in (8), that

ID=0(Y
tn,i+1
tn,i

; Ytn,i+1
tn,i
|Y(tn,i)) = ∞, and thereby, ID=0(Xtn,i+1

tn,0
; Ytn,i+1

tn,i
|Ytn,i

tn,0
) = ∞,

which further implies that, ID=0(XT
0 → YT

0 ), the left-hand side of (24) at D = 0 is infinite, a contradiction.
On the other hand, be it the case D > 0 or D = 0, with the definition in (21), Theorem 3 however promises:

I(XT
0 → YT

0 ) = I(MT
0 ; YT

0 ) =
1
2

∫ T

0
E[(X(t)−E[X(t)|Yt

0])
2]dt.

Remark 3. When there is no feedback or memory, Theorem 3 boils down to Theorem 2: obviously we will have
for any feasible i

Y(n)(tn,i) = Y(tn,i),

which means that Theorem 3 actually states

lim
n→∞

I(WT
0 ; Y(∆n)) = I(WT

0 ; YT
0 ),

which is precisely the conclusion of Theorem 2. Moreover, by Remark 2, we also have

lim
n→∞

I(X̃(n)(∆n); Y(∆n)) = lim
n→∞

I(X̃(n)(∆n)→ Y(∆n)) = I(WT
0 ; YT

0 ).

Remark 4. In this remark, we briefly discuss the possible applications of our sampling and approximation
theorems, both of which we believe will important roles in the long run for further developing continuous-time
information theory, particularly for scenarios where feedback and memory are present.

Taking advantage of the pathwise continuity of a Brownian motion, our sampling theorems, Theorems 1
and 2, naturally connect continuous-time Gaussian memory/feedback channels with their discrete-time
counterparts, whose outputs are precisely sampled outputs of the original continuous-time Gaussian channel.
In discrete time, the Shannon–McMillan–Breiman theorem provides an effective way to approximate the entropy
rate of a stationary ergodic process, and numerical computation and optimization of mutual information of
discrete-time channel using the Shannon–McMillan–Breiman theorem and its extensions have been extensively
studied (see, e.g., [28,29] and references therein), which suggests our sampling theorems may well serve as
a bridge to capitalize on relevant results in discrete time to numerically compute and optimize the mutual
information of continuous-time Gaussian channels. In short, despite numerous technical barriers that one
needs to overcome, we believe that in the long run the sampling theorems can help us in terms of numerically
computing the mutual information and capacity of continuous-time Gaussian channels.

By comparison, our approximation theorems, Theorems 3 and 4, are somewhat “artificial” in the sense that
the outputs of the associated discrete-time channels are only approximated outputs of the original continuous-time
channels. Nonetheless, as the Euler-Maruyama approximation of a continuous-time channel yields the form of a
discrete-time channel typically takes, our approximation theorems allow a smooth translation from the results
and ideas from the discrete-time setting to the continuous-time setting. As a result, the approximation theorems
underpin the so-called approximation approach (to be introduced in Section 4) and readily yield results for
continuous-time Gaussian channels in the multi-user setting, which will be elaborated in the following sections.

4. The Approximation Approach

Consider the following continuous-time white Gaussian channel with feedback

Y(t) =
∫ t

0
X(s, M, Ys

0)ds + B(t), t ≥ 0, (25)
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satisfying the power constraint: there exists P > 0 such that for any T, with probability 1

1
T

∫ T

0
X2(s, M, Ys

0)ds ≤ P. (26)

As mentioned in Section 1, it is well known that the capacity of the above channel is P/2 (The same
result can be established under alternative power constraints; see, e.g., [12]).

As elaborated in Section 1, when there is no feedback in the channel, i.e., the channel (25) is
actually equivalent to (1), and one can “derive” the non-feedback capacity heuristically using the
conventional sampling approach as in (1)–(4). But this approach is unable to tackle feedback since an
application of the Shannon–Nyquist sampling theorem will destroy the temporal causality.

In this section, we use our approximation theorems to give an alternative way to “derive” the
capacity of (25), which will be referred to as the approximation approach in the remainder of the paper.
Compared to the sampling approach, the approximation approach can handle feedback due to the fact
the Euler-Maruyama approximation preserves temporal causality. Below we briefly explain this new
approach, which will be further developed and used, either heuristically or rigorously, in Section 5,
where multiple users may be involved in a communication system.

For fixed T > 0, consider the evenly spaced sequence ∆n with stepsize δn = T/n. Applying the
Euler-Maruyama approximation (15) to the channel (25) over the time window [0, T], we obtain

Y(n)(tn,i+1) = Y(n)(tn,i) +
∫ tn,i+1

tn,i

X(tn,i, M, Y(n),tn,i
0 )ds + B(tn,i+1)− B(tn,i). (27)

By Theorem 5, we have
I(M; YT

0 ) = lim
n→∞

I(M; Y(n)(∆n)). (28)

Our strategy is to “establish” the capacity for the discrete-time channel (27) first, and then the capacity
for the continuous-time channel (25) using the “closeness” between the two channels, as claimed by
approximation theorems.

For the converse part, we first note that

I(M; Y(n)(∆n)) =
n

∑
i=1

h(Y(n)(tn,i)−Y(n)(tn,i−1)|Y
(n),tn,i−2
tn,0

)−
n

∑
i=1

h(B(tn,i)− B(tn,i−1))

≤
n

∑
i=1

h(Y(n)(tn,i)−Y(n)(tn,i−1))−
n

∑
i=1

h(B(tn,i)− B(tn,i−1)).

It then follows from the fact

Var(Y(n)(tn,i)−Y(n)(tn,i−1)) = E[(Y(n)(tn,i)−Y(n)(tn,i−1))
2]

= E[δ2
n(X(n)(tn,i−1))

2] +E[(B(tn,i)− B(tn,i−1))
2]

= E[δ2
n(X(n)(tn,i−1))

2] + δn,

that

I(M; Y(n)
∆n

) ≤ 1
2

n

∑
i=0

log(1 + δnE[(X(n)(tn,i))
2]) (29)

≤ 1
2

n

∑
i=0

δnE[(X(n)(tn,i))
2], (30)

which, by (28), immediately yields

I(M; YT
0 ) ≤

1
2

∫ T

0
E[X2(s)]ds ≤ PT

2
, (31)
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which establishes the converse part.
For the availability part, note that if we assume all X(n)(tn,i−1) are independent of the Brownian

motion B with E[(X(n)(tn,i−1))
2] = P, then the inequalities in (29) and (30) will become equalities.

The part then follows from a usual random coding argument with codes generated by the distribution
of X(n) (or more precisely, a linear interpolation of X(n)). It is clear that as n tends to infinity, the process
X(n) behaves increasingly like a white Gaussian process. This observation echoes Theorem 6.4.1 in [12],
whose proof rigorously shows that an Ornstein–Uhlenbeck process that oscillates “extremely” fast will
achieve the capacity of (25).

Roughly speaking, similar to the conventional sampling approach, the above approximation
approach establishes a continuous-time Gaussian feedback channel as the limit of the associated
discrete-time channels as the SNR for each channel use shrink to zero proportionately (note that in the
above arguments, the SNR for each channel use is δn). In other words, we have strengthened the low
SNR equivalence in (A) as follows:

a continuous-time infinite-bandwidth Gaussian channel with feedback is “equivalent” to a
discrete-time Gaussian channel with feedback at low SNR. (B)

We remark however that for the purpose of deriving the capacity of (25) though, the approximation
approach, like the conventional sampling approach, is heuristic in nature: Theorem 3 does require
Conditions (d)–(f), which are much stronger than the power constraint (26). Nevertheless, this approach
is of fundamental importance to our treatment of continuous-time Gaussian channels: as elaborated in
Section 5, not only can it channel the ideas and techniques in discrete time to rigorously establish new
results in continuous time, more importantly, it can also provide insights and intuition for our rigorous
treatments where we will employ established tools and develop new tools in stochastic calculus.

5. Continuous-Time Multi-User Gaussian Channels

Extending Shannon’s fundamental theorems on point-to-point communication channels to general
networks with multiple sources and destinations, network information theory aims to establish the
fundamental limits on information flows in networks and the optimal coding schemes that achieve
these limits. The vast majority of researches on network information theory to date have been focusing
on networks in discrete time. In a way, this phenomenon can find its source from Shannon’s original
treatment of continuous-time point-to-point channels, where such channels were examined through
their associated discrete-time versions. This insightful viewpoint has exerted major influences on the
bulk of the related literature on continuous-time Gaussian channels, oftentimes prompting a model shift
from the continuous-time setting to the discrete-time one right from the beginning of a research attempt.

The primary focus of this section is to illustrate the possible applications of the approximation
approach: (1) Guided by this approach, we will rigorously derive the capacity regions of families of
continuous-time multi-user one-hop white Gaussian channels, including continuous-time multi-user
white Gaussian multiple access channels (MACs) and broadcast channels (BCs). To deliver the
rigourous proofs of our results, we will directly work within the continuous-time setting, employing
established tools and developing new tools (see Theorems A3 and A5) in stochastic calculus to
complement the approximation approach; (2) We can also rigorously apply this approach to examine
how feedback affects the capacity regions of the above-mentioned channels via translations of results
and techniques in discrete time. It turns out that some results can be translated from the discrete-time
setting to the continuous-time setting, such as that feedback increases the capacity region of Gaussian
BCs, and that feedback does not increase the capacity region of physically degraded BCs. Nevertheless,
there is a seeming “exception”: as opposed to discrete-time Gaussian MACs, feedback does not increase
the capacity region some of continuous-time Gaussian MACs, which, somewhat surprisingly, can also
be explained by the approximation approach as well.



Entropy 2019, 21, 67 13 of 51

Below, we summarize the results in this section. To put our results into a relevant context, we will
first list some related results in discrete time, and for obvious reasons, we can only list those that are
most relevant to ours.

Gaussian MACs. When there is no feedback, the capacity region of a discrete-time memoryless
MAC is relatively better understood: a single-letter characterization has been established by
Ahlswede [30] and the capacity region of a Gaussian MAC was explicitly derived in Wyner [31] and
Cover [32]. On the other hand, the capacity region of MACs with feedback still demands more complete
understanding, despite several decades of great effort by many authors: Cover and Leung [33] derived
an achievable region for a memoryless MAC with feedback. In [34], Willems showed that Cover and
Leung’s region is optimal for a class of memoryless MACs with feedback where one of the inputs is
a deterministic function of the output and the other input. More recently, Bross and Lapidoth [35]
improved Cover and Leung’s region, and Wu et al. [36] extended Cover and Leung’s region for the case
where non-causal state information is available at both senders. An interesting result has been obtained
by Ozarow [37], who derived the capacity region of a memoryless Gaussian MAC with two users via a
modification of the Schalkwijk-Kailath scheme [38]; moreover, Ozarow’s result showed that in general,
the capacity region for a discrete memoryless MAC is increased by feedback.

In Section 5.1, guided by the approximation approach, we first establish Lemma A3, a key lemma
which roughly says that “other users can be simply treated as noises”, and we then employ established
tools from stochastic calculus to derive the capacity region of a continuous-time white Gaussian MAC
with m senders and with/without feedback. It turns out that for such a channel, feedback does not
increase the capacity region, which, at first sight, may seem at odds with the aforementioned Ozarow’s
result and the conclusion of our approximation theorems. This however can be roughly explained
by the well-known fact that “>” may become “=” when taking the limit (indeed, an > bn does not
necessarily imply limn→∞ an > limn→∞ bn); see Remark 6 for a more detailed explanation.

Gaussian ICs. The capacity regions of discrete-time Gaussian ICs are largely unknown except
for certain special scenarios: The capacity region of Gaussian ICs with strong interference has been
established in Sato [39], Han and Kobayashi [40]. The sum-capacity of Gaussian ICs with weak
interference has been simultaneously derived in [41–43]. The half-bit theorem on the tightness of the
Han-Kobayashi bound [40] was proven in [44]. The approximation of the Gaussian IC by the q-ary
expansion deterministic channel was first proposed by Avestimehr, Diggavi, and Tse [45]. Outer and
inner bounds on the feedback capacity region of Gaussian interference channels are established by
Suh and Tse [46]. Note that all the above-mentioned work deal with ICs with two pairs of senders and
receivers. For more than two user pairs, special classes of Gaussian ICs have been examined using the
scheme of interference alignment; see an extensive list of references in [47].

In Section 5.2, using a similar approach that we developed for continuous-time Gaussian MACs,
we derive the capacity region of a continuous-time white Gaussian IC with m pairs of senders and
receivers and without feedback. In addition, we also use a translated version of the argument in [46]
and the approximation approach to show that feedback does increase the capacity region of certain
continuous-time white Gaussian IC.

Gaussian BCs. The capacity regions of discrete-time Gaussian BCs without feedback are well
known [48,49]. In addition, it has been shown by El Gamal [50] that feedback cannot increase the
capacity region of a physically degraded Gaussian BC. On the other hand, it was shown by Ozarow
and Leung [51] that feedback can increase the capacity of stochastically degraded Gaussian BCs,
whose capacity regions are far less understood.

In Section 5.3, we first establish a continuous-time version of entropy power inequality
(Theorem A5) and then derive the capacity region of a continuous-time Gaussian non-feedback
BC with m receivers. Employing the approximation approach, we use a modified argument in [50] to
show that feedback does not increase the capacity region of a physically degraded continuous-time
Gaussian BC, and on the other hand, a translated version of the argument in [51] to show that feedback
does increase the capacity region of certain continuous-time Gaussian BC.
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Here we remark that the above-mentioned capacity results for the non-feedback case (Theorems 7
(for the non-feedback case) and 10) are “long known” in the sense that they are “predicted” by the
conventional sampling approach and their proofs follow from the usual framework. On the other
hand, though, explicit formulations and statements of these results and their rigorous and complete
proofs, to the best of our knowledge, do not exist in the literature. The reason, we believe, is that there
are a number of technical difficulties that one has to overcome to prove such results: Lemmas A3
and A5 (which is based on the I-MMSE relationship that has only been established in [25]) are newly
developed in this work and their proofs are non-trivial.

In contrast, the approximation approach can be applied to continuous-time Gaussian feedback
channels, either heuristically or rigorously. More specifically, it can be heuristically applied to “explain”
Theorems 7 (on feedback capacity) and 10) and give us intuition (as elaborated in Remark 6, it helps
“predict” the optimal channel input distribution, which has been made rigorous in Lemma A3), and it
can also be applied to establish Theorems 11 and 12.

5.1. Gaussian MACs

Consider a continuous-time white Gaussian MAC with m users, which can be characterized by

Y(t) =
∫ t

0
X1(s, M1, Ys

0)ds +
∫ t

0
X2(s, M2, Ys

0)ds + · · ·+
∫ t

0
Xm(s, Mm, Ys

0)ds + B(t), t ≥ 0, (32)

where Xi is the channel input from sender i, which depends on Mi, the message sent from sender i,
which is independent of all messages from other senders, and possibly on the feedback Ys

0 , the channel
output up to time s.

For T, R1, . . . , Rm, P1, . . . , Pm > 0, a (T, (eTR1 , . . . , eTRm), (P1, . . . , Pm))-code for the MAC (32)
consists of m sets of integers Mi = {1, 2, . . . , eTRi}, the message alphabet for user i, i = 1, 2, . . . , m,
and m encoding functions, Xi : Mi → C[0, T], which satisfy the following power constraint: for any
i = 1, 2, . . . , m, with probability 1,

1
T

∫ T

0
X2

i (s, Mi, Ys
0)ds ≤ Pi, (33)

and a decoding function,
g : C[0, T]→M1 ×M2 × · · · ×Mm.

The average probability of error for the above code is defined as

P(T)
e = 1

eT(∑m
i=1 Ri)

∑(M1,M2,...,Mm)∈M1×M2×···×Mm P{g(YT
0 ) 6= (M1, M2, . . . , Mm) | (M1, M2, . . . , Mm) sent}.

A rate tuple (R1, R2, . . . , Rm) is said to be achievable for the MAC if there exists a sequence of
(T, (eTR1 , . . . , eTRm), (P1, . . . , Pm))-codes with P(T)

e → 0 as T → ∞. The capacity region of the MAC is
the closure of the set of all the achievable (R1, R2, . . . , Rm) rate tuples.

The following theorem, whose proof is postponed to Appendix E, gives an explicit characterization
of the capacity region of (32).

Theorem 7. Whether there is feedback or not, the capacity region of the continuous-time white Gaussian
MAC (32) is

{(R1, R2, . . . , Rm) ∈ Rm
+ : Ri ≤ Pi/2, i = 1, 2, . . . , m}.

Remark 5. When there is no feedback, Theorem 7 can be heuristically explained using the sampling approach as
in (2)–(4) (this heuristic approach in this example should be well known; see, e.g., Exercise 15.26 in [2]).
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For simplicity only, we consider the following continuous-time white Gaussian multiple access channel
with two senders:

Y(t) = X1(t) + X2(t) + Z(t), t ∈ R, (34)

where Xi, i = 1, 2, is the input from the i-th user with average power limit Pi. Juat as before, consider its
associated discrete-time version corresponding to bandwidth limit ω:

Yn = X(ω)
1,n + X(ω)

2,n + Z(ω)
n , n ∈ Z.

Then, it is well known [47] that the outer bound on the capacity region can be computed as{
(R1, R2) ∈ R2

+ : R1 ≤W log
(

1 +
P1

2ω

)
, R2 ≤W log

(
1 +

P2

2ω

)}
,

and the inner bound as{
(R1, R2) ∈ R2

+ : R1 ≤ ω log
(

1 +
P1

2ω

)
, R2 ≤ ω log

(
1 +

P2

2ω

)
, R1 + R2 ≤ ω log

(
1 +

P1 + P2

2ω

)}
.

(Here, it is known [31,32] that the outer bound can be tightened to coincide with the inner bound, which, however,
is not needed for this example.) It is easy to verify that the two bounds also collapse into the same region as ω

tends to infinity: {
(R1, R2) ∈ R2

+ : R1 ≤ P1/2, R2 ≤ P2/2
}

,

which is “expected” to be the capacity region of (34); or alternatively, one can apply the low SNR equivalence in
(A) and take the limit as P tends to 0, reaching the same conclusion. Note that similar arguments hold for more
than two senders as well through a parallel extension.

Remark 6. When the feedback is present in the channel, the approximation approach, rather than the
conventional sampling approach, is necessary to explain Theorem 7.

Again, for simplicity only, we consider the following continuous-time Gaussian MAC with two senders:

Y(t) =
∫ t

0
X1(s, M1, Ys

0)ds +
∫ t

0
X2(s, M2, Ys

0)ds + B(t), t ≥ 0, (35)

with the power constraints: there exist P1, P2 > 0 such that for all T,

∫ T

0
X2

1(s, M1, Ys
0)ds ≤ P1T,

∫ T

0
X2

2(s, M2, Ys
0)ds ≤ P2T. (36)

Applying the Euler-Maruyama approximation to the above channel over the time window [0, T] with respect to
the evenly spaced ∆n with δn = T/n, we obtain

Y(n)(tn,i+1) = Y(n)(tn,i) +
∫ tn,i+1

tn,i
X1(s, M1, Y(n),tn,i

0 )ds +
∫ tn,i+1

tn,i
X2(s, M2, Y(n),tn,i

0 )ds + B(tn,i+1)− B(tn,i).
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Now, straightforward computations and a usual concavity argument then yields that for large n,

I(M1; Y(n)(∆n)|M2) = h(Y(n)(∆n)|M2)− h(Y(n)(∆n)|M1, M2)

=
n

∑
i=1

h(Y(n)(tn,i)|Y
(n),tn,i−1
tn,0

, M2)−
n

∑
i=1

h(Y(n)(tn,i)|Y
(n),tn,i−1
tn,0

, M1, M2)

≤
n

∑
i=1

1
2

log

(
E
(∫ tn,i

tn,i−1

X1(s, M1, Y(n),tn,i−1
0 )ds

)2
+ δn

)
− 1

2
log(δn)

≤
n

∑
i=1

1
2

log
((∫ tn,i

tn,i−1

EX1(s, M1, Y(n),tn,i−1
0 )2ds

)
δn + δn

)
− 1

2
log(δn)

=
n

∑
i=1

1
2

log
(∫ tn,i

tn,i−1

EX1(s, M1, Y(n),tn,i−1
0 )2ds + 1

)
≤

n

∑
i=1

n

∑
i=1

1
2

∫ tn,i

tn,i−1

EX1(s, M1, Y(n),tn,i−1
0 )2ds

≈
n

∑
i=1

n

∑
i=1

1
2

∫ tn,i

tn,i−1

EX1(s, M1, Ys
0)

2ds

≤ P1T
2

.

A completely parallel argument will yield that

I(M2; Y(n)(∆n)|M1) ≤
P2T

2
.

It then follows from Theorem 3 the region below give an outer bound of the capacity region:

{(R1, R2) : 0 ≤ R1 ≤ P1/2, 0 ≤ R2 ≤ P2/2}. (37)

To see that this outer bound can be achieved, set X1(s), X2(s), tn,i ≤ s ≤ tn,i+1, in (35) to be independent
Gaussian random variables with variances P1, P2, respectively. Then, one verifies that for large n,

I(M1; Y(∆n)) = h(Y(∆n))− h(Y(∆n)|M1)

=
n

∑
i=1

h(Y(tn,i))−
n

∑
i=1

h(Y(tn,i)|M1)

=
n

∑
i=1

1
2

log(P1δ2
n + P2δ2

n + δn)−
1
2

log(P2δ2
n + δn) (38)

=
n

∑
i=1

1
2

log
(

1 +
P1δ2

n
P2δ2

n + δn

)
(39)

≈ P1T/2, (40)

where we have used the fact that δn is “close” to 0 for large enough n for (40), which, parallelly as in Remark 5,
can be alternatively explained by taking P1 to 0 and then applying the low SNR equivalence in (B). With a
similar argument, one can prove that

I(M2; Y(∆n)) ≈ P2T/2.

It then follows that the outer bound in (37) can be achieved.
Here we remark that similarly as in Section 4, for n large enough, the constructed processes X1 and X2

behave like “fast-oscillating” Ornstein–Uhlenbeck processes, and moreover, from (38) and (39), one can tell that
for one user to achieve the maximum transmission rate, the other user can simply be ignored. Predicting the
optimal channel input, these facts echo Remark A3 and give another explanation to Lemma A3, a key lemma in
our rigourous proof of Theorem 7 in Appendix E.
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5.2. Gaussian ICs

Consider the following continuous-time white Gaussian interference channel having no feedback
and with m pairs of senders and receivers: for i = 1, 2, . . . , m,

Yi(t) = ai1

∫ t

0
X1(s, M1)ds + ai2

∫ t

0
X2(s, M2)ds + · · ·+ aim

∫ t

0
Xm(s, Mm)ds + Bi(t), t ≥ 0, (41)

where Xi is the channel input from sender i, which depends on Mi, the message sent from sender i,
which is independent of all messages from other senders, and aij ∈ R, i, j = 1, 2, . . . , m, is the channel
gain from sender j to receiver i, all Bi(t) are (possibly correlated) standard Brownian motions.

For T, R1, . . . , Rm, P1, . . . , Pm > 0, a (T, (eTR1 , . . . , eTRm), (P1, . . . , Pm))-code for the IC (41) consists
of m sets of integers Mi = {1, 2, . . . , eTRi}, the message alphabet for user i, i = 1, 2, . . . , m, and m
encoding functions, Xi :Mi → C[0, T] satisfying the following power constraint: for any i = 1, 2, . . . , m,
with probability 1,

1
T

∫ T

0
X2

i (s, Mi)ds ≤ Pi, (42)

and m decoding functions, gi : C[0, T]→Mi, i = 1, 2, . . . , m.
The average probability of error for the (T, (eTR1 , . . . , eTRm), (P1, . . . , Pm))-code is defined as

P(T)
e = 1

eT(∑m
i=1 Ri)

∑(M1,M2,...,Mm)∈M1×M2×···×Mm P{gi(YT
i,0) 6= Mi, i = 1, 2, . . . , m | (M1, M2, . . . , Mm) sent}.

A rate tuple (R1, R2, . . . , Rm) is said to be achievable for the IC if there exists a sequence of
(T, (eTR1 , . . . , eTRm), (P1, . . . , Pm))-codes with P(T)

e → 0 as T → ∞. The capacity region of the IC
is the closure of the set of all the achievable (R1, R2, . . . , Rm) rate tuples.

The following theorem explicitly characterizes the capacity region of the above IC, whose proof
has been postponed to Appendix F.

Theorem 8. The capacity region of the continuous-time white Gaussian IC (41) is

{(R1, R2, . . . , Rm) ∈ Rm
+ : Ri ≤ a2

iiPi/2, i = 1, 2, . . . , m}.

Remark 7. Theorem 8 can be heuristically derived using a similar argument employing the approximation
approach as in Remark 6.

With the explicit non-feedback capacity region stated in Theorem 8, we are now ready to use the
approximation approach to analyze the effects of feedback on continuous-time Gaussian ICs.

The following theorem says that feedback does help continuous-time Gaussian ICs, whose proof
uses a translated version of the argument in [46] coupled with the approximation approach as in
Section 4, and so we only provide a sketch of the proof.

Theorem 9. Feedback strictly increases the capacity region of certain continuous-time Gaussian interference channel.

Proof. Consider the following symmetric continuous-time Gaussian interference channel with two
pairs of senders and receivers:

Y1(t) =
√

snr
∫ t

0
X1(s)ds +

√
inr

∫ t

0
X2(s)ds + B1(t),

Y2(t) =
√

inr
∫ t

0
X1(s)ds +

√
snr

∫ t

0
X2(s)ds + B2(t),

where snr, inr denote the signal-to-noise, interference-to-noise ratios, respectively, B1(t), B2(t) are
independent standard Brownian motions, and the average power of X1, X2 are assumed to be 1.
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Following [46], we consider the following coding scheme over two stages, each of length T0. In the
first stage, transmitters 1 and 2 send codewords XT0

1,0 and XT0
2,0 with rates R1 and R2, respectively. In the

second stage, using feedback, transmitters 1 and 2 decode XT0
2,0 and XT0

1,0, respectively. This can be
decoded if

R1, R2 ≤
inr
2

.

Then, transmitters 1 and 2 send X2T0
1,T0

and X2T0
2,T0

, respectively such that for any 0 ≤ t ≤ T0,

X1(T0 + t) = X2(t), X2(T0 + t) = −X1(t).

Then during the two stages, receiver 1 receives

Y1(t) =
√

snr
∫ t

0
X1(s)ds +

√
inr

∫ t

0
X2(s)ds + B1(t), 0 ≤ t ≤ T0,

and

Y1(T0 + t) =
√

snr
∫ T0+t

0
X1(s)ds +

√
inr

∫ T0+t

0
X2(s)ds + B1(T0 + t), 0 ≤ t ≤ T0,

which immediately gives rise to

Y1(T0 + t)−Y1(T0) =
√

snr
∫ T0+t

T0

X1(s)ds +
√

inr
∫ T0+t

T0

X2(s)ds + B1(T0 + t)− B1(T0)

=
√

snr
∫ t

0
X2(s)ds−

√
inr

∫ t

0
X1(s)ds + B1(T0 + t)− B1(T0).

We then have that for any 0 ≤ t ≤ T0,

√
snrY1(t)−

√
inr(Y1(T0 + t)−Y1(T0)) = (snr + inr)

∫ t
0 X1(s)ds +

√
snrB1(t)−

√
inr(B1(T0 + t)− B(T0)),

which means the codeword XT0
1,0 can be decoded at the second stage if

R1 ≤
snr + inr

2
.

A completely parallel argument yields that the codeword XT0
2,0 can be decoded at the second stages if

R2 ≤
snr + inr

2
.

All in all, after the two stages, the two codewords XT0
1,0 and XT0

2,0 can be decoded as long as

R1, R2 ≤
inr
2

;

in other words, coding rate ( inr
2 , inr

2 ) is achievable, which, if assuming inr > snr, will imply that
feedback strictly increases the capacity region.

5.3. Gaussian BCs

In this section, we consider a continuous-time white Gaussian BC with m receivers, which is
characterized by: for i = 1, 2, . . . , m,

Yi(t) =
√

snri

∫ t

0
X(s, M1, M2, . . . , Mm)ds + Bi(t), t ≥ 0, (43)
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where X is the channel input, which depends on Mi, the message sent from sender i, which is uniformly
distributed over a finite alphabetMi and independent of all messages from other senders, snri is the
signal-to-noise ratio in the channel for user i, Bi(t) are (possibly correlated) standard Brownian motions.

For T, R1, R2, . . . , Rm, P > 0, a (T, (eTR1 , . . . , eTRm), P)-code for the BC (43) consists of m set of
integersMi = {1, 2, . . . , eTRi}, the message set for receiver i, i = 1, 2, . . . , m, and an encoding function,
X :M1 ×M2 × · · · ×Mm → C[0, T], which satisfies the following power constraint: with probability 1,

1
T

∫ T

0
X2(s, M1, M2, . . . , Mm)ds ≤ P, (44)

and m decoding functions, gi : C[0, T]→Mi, i = 1, 2, . . . , m.
The average probability of error for the (T, (eTR1 , eTR2 , . . . , eTRm), P)-code is defined as

P(T)
e = 1

eT(∑m
i=1 Ri)

∑(M1,M2,...,Mm)∈M1×M2×···×Mm P{gi(YT
0 ) 6= Mi, i = 1, 2, . . . , m | (M1, M2, . . . , Mm) sent}.

A rate tuple (R1, R2, . . . , Rm) is said to be achievable for the BC if there exists a sequence of
(T, (eTR1 , eTR2 , . . . , eTRm), P)-codes with P(T)

e → 0 as T → ∞. The capacity region of the BC is the
closure of the set of all the achievable (R1, R2, . . . , Rm) rate tuples.

The following theorem explicitly characterizes the capacity region of the above BC, whose proof
is postponed to Appendix G.

Theorem 10. The capacity region of the continuous-time white Gaussian BC (43) is{
(R1, R2, . . . , Rm) ∈ Rm

+ :
R1

snr1
+

R2

snr2
+ · · ·+ Rm

snrm
≤ P

2

}
.

Remark 8. Theorem 10 can be heuristically derived using a similar argument employing the approximation
approach as in Remark 6.

We are now ready to use the approximation approach to analyze the effects of feedback on
continuous-time Gaussian BCs.

The following theorem says that feedback does not help physically degraded Gaussian BCs,
whose proof is inspired by the ideas in Section 4 and parallels the argument in [50].

Theorem 11. Consider the following continuous-time physically degraded Gaussian broadcast channel with
one sender and two receivers:

Y1(t) =
∫ t

0
X(s, M1, Ys

1,0, Ys
2,0)ds +

√
N1B1(t),

Y2(t) =
∫ t

0
X(s, M2, Ys

1,0, Ys
2,0)ds +

√
N1B1(t) +

√
N2B2(t),

where N1, N2 > 0, and B1, B2 are independent standard Brownian motions, and the channel input X(s) is
assumed to satisfy Conditions (d)–(f). Then, feedback does not increase the capacity region of the above channel.

Proof. Let X be a (T, (eTR1 , eTR2), P)-code. By the code construction, for i = 1, 2, it is possible to
estimate the messages Mi from the channel output YT

i,0 with an arbitrarily low probability of error.
Hence, by Fano’s inequality, for i = 1, 2,

H(Mi|YT
i,0) ≤ TRiP

(T)
e + H(P(T)

e ) = Tεi,T ,
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where εi,T → 0 as T → ∞. It then follows that

TR1 = H(M1) = H(M1|M2) ≤ I(M1; YT
1,0|M2) + Tε1,T ,

TR2 = H(M2) ≤ I(M2; YT
2,0) + Tε2,T .

Now the Euler-Maruyama approximation with respect to the evenly spaced ∆n of stepsize δn = T/n
applied to the continuous-time physically degraded Gaussian BC yields:

Y(n)
1 (tn,i)−Y(n)

1 (tn,i−1) =
∫ tn,i

tn,i−1

X(s, M, Y(n),tn,i−1
1,tn,0

, Y(n),tn,i−1
2,tn,0

)ds +
√

N1B1(tn,i)−
√

N1B1(tn,i−1),

Y(n)
2 (tn,i)−Y(n)

2 (tn,i−1) =
∫ tn,i

tn,i−1
X(s, M, Y(n),tn,i−1

1,tn,0
, Y(n),tn,i−1

2,tn,0
)ds +

√
N1B1(tn,i)−

√
N1B1(tn,i−1) +

√
N2B2(tn,i)−

√
N2B2(tn,i−1).

Then, by Theorem 3, we have

I(M2; YT
2,0) = lim

n→∞
I(M2; Y(n)

2 (∆n))

= lim
n→∞

I(M2; ∆Y(n)
2 (∆n))

= lim
n→∞

h(∆Y(n)
2 (∆n))− h(∆Y(n)

2 (∆n)|M2),

where ∆Y(n)
2 (∆n) , {Y(n)

2 (tn,i)−Y(n)
2 (tn,i−1) : i = 1, 2, · · · , n}. Note that

H(∆Y(n)
2 (∆n)) ≤

n

∑
i=1

log(2πe(Pδ2
n + N2δn)),

and

H(∆Y(n)
2 (∆n)|M2) =

n

∑
i=1

h(Y(n)
2 (tn,i)−Y(n)

2 (tn,i−1)|Y
(n),tn,i−1
2,tn,0

, M2)

≥
n

∑
i=1

h(
√

N2B2(tn,i)−
√

N2B2(tn,i−1))

=
n

∑
i=1

log(2πeN2δn),

which implies that there exists an α ∈ [0, 1] such that

h(∆Y(n)
2 (∆n)|M) =

n

∑
i=1

n
2

log(2πe(αPδ2
n + N2δn)).

It then follows from Theorem 3 that

I(M2; YT
2,0) ≤

1
2

lim
n→∞

n

∑
i=1

log
Pδ2

n + N2δn

αPδ2
n + N2δn

=
(1− α)PT

2N2
.
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Next we consider

I(M1; Y(n)
1 (∆n)|M2) = h(Y(n)

1 (∆n)|M2)− h(Y(n)
1 (∆n)|M1, M2)

= h(Y(n)
1 (∆n)|M2)−

n

∑
i=1

h(Y(n)
1 (tn,i)|M1, M2, Y(n),tn,i−1

1,tn,0
)

≤ h(Y(n)
1 (∆n)|M2)−

n

∑
i=1

h(Y(n)
1 (tn,i)|M1, M2, Y(n),tn,i−1

1,tn,0
, Y(n),tn,i−1

1,tn,0
)

= h(Y(n)
1 (∆n)|M2)−

1
2

n

∑
i=1

log(2πeN1δn).

Now, using Lemma 1 in [50] (an extension of the entropy power inequality), we obtain

h(Y(n)(∆n)|M2) ≥
n
2

log(22h(Y(n)
1 (∆n))|M2)/n + 2πe(N2 − N1)δn),

which immediately implies that

h(Y(n),tn,i
1,tn,0

|M2) ≤
1
2

n

∑
i=1

log(2πe(αPδ2
n + N1δn))

and furthermore, by Theorem 3,

I(M1; YT
1,0|M2) ≤ lim

n→∞

1
2

n

∑
i=1

log(2πe(αPδ2
n + N1δn))−

1
2

n

∑
i=1

log(2πeN1δn)

= lim
n→∞

1
2

n

∑
i=1

log
(

1 +
αPδn

N1

)
=

αPT
2N1

.

Now, by Theorem 10, we conclude that feedback capacity region is exactly the same non-feedback
capacity region; in other words, feedback does not increase the capacity region of a physically degraded
continuous-time Gaussian BC.

The following theorem says that feedback does help some stochastically degraded Gaussian BCs,
whose proof, instead of directly employing the approximation theorem, uses the connections between
continuous-time and discrete-time Gaussian channels and the notion of continuous-time directed
information in Remark 2, both of which can find their source from the approximation theorem. We only
provide the sketch of the proof, since it is largely based on a translated version of the argument in [51].

Theorem 12. Feedback increases the capacity region of certain continuous-time stochastically degraded
Gaussian broadcast channel.

Proof. Consider the following symmetric continuous-time Gaussian broadcast channel:

Y1(t) =
∫ t

0
X(s)ds + B1(t),

Y2(t) =
∫ t

0
X(s)ds + B2(t),
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where B1, B2 are independent standard Brownian motions, and X satisfies the average power constraint
P. By Theorem 10, without feedback, the capacity region is the set of rate pairs (R1, R2) such that

R1 + R2 ≤
P
2

. (45)

With feedback, one can use the following variation [51] of the Schalkwijk-Kailath coding scheme [38] over
[0, T] at discrete-time points {tn,i} that form an evenly spaced ∆n of stepsize δn: For the channel input,

after some proper initialization, at time t ∈ [tn,i, tn,i+1), we send X(n)(t) = X(n)
1 (t) + X(n)

2 (t), where

X(n)
1 (t) = γi(X(n)

1 (tn,i−1)−E[X(n)
1 (tn,i−1)|Y

(n)
1 (tn,i−1)]),

X(n)
2 (t) = −γi(X(n)

2 (tn,i−1)−E[X(n)
2 (tn,i−1)|Y

(n)
2 (tn,i−1)]),

where γi is chosen so that E[X2
i (t)] = P for each i; and for the channel outputs, we have, for any

t ∈ [tn,i, tn,i+1],

Y(n)
1 (t) = Y(n)

1 (tn,i) +
∫ t

tn,i

X(n)(tn,i)ds + B1(t)− B1(tn,i), (46)

and

Y(n)
2 (t) = Y(n)

2 (tn,i) +
∫ t

tn,i

X(n)(tn,i)ds + B2(t)− B2(tn,i). (47)

Going through a completely parallel argument as in [51] and capitalizing on the fact that the SNR in
the channels (46) and (47) tend to 0 as n tends to infinity, we derive that

lim
n→∞

I(X(n)(∆n)→ Y(n)
1 (∆n)) =

1
2 ∑

n→∞

n

∑
i=1

log
(

1 + Pδn(1+ρ∗)/2
(1+Pδn(1−ρ∗))/2

)
T

=
P(1 + ρ∗)

4
,

and parallelly,

lim
n→∞

I(X(n)(∆n)→ Y(n)
2 (∆n)) =

P(1 + ρ∗)

4
,

where ρ∗ > 0 satisfies the condition

ρ∗(1 + (P + 1)(1 + P(1− ρ∗)/2)) =
P(P + 2)(1− ρ∗)

2
.

Note that, by Remark 2, we have

I(X(n),T
0 → Y(n),T

1,0 ) ≥ I(X(n)(∆n)→ Y(n)
1 (∆n)), I(X(n),T

0 → Y(n),T
2,0 ) ≥ I(X(n)(∆n)→ Y(n)

2 (∆n)),

which immediately implies that

R1 = R2 =
P(1 + ρ∗)

4
(48)

are achievable. The claim that feedback strictly increases the capacity region then follows from (45),
and (48) and the fact that ρ∗ > 0.

6. Conclusions and Future Work

For a continuous-time white Gaussian channel without feedback, the classical Shannon–Nyquist
sampling theorem can convert it to a discrete-time Gaussian channel; however such a link has long been
missing when feedback/memory is present in the channel. In this paper, we establish sampling and
approximation theorems as the missing links, which we believe will play important roles in the long
run for further developing continuous-time information theory, particularly for the communication
scenarios where feedback/memory is present.
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As an immediate application of our approximation theorem, we propose the approximation
approach, an analog of the conventional sampling approach, for Gaussian feedback channels. It turns
out that, like its non-feedback counterpart, the approximation approach can bring insights and
intuition to investigation of continuous-time Gaussian channels with possible feedback, and moreover,
when complemented with relevant tools from stochastic calculus, can deliver rigorous treatments in
the point-to-point or multi-user setting.

On the other hand, though, there are many questions that remain unanswered and a number of
directions that need to be further explored. Below we list a number of research directions that look
promising in the near future.

(1) The first direction is to strengthen and generalize our sampling and approximation theorems.
Note that both Theorems 2 and 3 require Conditions (d)–(f), which are stronger than the typical

average power constraint. While Conditions (d)–(f) are rather mild for practical considerations,
the stronger assumptions in our theorems will narrow their reach in some theoretical situations.
For instance, despite the fact that our approximation theorem gives intuitive explanations to the
rigorous treatment of continuous-time multi-user Gaussian channels in Section 5, it fails to rigorously
establish Theorems 7 and 10. The stochastic calculus approach employed in Section 5 requires
only the power constraints, which can be loosely explained by the fact that Girsanov’s theorem
(or, more precisely, its several variants) only requires as weak conditions. It is certainly worthwhile to
explore whether the assumptions in our sampling and approximation theorems can be relaxed either
in general or for some special settings.

Another topic in this direction is the rate of convergence in the sampling and approximation theorems.
While the current versions of our theorems have merely established some limits, the rate of convergence
will certainly yield a more quantitative description of how fast those limits will be approached.

One can also consider generalizing these two theorems to general Gaussian channels [52,53].
For this topic, note that there exist in-depth studies [54–61] on continuous-time point-to-point general
Gaussian channels with possible feedback, for which information-theoretic connections with the
discrete-time setting are somehow lacking. A first step in this direction can be establishing sampling or
approximation theorems for stationary Gaussian processes. Obviously, such theorems for stationary
Gaussian processes can connect continuous-time stationary Gaussian channels to their discrete-time
counterparts, for which the variational formulation of discrete-time stationary Gaussian feedback
capacity in [62] proves to rather effective.

(2) The second direction is to further explore the possible applications of our sampling and
approximation theorems in the following respects.

We have shown that feedback may increase the capacity region of some continuous-time Gaussian
BC, but the capacity regions of such channels remain unknown in general. An immediate problem
is to explicitly find the exact capacity regions of continuous-time Gaussian BCs using the approach
employed in this work, as we have done for continuous-time Gaussian MACs. Of course, further topics
also include exploring whether the ideas and techniques in this paper can be applied to other families
of continuous-time multi-user Gaussian channels with possible feedback.

So far we have implicitly assumed infinite bandwidth and average power constraints, but our
theorems can certainly go beyond these assumptions. For instance, one can consider examining
continuous-time Gaussian channels with both bandwidth limit and peak power constraint, which are
more reasonable assumptions for many practical communication scenarios as they give a more accurate
description of the limitations of the communication system. Little is known about the capacity of
continuous-time Gaussian channels with such constraints except some upper and lower bounds
established in [63,64]. In stark contrast, discrete-time peak power constrained channels (including,
but not limited to Gaussian channels) have been better investigated: there has been a series of work
on their capacity, such as [65–72], which feature relatively thorough discussions about different
aspects of channel capacity including capacity achieving distribution, bounds and asymptotics of
capacity, and numerical computation of capacity. An immediate question is to explore whether the
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approximation approach can translate the aforementioned existing results in discrete time, or more
probably, help channel the ideas and techniques therein to the continuous-time setting. A next question
is to explore whether there exists any randomized algorithm for computation of the capacity of such a
channel, for which, as discussed in Remark 4, we believe our sampling theorems can be particularly
helpful in terms of numerically computing and optimizing the mutual information of a continuous-time
Gaussian channel with bandwidth limit and peak power constraint.
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Appendix A. Proof of Theorem 1

First of all, an application of Theorem 7.14 of [19] with Conditions (b) and (c) yields that

P
(∫ T

0
E2[g(t, Wt

0, Yt
0)|Yt

0]dt < ∞
)
= 1. (A1)

Then one verifies that the assumptions of Lemma 7.7 of [19] are all satisfied (this lemma is stated
under very general assumptions, which are exactly Conditions (b), (c) and (A1) when restricted to our
settings), which implies that for any w,

µY ∼ µY|W=w ∼ µB,

where “∼” is the standard notation for two measures being equivalent (i.e., one is absolutely continuous
with respect to the other and vice versa), and moreover, with probability 1,

dµY|W
dµB

(YT
0 ) =

1

E[e−
∫ T

0 g(s)dY(s)+ 1
2

∫ T
0 g(s)2ds|YT

0 , WT
0 ]

,
dµY
dµB

(YT
0 ) =

1

E[e−
∫ T

0 g(s)dY(s)+ 1
2

∫ T
0 g(s)2ds|YT

0 ]
, (A2)

where we have rewritten g(s, Ws
0 , Ys

0) as g(s) for notational simplicity. Here we remark that

E[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g(s)2ds|YT
0 , WT

0 ] is in fact equal to e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g(s)2ds, but we keep it the way
it is as above for an easy comparison.

Note that it follows from E[dµB/dµY(YT
0 )] = 1 that

E[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g(s)2ds] = 1,

which is equivalent to

E[e−
∫ T

0 g(s)dB(s)− 1
2
∫ T

0 g(s)2ds] = 1.

Then, a parallel argument as in the proof of Theorem 7.1 of [19] further implies that for any ∆n,
with probability 1,

dµY|W
dµB

(Y(∆n)) =
1

E[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g(s)2ds |Y(∆n),WT
0 ]

, dµY
dµB

(Y(∆n)) =
1

E[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g(s)2ds |Y(∆n)]
, (A3)

where we have defined
B(∆n) , {B(tn,0), B(tn,1), . . . , B(tn,n)},
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and moreover,

dµY|W
dµB

(Y(∆n)) ,
dµY(∆n)|W

dµB(∆n)
(Y(∆n)),

dµY
dµB

(Y(∆n)) ,
dµY(∆n)

dµB(∆n)
(Y(∆n)).

Then, by definition, we have

I(WT
0 ; Y(∆n)) = E

[
log

dµY|W
dµB

(Y(∆n))

]
−E

[
log

dµY
dµB

(Y(∆n))

]
.

Notice that it can be easily checked that e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g(s)2ds integrable, which, together with the
fact that ∆n ⊂ ∆n+1 for all n, further implies that

E[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g(s)2ds|Y(∆n), WT
0 ], E[e−

∫ T
0 g(s)dY(s)+ 1

2
∫ T

0 g(s)2ds|Y(∆n)]

are both martingales, and therefore, by Doob’s martingale convergence theorem [73],

dµY|W
dµB

(Y(∆n))→
dµY|W

dµB
(YT

0 ),
dµY
dµB

(Y(∆n))→
dµY
dµB

(YT
0 ), a.s.

Now, by Jensen’s inequality, we have

E
[
−
∫ T

0
g(s)dY(s) +

1
2

∫ T

0
g(s)2ds

∣∣∣∣Y(∆n), WT
0

]
≤ logE[e−

∫ T
0 g(s)dY(s)+ 1

2
∫ T

0 g(s)2ds|Y(∆n), WT
0 ] (A4)

and, by the fact that log x ≤ x for any x > 0, we have

logE[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g(s)2ds|Y(∆n), WT
0 ] ≤ E[e−

∫ T
0 g(s)dY(s)+ 1

2
∫ T

0 g(s)2ds|Y(∆n), WT
0 ]. (A5)

It then follows from (A4) and (A5) that∣∣∣logE[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g(s)2ds|Y(∆n), WT
0 ]
∣∣∣ ≤ ∣∣∣∣E [− ∫ T

0
g(s)dY(s) +

1
2

∫ T

0
g(s)2ds

∣∣∣∣Y(∆n), WT
0

]∣∣∣∣
+E[e−

∫ T
0 g(s)dY(s)+ 1

2
∫ T

0 g(s)2ds|Y(∆n), WT
0 ].

Applying the general Lebesgue dominated convergence theorem (see, e.g., Theorem 19 on Page 89
of [74]), we then have

lim
n→∞

E
[

log
dµY|W

dµB
(Y(∆n))

]
= E[logE[e−

∫ T
0 g(s)dY(s)+ 1

2
∫ T

0 g(s)2ds|YT
0 , WT

0 ]] = E
[

log
dµY|W

dµB
(YT

0 )

]
.

A completely parallel argument yields that

lim
n→∞

E
[

log
dµY
dµB

(Y(∆n))

]
= E[logE[e−

∫ T
0 g(s)dY(s)+ 1

2
∫ T

0 g(s)2ds|YT
0 ]] = E

[
log

dµY
dµB

(YT
0 )

]
.

So, with the definition

I(WT
0 ; YT

0 ) = E
[

log
dµY|W

dµB
(YT

0 )

]
−E

[
log

dµY
dµB

(YT
0 )

]
,

we conclude that

lim
n→∞

I(WT
0 ; Y(∆n)) = E

[
log

dµY|W
dµB

(YT
0 )

]
−E

[
log

dµY
dµB

(YT
0 )

]
= I(WT

0 ; YT
0 ).
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Appendix B. Proof of Lemma 1

With Conditions (d)–(f), the proof of the existence and uniqueness of the solution to (6) is
somewhat standard; see, e.g., Section 5.4 in [27]. So, in the following, we will only prove (10).

For the stochastic differential equation (6), applying Condition (e), we deduce that there exists
L1 > 0 such that

‖YT
0 ‖ ≤

∫ T

0
L1(1 + ‖Wt

0‖+ ‖Yt
0‖)dt + ‖BT

0 ‖

≤ L1T + L1T‖WT
0 ‖+ ‖BT

0 ‖+
∫ T

0
L1‖Yt

0‖dt.

Then, applying the Gronwall inequality followed by a straightforward bounding analysis, we deduce
that there exists L2 > 0 such that

‖YT
0 ‖ ≤ (L1T + L1T‖WT

0 ‖+ ‖BT
0 ‖)e

∫ T
0 L1dt

= eL1T(L1T + L1T‖WT
0 ‖+ ‖BT

0 ‖)
= L2 + L2‖WT

0 ‖+ L2‖BT
0 ‖.

Now, for any ε > 0, applying Doob’s submartingale inequality, we have

E[eε‖YT
0 ‖2

] ≤ E[eε(L2+L2‖WT
0 ‖+L2‖BT

0 ‖)2
]

≤ E[e3ε(L2
2+L2

2‖WT
0 ‖2+L2

2‖BT
0 ‖2)]

= e3εL2
2E[e3εL2

2‖WT
0 ‖2

]E[e3εL2
2‖BT

0 ‖2
]

= e3εL2
2E[e3εL2

2‖WT
0 ‖2

]E[sup0≤t≤T e3εL2
2B(t)2

]

≤ 4e3εL2
2E[e3εL2

2‖WT
0 ‖2

]E[e3εL2
2B(T)2

],

which, by Condition (f), is finite provided that ε is small enough.

Appendix C. Proof of Theorem 2

We proceed in the following steps.
Step 1. In this step, we establish the theorem assuming that there exists C > 0 such that for all

wT
0 ∈ C[0, T] and all yT

0 ∈ C[0, T], ∫ T

0
g2(s, ws

0, ys
0)ds < C. (A6)

By the definition of mutual information, (A2) and (A3), we have

I(WT
0 ; Y(∆n)) = E

[
log

dµY|W
dµB

(Y(∆n))

]
−E

[
log

dµY
dµB

(Y(∆n))

]
= −E[logE[e−

∫ T
0 g(s)dY(s)+ 1

2

∫ T
0 g(s)2ds|Y(∆n), WT

0 ]] +E[logE[e−
∫ T

0 g(s)dY(s)+ 1
2

∫ T
0 g(s)2ds|Y(∆n)]]

= −E[Fn] +E[Gn],

where, for notational simplicity, we have rewritten g(s, Ws
0 , Ys

0) as g(s).
Step 1.1. In this step, we prove that as n tends to infinity,

Fn → −
∫ T

0
g(s)dY(s) +

1
2

∫ T

0
g(s)2ds, (A7)

in probability.
Let ȲT

∆n ,0 denote the piecewise linear version of YT
0 with respect to ∆n; more precisely, for any

i = 0, 1, . . . , n, Ȳ∆n(tn,i) = Y(tn,i), and for any tn,i−1 < s < tn,i with s = λtn,i−1 + (1 − λ)tn,i for
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some 0 < λ < 1, Ȳ∆n(s) = λY(tn,i−1) + (1− λ)Y(tn,i). Let ḡ∆n(s, Ws
0 , Ȳs

∆n ,0) denote the piecewise “flat”
version of g(s, Ws

0 , Ȳs
∆n ,0) with respect to ∆n; more precisely, for any tn,i−1 ≤ s < tn,i, ḡ∆n(s, Ws

0 , Ȳs
∆n ,0) =

g(tn,i−1, Wtn,i−1
0 , Ȳtn,i−1

∆n ,0 ).
Rewriting ḡ∆n(s, Ws

0 , Ȳs
∆n ,0) as ḡ∆n(s), we have

Fn = − logE[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds|Y(∆n), WT
0 ]

= − logE[e−
∫ T

0 ḡ∆n (s)dY(s)+ 1
2
∫ T

0 ḡ2
∆n (s)ds−

∫ T
0 (g(s)−ḡ∆n (s))dY(s)+ 1

2
∫ T

0 (g2(s)−ḡ2
∆n (s))ds|Y(∆n), WT

0 ]

= − log e−
∫ T

0 ḡ∆n (s)dY(s)+ 1
2
∫ T

0 ḡ2
∆n (s)dsE[e−

∫ T
0 (g(s)−ḡ∆n (s))dB(s)− 1

2
∫ T

0 (g(s)−ḡ∆n (s))
2(s)ds|Y(∆n), WT

0 ]

= −
∫ T

0
ḡ∆n(s)dY(s)− 1

2

∫ T

0
ḡ2

∆n
(s)ds− logE[e−

∫ T
0 (g(s)−ḡ∆n (s))dB(s)− 1

2
∫ T

0 (g(s)−ḡ∆n (s))
2ds|Y(∆n), WT

0 ]

where we have used the fact that

E[e−
∫ T

0 ḡ∆n (s)dY(s)+ 1
2
∫ T

0 ḡ2
∆n (s)ds|Y(∆n), WT

0 ] = e−
∫ T

0 ḡ∆n (s)dY(s)+ 1
2
∫ T

0 ḡ2
∆n (s)ds,

since ḡ∆n(s) is a function depending only on WT
0 and Y(∆n).

We now prove the following convergence:

E
[((

−
∫ T

0
ḡ∆n(s)dY(s)− 1

2

∫ T

0
ḡ2

∆n
(s)ds

)
−
(
−
∫ T

0
g(s)dY(s)− 1

2

∫ T

0
g2(s)ds

))2
]
→ 0, (A8)

which will imply that

−
∫ T

0
ḡ∆n(s)dY(s)− 1

2

∫ T

0
ḡ2

∆n
(s)ds→ −

∫ T

0
g(s)dY(s)− 1

2

∫ T

0
g2(s)ds

in probability. Apparently, to prove (A8), we only need to prove that

E
[(
−
∫ T

0
(g(s)− ḡ∆n(s))dB(s)− 1

2

∫ T

0
(g(s)− ḡ∆n(s))

2ds
)2
]
→ 0. (A9)

To establish (A9), notice that, by the Itô isometry [75], we have

E
[(∫ T

0
(g(s)− ḡ∆n(s))dB(s)

)2
]
= E

[∫ T

0
(g(s)− ḡ∆n(s))

2ds
]

,

which means we only need to prove that as n→ ∞,

E
[(∫ T

0
(g(s)− ḡ∆n(s))

2ds
)2
]
→ 0. (A10)
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To see this, we note that, by Conditions (d) and (e), there exists L1 > 0 such that for any s ∈ [0, T] with
tn,i−1 ≤ s < tn,i,

|g(s, Ws
0 , Ȳs

∆n ,0)− ḡ∆n(s, Ws
0 , Ȳs

∆n ,0)|

= |g(s, Ws
0 , Ȳs

∆n ,0)− g(tn,i−1, Wtn,i−1
0 , Ȳtn,i−1

∆n ,0 )|

≤ L1(|s− tn,i−1|+ ‖Ws
0 −Wtn,i−1

0 ‖+ ‖Ȳs
∆n ,0 − Ȳtn,i−1

∆n ,0 ‖)

≤ L1(|s− tn,i−1|+ ‖Ws
0 −Wtn,i−1

0 ‖+ |Y(tn,i)−Y(tn,i−1)|) (A11)

≤ L1δ∆n + L1 supr∈[tn,i−1,tn,i ]
|W(r)−W(tn,i−1)|

+ L1δ∆n + L1δ∆n‖W
T
0 ‖+ L1δ∆n‖Y

T
0 ‖+ |B(tn,i)− B(tn,i−1)|. (A12)

Moreover, by Lemma 1 and Condition (f), both ‖YT
0 ‖4 and ‖WT

0 ‖4 are integrable. Furthermore,
by Condition (f), we deduce that for any tn,i−1 ≤ s < tn,i,

E[supr∈[tn,i−1,tn,i ]
(W(r)−W(tn,i−1))

4] ≤ L2δ2
∆n

, (A13)

for some L2 > 0, and one easily verifies that

E[(B(t(n)i )− B(t(n)i−1))
4] = 3(t(n)i − t(n)i−1)

2 ≤ 3δ2
∆n

. (A14)

It can be readily checked that (A12), (A13) and (A14) imply (A10), which in turn implies (A8), as desired.
We now prove that as n tends to infinity,

E[|E[e−
∫ T

0 (g(s)−ḡ∆n (s))dB(s)− 1
2
∫ T

0 (g(s)−ḡ∆n (s))
2ds|Y(∆n), WT

0 ]− 1|]→ 0, (A15)

which will imply that

logE[e−
∫ T

0 (g(s)−ḡ(s))dB(s)− 1
2
∫ T

0 (g(s)−ḡ(s))2ds|Y(∆n), WT
0 ]→ 0

in probability and furthermore (A7). To establish (A15), we first note that

E[|E[e−
∫ T

0 (g(s)−ḡ∆n (s))dB(s)− 1
2

∫ T
0 (g(s)−ḡ∆n (s))

2ds|Y(∆n), WT
0 ]− 1|]

≤ E[E[|e−
∫ T

0 (g(s)−ḡ∆n (s))dB(s)− 1
2

∫ T
0 (g(s)−ḡ∆n (s))

2ds − 1||Y(∆n), WT
0 ]]

= E[|e−
∫ T

0 (g(s)−ḡ∆n (s))dB(s)− 1
2

∫ T
0 (g(s)−ḡ∆n (s))

2ds − 1|]

≤ E
[∣∣∣∣− ∫ T

0
(g(s)− ḡ∆n (s))dB(s)− 1

2

∫ T

0
(g(s)− ḡ∆n (s))

2ds
∣∣∣∣ e|−

∫ T
0 (g(s)−ḡ∆n (s))dB(s)− 1

2

∫ T
0 (g(s)−ḡ∆n (s))

2ds|
]

≤ E
[∣∣∣∣− ∫ T

0
(g(s)− ḡ∆n (s))dB(s)− 1

2

∫ T

0
(g(s)− ḡ∆n (s))

2ds
∣∣∣∣2
]
E
[
e2|−

∫ T
0 (g(s)−ḡ∆n (s))dB(s)− 1

2

∫ T
0 (g(s)−ḡ∆n (s))

2ds|
]

.

By (A8), we have that as n tends to infinity,

E
[∣∣∣∣− ∫ T

0
(g(s)− ḡ∆n(s))dB(s)− 1

2

∫ T

0
(g(s)− ḡ∆n(s))

2ds
∣∣∣∣2
]
→ 0.

It then follows that, to prove (A15), we only need to prove that if δ∆n is small enough,

E
[
e2|−

∫ T
0 (g(s)−ḡ∆n (s))dB(s)− 1

2
∫ T

0 (g(s)−ḡ∆n (s))
2ds|
]
< ∞. (A16)

Since
E
[
e2|−

∫ T
0 (g(s)−ḡ∆n (s))dB(s)− 1

2
∫ T

0 (g(s)−ḡ∆n (s))
2ds|
]
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≤ E
[
e2(−

∫ T
0 (g(s)−ḡ∆n (s))dB(s)− 1

2
∫ T

0 (g(s)−ḡ∆n (s))
2ds)
]
+E

[
e2(
∫ T

0 (g(s)−ḡ∆n (s))dB(s)+ 1
2
∫ T

0 (g(s)−ḡ∆n (s))
2ds)
]

, (A17)

we only have to prove that the two terms in the above upper bound are both finite provided that δ∆n is
small enough. Note that for the first term, applying the Cauchy–Schwarz inequality, we have

E[e2(−
∫ T

0 (g(s)−ḡ∆n (s))dB(s)− 1
2
∫ T

0 (g(s)−ḡ∆n (s))
2ds)] = E[e

∫ T
0 2(g(s)−ḡ∆n (s))dB(s)−

∫ T
0 4(g(s)−ḡ∆n (s))

2ds+3
∫ T

0 (g(s)−ḡ∆n (s))
2ds]

≤ E[e
∫ T

0 4(g(s)−ḡ∆n (s))dB(s)−
∫ T

0 8(g(s)−ḡ∆n (s))
2ds]E[e6

∫ T
0 (g(s)−ḡ∆n (s))

2ds].

It is well known that an application of Fatou’s lemma yields that

E[e
∫ T

0 4(g(s)−ḡ∆n (s))dB(s)−
∫ T

0 8(g(s)−ḡ∆n (s))
2ds] ≤ 1, (A18)

and by (A12), we deduce that there exists L3 > 0 such that

E[e6
∫ T

0 (g(s)−ḡ∆n (s))
2ds] ≤ eL3δ2

∆nE[eL3‖B
δ∆n
0 ‖2

]E[eL3δ2
∆n‖Y

T
0 ‖2

]E[eL3δ2
∆n‖W

T
0 ‖2

]E[eL3 sup|s−t|≤δ∆n
|W(s)−W(t)|2

].

Note that it follows from Doob’s submartingale inequality that if δ∆n is small enough,

E[eL3‖B
δ∆n
0 ‖2

] < ∞,

and by Lemma 1, we also deduce that if δ∆n is small enough,

E[eL3δ2
∆n‖Y

T
0 ‖2

] < ∞,

which, together with Condition (f), yields that for the first term in (A17)

E[e2(−
∫ T

0 (g(s)−ḡ∆n (s))dB(s)− 1
2
∫ T

0 (g(s)−ḡ∆n (s))
2ds)] < ∞. (A19)

A completely parallel argument will yield that for the second term in (A17)

E
[
e(2
∫ T

0 (g(s)−ḡ∆n (s))dB(s)+ 1
2
∫ T

0 (g(s)−ḡ∆n (s))
2ds)
]
< ∞,

which, together with (A19), immediately implies (A16), which in turn implies (A15), as desired.
Step 1.2. In this step, we prove that as n tends to infinity,

Gn → logE[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g(s)2ds|YT
0 ], (A20)

in probability.
First, note that by Theorem 7.23 of [19], we have,

dµY
dµB

(YT
0 ) =

∫ dµY|W=w

dµB
(YT

0 )dµW(w),

where
dµY|W=w

dµB
(YT

0 ) = e
∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)ds,

where we have rewritten g(s, ws
0, Ys

0) as g(ws
0) for notational simplicity. It then follows from (A3) that

logE[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds|YT
0 ] = − log

∫ dµY|W=w

dµB
(YT

0 )dµW(w)

= − log
∫

e
∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)dsdµW(w).



Entropy 2019, 21, 67 30 of 51

Similarly, we have

dµY
dµB

(Y(∆n)) =
∫ dµY|W=w

dµB
(Y(∆n))dµW(w)

=
∫ 1

E[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds|Y(∆n), W]|W=w

dµW(w).

It then again follows from (A3) that

Gn = logE[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds|Y(∆n)]

= − log
∫ 1

E[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds|Y(∆n), W]|W=w

dµW(w).

Now, we consider the following difference:∫
e
∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)dsdµW(w)−

∫ 1

E
[

e−
∫ T

0 g(ws
0)dY(s)+ 1

2
∫ T

0 g2(ws
0)ds
∣∣∣Y(∆n), W

]∣∣∣
W=w

dµW(w)

=
∫

e
∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)ds − e

∫ T
0 ḡ∆n (w

s
0)dY(s)− 1

2
∫ T

0 ḡ∆n (w
s
0)

2dsdµW(w)

+
∫

e
∫ T

0 ḡ∆n (w
s
0)dY(s)− 1

2
∫ T

0 ḡ∆n (w
s
0)

2ds

× E[e−(
∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)ds)+(

∫ T
0 ḡ∆n (w

s
0)dY(s)− 1

2
∫ T

0 ḡ2
∆n (w

s
0)ds)|Y(∆n), W]|W=w − 1

E[e−(
∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)ds)+(

∫ T
0 ḡ∆n (w

s
0)dY(s)− 1

2
∫ T

0 ḡ2
∆n (w

s
0)ds)|Y(∆n), W]|W=w

dµW(w)

= In + Jn.

Applying the inequality that for any x, y ∈ R,

|ex − ey| = |ey(ex−y − 1)| ≤ ey(|x− y|ex−y + |x− y|ey−x) = |x− y|(ex + e2y−x), (A21)

we have

E[|In|] ≤
∫

E
[∣∣∣∣e∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)ds − e

∫ T
0 ḡ∆n (w

s
0)dY(s)− 1

2
∫ T

0 ḡ2
∆n (w

s
0)ds
∣∣∣∣] dµW(w)

≤
∫

E
[∣∣∣∣∫ T

0
g(ws

0)− ḡ∆n(w
s
0)dY(s)− 1

2

∫ T

0
g2(ws

0)− ḡ2
∆n
(ws

0)ds
∣∣∣∣

×
(

e
∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)ds + e(2

∫ T
0 ḡ∆n (w

s
0)dY(s)−

∫ T
0 ḡ2

∆n (w
s
0)ds)−(

∫ T
0 g(ws

0)dY(s)− 1
2
∫ T

0 g2(ws
0)ds)

)]
dµW(w)

≤
∫

E
[∣∣∣∣∫ T

0
(g(ws

0)− ḡ∆n(w
s
0))dB(s)

∣∣∣∣+ ∣∣∣∣∫ T

0
(g(ws

0)− ḡ∆n(w
s
0))(g(s)− 1

2
g(ws

0)−
1
2

ḡ∆n(w
s
0))ds

∣∣∣∣
×
(

e
∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)ds + e(2

∫ T
0 ḡ∆n (w

s
0)dY(s)−

∫ T
0 ḡ2

∆n (w
s
0)ds)−(

∫ T
0 g(ws

0)dY(s)− 1
2
∫ T

0 g2(ws
0)ds)

)]
dµW(w)

≤
∫

E
[∣∣∣∣∫ T

0
(g(ws

0)− ḡ∆n(w
s
0))dB(s)

∣∣∣∣+ (Lδ∆n + L sup
|s−t|≤δ∆n

|w(s)− w(t)|+ Lδ∆n

+Lδ∆n‖w
T
0 ‖+ Lδ∆n‖Y

T
0 ‖+ sup

|s−t|≤δ∆n

|B(s)− B(t)|)
(∫ T

0

∣∣∣∣g(s)− 1
2

g(ws
0)−

1
2

ḡ∆n(w
s
0)

∣∣∣∣ ds
)

×
(

e
∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)ds + e(2

∫ T
0 ḡ∆n (w

s
0)dY(s)−

∫ T
0 ḡ2

∆n (w
s
0)ds)−(

∫ T
0 g(ws

0)dY(s)− 1
2
∫ T

0 g2(ws
0)ds)

)]
dµW(w).
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Now, using (A12), Condition (f) and the Itô isometry, we deduce that as n→ ∞,

∫
E
[∣∣∣∣∫ T

0
g(ws

0)− ḡ∆n(w
s
0)dB(s)

∣∣∣∣2
]

dµW(w)→ 0, (A22)

and as n tends to infinity, ∫
E[(Lδ∆n + L sup

|s−t|≤δ∆n

|w(s)− w(t)|+ Lδ∆n

+ Lδ∆n‖w
T
0 ‖+ Lδ∆n‖Y

T
0 ‖+ sup

|s−t|≤δ∆n

|B(s)− B(t)|)2]dµW(w)→ 0. (A23)

Now, using a similar argument as above with (A6) and Lemma 1, we can show that for any constant K,

E[e
∫ T

0 Kḡ2
∆n (s)ds] = E[e

∫ T
0 K(ḡ∆n (s)−g(s)+g(s))2ds] = E[e

∫ T
0 K(2(ḡ∆n (s)−g(s))2+2g2(s))ds] < ∞, (A24)

provided that n is large enough, which, coupled with a similar argument as in the derivation of (A19),
proves that for n large enough,

∫
E
[(

e
∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)ds + e(2

∫ T
0 ḡ(ws

0)dY(s)−
∫ T

0 ḡ2(ws
0)ds)−(

∫ T
0 g(ws

0)dY(s)− 1
2
∫ T

0 g2(ws
0)ds)

)2
]

dµW(w) < ∞, (A25)

and furthermore ∫ (∫ T

0

∣∣∣∣g(s)− 1
2

g(ws
0)−

1
2

ḡ∆n(w
s
0)

∣∣∣∣ ds
)2

×
(

e
∫ T

0 g(ws
0)dY(s)− 1

2
∫ T

0 g2(ws
0)ds + e(2

∫ T
0 ḡ∆n (w

s
0)dY(s)−

∫ T
0 ḡ2

∆n (w
s
0)ds)−(

∫ T
0 g(ws

0)dY(s)− 1
2
∫ T

0 g2(ws
0)ds)

)2
dµW(w) < ∞, (A26)

which further implies that as n tends to infinity,

E[|In|]→ 0. (A27)

Now, using the shorthand notations An, A for
∫ T

0 ḡ∆n(w
s
0)dY(s) − 1

2

∫ T
0 ḡ∆n(w

s
0)

2ds,∫ T
0 g(ws

0)dY(s)− 1
2

∫ T
0 g(ws

0)
2ds respectively, we have

E[|Jn|] = E
[∣∣∣∣∫ eAn

E[e−A+An |Y(∆n), W]|W=w − 1
E[e−A+An |Y(∆n), W]|W=w

dµW(w)

∣∣∣∣]
= E

[∣∣∣∣∫ E[e−A+An − 1|Y(∆n), W]|W=w

E[e−A|Y(∆n), W]|W=w
dµW(w)

∣∣∣∣]
≤ E

[∫ E[|e−A+An − 1||Y(∆n), W]|W=w

E[e−A|Y(∆n), W]|W=w
dµW(w)

]
≤ E

[∫
E[|A− An|e|A−An ||Y(∆n), W]|W=wE[eA|Y(∆n), W]|W=wdµW(w)

]
= E

[
E[|A− An|e|A−An ||Y(∆n), W]E[eA|Y(∆n), W]

(
dµY
dµB

(YT
0 )

)
/
(dµY|W

dµB
(YT

0 )

)]
= E

[
|A− An|e|A−An |E[eA|Y(∆n), W]E

[(
dµY
dµB

(YT
0 )

)
/
(dµY|W

dµB
(YT

0 )

)
|Y(∆n), W

]]
.

Now, a similar argument as in (A22)–(A26), together with the well-known fact (see, e.g., Theorem 6.2.2
in [12]) that

dµY
dµB

(YT
0 ) = e

∫ T
0 ĝ(s)dY(s)− 1

2
∫ T

0 ĝ2(s)ds,
dµY|W

dµB
(YT

0 ) = e
∫ T

0 g(s)dY(s)− 1
2
∫ T

0 g2(s)ds,
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where ĝ(s) = E[g(s)|YT
0 ], yields that

E[|Jn|]→ 0.

Now, we are ready to conclude that as n tends to infinity,

E[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds|Y(∆n)]→ E[e−
∫ T

0 g(s)dY+ 1
2
∫ T

0 g2(s)ds|YT
0 ]

in probability and furthermore (A20), as desired.
Step 1.3. In this step, we show the convergence of {E[Fn]} and {E[Gn]} and further establish the

theorem under the condition (A6).
Now, using the concavity of the log function and the fact that log x ≤ x, we can obtain the upper

bounds and lower bounds of Fn and Gn as follows:

Fn ≤
∣∣∣∣E [− ∫ T

0
g(s)dY(s) +

1
2

∫ T

0
g2(s)ds

∣∣∣∣Y∆n , WT
0

]∣∣∣∣+E
[

e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds
∣∣∣Y∆n , WT

0

]
,

Fn ≥ −
∣∣∣∣E [− ∫ T

0
g(s)dY(s) +

1
2

∫ T

0
g2(s)ds

∣∣∣∣Y∆n , WT
0

]∣∣∣∣−E
[

e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds
∣∣∣Y∆n , WT

0

]
,

and

Gn ≤
∣∣∣∣E [− ∫ T

0
g(s)dY(s) +

1
2

∫ T

0
g2(s)ds

∣∣∣∣Y∆n

]∣∣∣∣+E
[

e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds
∣∣∣Y∆n

]
,

Gn ≥ −
∣∣∣∣E [− ∫ T

0
g(s)dY(s) +

1
2

∫ T

0
g2(s)ds

∣∣∣∣Y∆n

]∣∣∣∣−E
[

e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds
∣∣∣Y∆n

]
.

And furthermore, using a similar argument as in Step 1.1, we can show that as n tends to infinity,

E
[
−
∫ T

0
g(s)dY(s) +

1
2

∫ T

0
g2(s)ds

∣∣∣∣Y(∆n), WT
0

]
=

(
−
∫ T

0
ḡ∆n(s)dY(s) +

1
2

∫ T

0
ḡ2

∆n
(s)ds

)
×E

[
−
∫ T

0
(g(s)− ḡ∆n)(s)dY(s) +

1
2

∫ T

0
(g2(s)− ḡ2

∆n
(s))ds

∣∣∣∣Y(∆n), WT
0

]
→
(
−
∫ T

0
g(s)dY(s) +

1
2

∫ T

0
g2(s)ds

)
and

E[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds|Y(∆n), WT
0 ]

= E[e−
∫ T

0 ḡ∆n (s)dY(s)+ 1
2
∫ T

0 ḡ2
∆n (s)ds−

∫ T
0 (g(s)−ḡ∆n (s))dY(s)+ 1

2
∫ T

0 (g2(s)−ḡ2
∆n (s))ds|Y(∆n), WT

0 ]

= e−
∫ T

0 ḡ∆n (s)dY(s)+ 1
2
∫ T

0 ḡ2
∆n (s)dsE[e−

∫ T
0 (g(s)−ḡ∆n (s))dB(s)− 1

2
∫ T

0 (g(s)−ḡ∆n (s))
2ds|Y(∆n), WT

0 ]

→ e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g2(s)ds.

It then follows from the general Lebesgue dominated convergence theorem that

lim
n→∞

E[Fn]→ E
[
−
∫ T

0
g(s)dY(s) +

1
2

∫ T

0
g(s)2ds

]
.

A parallel argument can be used to show that

lim
n→∞

E[Gn] = E[logE[e−
∫ T

0 g(s)dY(s)+ 1
2
∫ T

0 g(s)2ds|YT
0 ]].
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So, under the condition (A6), we have shown that

lim
n→∞

I(WT
0 ; Y(∆n)) = I(WT

0 ; YT
0 ).

Step 2. In this step, we will use the convergence in Step 1 and establish the theorem without the
condition (A6).

Following Page 264 of [19], we define, for any k,

τk =

{
inf{t ≤ T :

∫ t
0 g2(s, Ws

0 , Ys
0)ds ≥ k}, if

∫ T
0 g2(s, Ws

0 , Ys
0)ds ≥ k

T, if
∫ T

0 g2(s, Ws
0 , Ys

0)ds < k.
(A28)

Then, we again follow [19] and define a truncated version of g as follows:

g(k)(t, γt
0, φt

0) = g(t, γt
0, φt

0)1∫ t
0 g2(s,γt

0,φs
0)ds<k.

Now, define a truncated version of Y as follows:

Y(k)(t) = ρ
∫ t

0
g(k)(s, Ws

0 , Ys
0)ds + B(t), t ∈ [0, T],

which, as elaborated on Page 265 in [19], can be rewritten as

Y(k)(t) = ρ
∫ t

0
g(k)(s, Ws

0 , Ys
(k),0)ds + B(t), t ∈ [0, τk ∧ T]. (A29)

Note that for fixed k, the system in (A29) satisfies the condition (A6), and so the theorem holds true.
To be more precise, note that

I(WT
0 ; Yτk

0 ) = E
[

log
dµτk ,Y|W

dµτk ,B
(Yτk

0 )

]
−E

[
log

dµτk ,Y

dµτk ,B
(Yτk

0 )

]
,

where µτk ,Y and µτk ,B respectively denote the truncated versions of µY and µB (from time 0 to time τn).
Applying Theorem 7.10 in [19], we obtain

dµτk ,Y|W
dµτk ,B

(Yτn
0 ) = e

∫ τk
0 g(s)dY(s)− 1

2
∫ τk

0 g2(s)ds,

and
dµτk ,Y

dµτk ,B
(Yτk

0 ) = e
∫ τk

0 ĝ(s)dY(s)− 1
2
∫ τk

0 ĝ2(s)ds,

where
ĝ(s) = E[g(s, Ws

0 , Ys
0)|Ys

0 ].

It then follows that

I(WT
0 ; Yτk

0 ) =
1
2
E
[∫ τk

0
(g(s)− ĝ(s))2ds

]
.

Notice that it can be easily verified that τk → T as k tends to infinity, which, together with the monotone
convergence theorem, further yields that monotone increasingly,

I(WT
0 ; Yτk

0 ) =
1
2
E
[∫ τk

0
(g(s)− ĝ(s))2ds

]
→ I(WT

0 ; YT
0 ) =

1
2
E
[∫ T

0
(g(s)− ĝ(s))2ds

]
,
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as k tends to infinity. By Step 1, for any fixed ki,

lim
n→∞

I(WT
0 ; Y(∆n ∩ [0, τki

])) = I(WT
0 ; Y

τki
0 ),

which means that there exists a sequence {ni} such that, as i tends to infinity, we have, monotone
increasingly,

I(WT
0 ; Y(∆ni ∩ [0, τki

]))→ I(WT
0 ; YT

0 ).

Since, by the fact that Yτk
0 coincides with YT

0 on the interval [0, τk ∧ T], we have

I(WT
0 ; Y(∆ni )) ≥ I(WT

0 ; Y(∆ni ∩ [0, τki
])).

Now, using the fact that
I(WT

0 ; Y(∆ni )) ≤ I(WT
0 ; YT

0 ),

we conclude that as i tends to infinity,

lim
i→∞

I(WT
0 ; Y(∆ni )) = I(WT

0 ; YT
0 ).

A similar argument can be readily applied to any subsequence of {I(WT
0 ; Y(∆n))}, which will establish

the existence of its further subsubsequence that converges to I(WT
0 ; YT

0 ), which implies that

lim
n→∞

I(WT
0 ; Y(∆n)) = I(WT

0 ; YT
0 ).

The proof of the theorem is then complete.

Remark A1. The arguments in the proof of Theorem 2 can be adapted to yield a sampling theorem for
continuous-time minimum mean square error (MMSE), a quantity of central importance in estimation theory.

More precisely, consider the following continuous-time Gaussian feedback channel under the assumptions
of Theorem 2:

Y(t) =
∫ t

0
X(s, M, Ys

0)ds + B(t), t ∈ [0, T].

The MMSE is the limit of the MMSE based on the samples with respect to ∆n, namely,

∫ T

0
E[(X(s)−E[X(s)|YT

0 ])
2]ds = lim

n→∞

∫ T

0
E[(X(s)−E[X(s)|Y(∆n))

2]ds.

To see this, note that the above-mentioned convergence follows from the fact that

E[E2[X(s)|YT
0 ]] = E

(∫ X(s, ms
0, Ys

0)dµY|M=m(YT
0 )/dµBdµM(m)

dµY(YT
0 )/dµB

)2
 ,

and

E[E2[X(s)|Y(∆n)]] = E

(∫ X(s, ms
0, Ys

0)dµY|M=m(Y(∆n))/dµBdµM(m)

dµY(Y(∆n))/dµB

)2
 ,

and the proven fact that dµY(Y(∆n))/dµB and dµY|M(Y(∆n))/dµB respectively converge to
dµY(YT

0 )/dµB and dµY|M(YT
0 )/dµB and a parallel argument as in establishing the convergence of {E[Fn]}

and {E[Gn]} in the proof of Theorem 2.
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Similarly, we can also conclude that under the assumptions of Theorem 2, the causal MMSE is the limit of
the sampled causal MMSE, namely,

∫ T

0
E[(X(s)−E[X(s)|Ys

0 ])
2]ds = lim

n→∞

∫ T

0
E[(X(s)−E[X(s)|Y(∆n ∩ [0, s])])2]ds.

Appendix D. Proof of Theorem 3

In this section, we give the detailed proof of Theorem 3.
We will first need the following lemma, which is parallel to Lemma 1.

Lemma A1. Assume Conditions (d)-(f). Then, there exists ε > 0 and a constant C > 0 such that for all n,

E[eε‖Y(n),T
0 ‖2

] < C. (A30)

Proof. A discrete-time version of the proof of Lemma 1 implies that there exists ε > 0 and a constant
C > 0 such that for all n

E[eε supi∈{0,1,...,n}(Y
(n)(tn,i))

2
] < C,

which, together with (12), immediately implies (A30).

We also need the following lemma, which is parallel to Theorem 10.2.2 in [24].

Lemma A2. Assume Conditions (d)–(f). Then, there exists a constant C > 0 such that for all n,

E[‖Y(n),T
0 −YT

0 ‖2] ≤ Cδ∆n .

Proof. Note that for any n, we have

Y(tn,i+1) = Y(tn,i) +
∫ tn,i+1

tn,i

g(s, Ws
0 , Ys

0)ds + B(tn,i+1)− B(tn,i),

and

Y(n)(tn,i+1) = Y(n)(tn,i) +
∫ tn,i+1

tn,i

g(s, Wtn,i
0 , Y(n),tn,i

0 )ds + B(tn,i+1)− B(tn,i).

It then follows that

Y(tn,i+1)−Y(n)(tn,i+1) = Y(tn,i)−Y(n)(tn,i) +
∫ tn,i+1

tn,i

(g(s, Ws
0 , Ys

0)− g(s, Wtn,i
0 , Y(n),tn,i

0 ))ds. (A31)

Now, for any t, choose n0 such that tn,n0 ≤ t < tn,n0+1. Now, a recursive application of (A31), coupled
with Conditions (d) and (e), yields that for some L > 0,

Y(t)−Y(n)(t) =
n0

∑
i=0

∫ tn,i+1

tn,i

(g(s, Ws
0 , Ys

0)− g(tn,i, Wtn,i
0 , Y(n),tn,i

0 ))ds +
∫ t

tn,n0+1

(g(s, Ws
0 , Ys

0)− g(tn,i, W
tn,n0+1
0 , Y

(n),tn,n0+1
0 ))ds

≤
n0

∑
i=0

∫ tn,i+1

tn,i

L|s− tn,i|+ L‖Ws
0 −Wtn,i

0 ‖+ L‖Ys
0 −Y(n),s

0 ‖+ L‖Y(n),s
0 −Y(n),tn,i

0 ‖ds

+
∫ t

tn,n0+1

L|s− tn,n0+1|+ L‖Ws
0 −W

tn,n0+1
0 ‖+ L‖Ys

0 −Y(n),s
0 ‖+ L‖Y(n),s

0 −Y
(n),tn,n0+1
0 ‖ds.

Noticing that for any s with tn,i ≤ s < tn,i+1, we have

‖Y(n),s
0 −Y(n),tn,i

0 ‖2 ≤ |Y(n)(tn,i+1)−Y(n)(tn,i)|2 ≤ 2
∣∣∣∫ tn,i+1

tn,i
g(s, Wtn,i

0 , Y(n),tn,i
0 )ds

∣∣∣2 + 2|B(tn,i+1)− B(tn,i)|2,
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which, together with Condition (e) and the fact that for all n and i,

E[|B(tn,i+1)− B(tn,i)|2] = O(δ∆n), (A32)

implies that

E[‖Y(n),s
0 −Y(n),tn,i

0 ‖2] = O(δ∆n). (A33)

Noting that the constants in the two terms O(δ∆n) in (A32) and (A33) can be chosen uniform over

all n, a usual argument with the Gronwall inequality and Condition (f) applied to E[‖Yt
0 − Y(n),t

0 ‖2]

completes the proof of the theorem.

We are now ready for the proof of Theorem 3.

Proof of Theorem 3. We proceed in two steps.
Step 1. In this step, we establish the theorem assuming that there exists a constant C > 0 such

that for all wT
0 ∈ C[0, T] and all yT

0 ∈ C[0, T],

∫ T

0
g2(s, ws

0, ys
0)ds < C. (A34)

We first note that straightforward computations yield

fY(n)(∆n)|W(y(n)(∆n)|wT
0 ) =

n

∏
i=1

f (y(n)tn,i
|y(n),tn,i−1

tn,0
, wtn,i−1

0 )

=
n

∏
i=1

1√
2π(tn,i − tn,i−1)

exp

− (y(n)tn,i
− y(n)tn,i−1

−
∫ tn,i

tn,i−1
g(s, wtn,i−1

0 , y(n),tn,i−1
0 )ds)2

2(tn,i − tn,i−1)

 ,

(here we have used the shorter notations y(n)tn,i
, y(n)tn,i−1

for y(n)(tn,i), y(n)(tn,i−1), respectively) and

fY(n)(∆n)
(y(n)(∆n)) =

∫
∏n

i=1
1√

2π(tn,i−tn,i−1)
exp

(
−

(y(n)tn,i
−y(n)tn,i−1

−
∫ tn,i

tn,i−1
g(s,w

tn,i−1
0 ,y

(n),tn,i−1
0 )ds)2

2(tn,i−tn,i−1)

)
dµW(w),

which further lead to

fY(n)(∆n)|W(Y(n)(∆n)|WT
0 ) = ∏n

i=1
1√

2π(tn,i−tn,i−1)
exp

(
−

(Y(n)
tn,i
−Y(n)

tn,i−1
−
∫ tn,i

tn,i−1
g(s,W

tn,i−1
0 ,Y

(n),tn,i−1
0 )ds)2

2(tn,i−tn,i−1)

)
, (A35)

and

fY(n)(∆n)
(Y(n)(∆n)) =

∫
∏n

i=1
1√

2π(tn,i−tn,i−1)
exp

(
−

(Y(n)
tn,i
−Y(n)

tn,i−1
−
∫ tn,i

tn,i−1
g(tn,i−1,w

tn,i−1
0 ,Y

(n),tn,i−1
0 )ds)2

2(tn,i−tn,i−1)

)
dµW(w). (A36)
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With (A35) and (A36), we have

I(WT
0 ; Y(n)(∆n)) = E[log fY(n)(∆n)|W(Y(n)(∆n)|WT

0 )]−E[log fY(n)(∆n)
(Y(n)(∆n))]

= E

log
n

∏
i=1

exp

−−2
∫ tn,i

tn,i−1
g(s, Wtn,i−1

0 , Y(n),tn,i−1
0 )ds (Y(n)

tn,i
−Y(n)

tn,i−1
) + (

∫ tn,i
tn,i−1

g(s, Wtn,i−1
0 , Y(n),tn,i−1

0 )ds)2

2(tn,i − tn,i−1)


−E

log
∫ n

∏
i=1

exp

−−2
∫ tn,i

tn,i−1
g(s, wtn,i−1

0 , Y(n),tn,i−1
0 )ds (Y(n)

tn,i
−Y(n)

tn,i−1
) + (

∫ tn,i
tn,i−1

g(s, wtn,i−1
0 , Y(n),tn,i−1

0 )ds)2

2(tn,i − tn,i−1)

 dµW(w)


= E

 n

∑
i=1

−−2
∫ tn,i

tn,i−1
g(s, Wtn,i−1

0 , Y(n),tn,i−1
0 )ds (Y(n)

tn,i
−Y(n)

tn,i−1
) + (

∫ tn,i
tn,i−1

g(s, Wtn,i−1
0 , Y(n),tn,i−1

0 )ds)2

2(tn,i − tn,i−1)


−E

log
∫

exp
n

∑
i=1

−−2
∫ tn,i

tn,i−1
g(s, wtn,i−1

0 , Y(n),tn,i−1
0 )ds (Y(n)

tn,i
−Y(n)

tn,i−1
) + (

∫ tn,i
tn,i−1

g(s, wtn,i−1
0 , Y(n),tn,i−1

0 )ds)2

2(tn,i − tn,i−1)

 dµW(w)

 .

On the other hand, it is well known (see, e.g., [12]) that

I(W; YT
0 ) = E

[
log

dµY|W
dµB

(YT
0 )

]
−E

[
log

dµY
dµB

(YT
0 )

]
= E

[
log exp

[∫ T

0
g(s, Ws

0 , Ys
0)dY(s)− 1

2

∫ T

0
g2(s, Ws

0 , Ys
0)ds

]]
−E

[
log

∫
exp

[∫ T

0
g(s, ws

0, Ys
0)dY(s)− 1

2

∫ T

0
g2(s, ws

0, Ys
0)dsdµW(w)

]]
= E

[∫ T

0
g(s, Ws

0 , Ys
0)dY(s)− 1

2

∫ T

0
g2(s, Ws

0 , Ys
0)ds

]
−E

[
log

∫
exp

[∫ T

0
g(s, ws

0, Ys
0)dY(s)− 1

2

∫ T

0
g2(s, ws

0, Ys
0)dsdµW(w)

]]
.

Now, we compute

∫ T

0
g(s, Ws

0 , Ys
0)dY(s)−

n

∑
i=1

∫ tn,i
tn,i−1

g(s, Wtn,i−1
0 , Y(n),tn,i−1

0 )ds(Y(n)
tn,i
−Y(n)

tn,i−1
)

tn,i − tn,i−1

=
∫ T

0
g(s, Ws

0 , Ys
0)dY(s)−

n

∑
i=1

g(tn,i−1, Wtn,i−1
0 , Y(n),tn,i−1

0 )(Y(n)
tn,i
−Y(n)

tn,i−1
)

−
n

∑
i=1

∫ tn,i
tn,i−1

(g(s, Wtn,i−1
0 , Y(n),tn,i−1

0 )− g(tn,i−1, Wtn,i−1
0 , Y(n),tn,i−1

0 ))ds(Y(n)
tn,i
−Y(n)

tn,i−1
)

tn,i − tn,i−1
.
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It can be easily checked that the second term of the right-hand side of the above equality converges to
0 in mean. For the first term, we have

∫ T

0
g(s, Ws

0 , Ys
0)dY(s)−

n

∑
i=1

g(tn,i−1, Wtn,i−1
0 , Y(n),tn,i−1

0 )(Y(n)
tn,i
−Y(n)

tn,i−1
)

=
n

∑
i=1

∫ tn,i

tn,i−1

g(s, Ws
0 , Ys

0)dY(s)−
n

∑
i=1

g(tn,i−1, Wtn,i−1
0 , Y(n),tn,i−1

0 )(Ytn,i −Ytn,i−1)

+
n

∑
i=1

g(tn,i−1, Wtn,i−1
0 , Y(n),tn,i−1

0 )((Ytn,i −Ytn,i−1)− (Y(n)
tn,i
−Y(n)

tn,i−1
))

=
n

∑
i=1

∫ tn,i

tn,i−1

g(s, Ws
0 , Ys

0)dY(s)−
n

∑
i=1

∫ n

i=1
g(tn,i−1, Wtn,i−1

0 , Y(n),tn,i−1
0 )dY(s)

+
n

∑
i=1

g(tn,i−1, Wtn,i−1
0 , Y(n),tn,i−1

0 )((Ytn,i −Ytn,i−1)− (Y(n)
tn,i
−Y(n)

tn,i−1
))

=
n

∑
i=1

∫ tn,i

tn,i−1

(g(s, Ws
0 , Ys

0)− g(tn,i−1, Wtn,i−1
0 , Y(n),tn,i−1

0 ))dY(s)

+
n

∑
i=1

g(tn,i−1, Wtn,i−1
0 , Y(n),tn,i−1

0 )((Ytn,i −Ytn,i−1)− (Y(n)
tn,i
−Y(n)

tn,i−1
)).

It then follows from Conditions (d) and (e), Lemmas 1, A1 and A2 that

E

∣∣∣∣∣∣
n

∑
i=1

∫ tn,i
tn,i−1

g(s, Wtn,i−1
0 , Y(n),tn,i−1

0 )ds(Y(n)
tn,i
−Y(n)

tn,i−1
)

tn,i − tn,i−1
−
∫ T

0
g(s, Ws

0 , Ys
0)dY(s)

∣∣∣∣∣∣
 = O(δ

1
2
∆n
). (A37)

And using a similar argument as above, we deduce that

E

∣∣∣∣∣∣12
n

∑
i=1

(
∫ tn,i

tn,i−1
g(s, Wtn,i−1

0 , Y(n),tn,i−1
0 )ds)2

tn,i − tn,i−1
− 1

2

∫ T

0
g(s, Ws

0 , Ys
0)

2ds

∣∣∣∣∣∣
 = O(δ

1
2
∆n
). (A38)

It then follows from (A37) and (A38) that as n tends to infinity,

E

∣∣∣∣∣∣
n

∑
i=1

−−2
∫ tn,i

tn,i−1
g(s, Wtn,i−1

0 , Y(n),tn,i−1
0 )ds(Y(n)

tn,i
−Y(n)

tn,i−1
) + (

∫ tn,i
tn,i−1

g(s, Wtn,i−1
0 , Y(n),tn,i−1

0 )ds)2

2(tn,i − tn,i−1)


−
∫ T

0
g(s, Ws

0 , Ys
0)dY(s) +

1
2

∫ T

0
g(s, Ws

0 , Ys
0)

2ds
∣∣∣∣] = O(δ

1
2
∆n
). (A39)

We now establish the following convergence:

E
[

log
∫

exp A(n)(w)dµW(w)

]
→ E

[
log

∫
exp A(w)dµW(w)

]
. (A40)

where

A(n)(w) = ∑n
i=1

(
−
−2
∫ tn,i

tn,i−1
g(s,w

tn,i−1
0 ,Y

(n),tn,i−1
0 )ds(Y(n)

tn,i
−Y(n)

tn,i−1
)+(

∫ tn,i
tn,i−1

g(s,w
tn,i−1
0 ,Y

(n),tn,i−1
0 )ds)2

2(tn,i−tn,i−1)

)
.
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and let

A(w) =
∫ T

0
g(s, ws

0, Ys
0)dY(s)− 1

2

∫ T

0
g2(s, ws

0, Ys
0)ds.

Note that using a parallel argument as the derivation of (A39), we can establish

E
∫ ∣∣∣A(n)(w)− A(w)

∣∣∣ dµW(w)→ 0, (A41)

as n tends to infinity; and similarly as in the derivation of (A27), from Conditions (d), (e) and (f),
Lemmas 1, A1 and A2, we deduce that

E
[∫ ∣∣∣exp A(n)(w)− exp A(w)

∣∣∣ dµW(w)

]
→ 0 (A42)

as n tends to infinity. In addition, note that we always have∣∣∣∣log
∫

exp A(n)(w)dµW(w)

∣∣∣∣ ≤ ∫ exp A(n)(w)dµW(w) +

∣∣∣∣∫ A(n)(w)dµW(w)

∣∣∣∣ . (A43)

So, by the general Lebesgue dominated convergence theorem with (A41), (A42) and (A43), we have

E
[

log
∫

exp A(n)(w)dµW(w)

]
→ E

[
log

∫
exp A(w)dµW(w)

]
.

So, under the condition (A34), we have established the theorem.
Step 2. In this step, we will use the convergence in Step 1 and establish the theorem without the

condition (A34).
Defining the stopping τk, g(k) and Y(k) as in the proof of Theorem 2, we again have:

Y(k)(t) = ρ
∫ t

0
g(k)(s, Ws

0 , Ys
(k),0)ds + B(t), t ∈ [0, τk ∧ T].

For any fixed k, applying the Euler-Maruyama approximation as in (11) and (12) to the above channel
with respect to ∆n, we obtain the process Y(n)

(k) (·).
Now, by the fact that

I(WT
0 ; Y(n)(∆n)) = E[log fY(n)(∆n)|W(Y(n)(∆n)|WT

0 )]−E[log fY(n)(∆n)
(Y(n)(∆n))]

= E[A(n)(W)]−E
[

log
∫

exp A(n)(w)dµW(w)

]
≥ 0,
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we deduce that

E[log fY(n)(∆n)
(Y(n)(∆n))]

≤ E[log fY(n)(∆n)|W(Y(n)(∆n)|WT
0 )]

= E

 n

∑
i=1

−−2
∫ tn,i

tn,i−1
g(s, Wtn,i−1

0 , Y(n),tn,i−1
0 )ds (Y(n)

tn,i
−Y(n)

tn,i−1
) + (

∫ tn,i
tn,i−1

g(s, Wtn,i−1
0 , Y(n),tn,i−1

0 )ds)2

2(tn,i − tn,i−1)


= E

 n

∑
i=1

(
∫ tn,i

tn,i−1
g(s, Wtn,i−1

0 , Y(n),tn,i−1
0 )ds)2

2(tn,i − tn,i−1)


≤ E

 n

∑
i=1

(
∫ tn,i

tn,i−1
g(s, Wtn,i−1

0 , Y(n),tn,i−1
(k),0 )2ds)

∫ tn,i
tn,i−1

ds

2(tn,i − tn,i−1)


= E

[
n

∑
i=1

∫ tn,i

tn,i−1

g(s, Wtn,i−1
0 , Y(n),tn,i−1

(k),0 )2ds

]

= E
[∫ T

0
g(s, Wbsc∆n

0 , Y(n),bsc∆n
0 )2ds

]
,

where bsc∆n denote the unique number n0 such that tn,n0 ≤ s < tn,n0+1. Now, using the easily verifiable
fact that

1∫
exp A(n)(w)dµW(w)

= E[exp(−A(n)(W))|YT
0 ],

and Jensen’s inequality, we deduce that

E
[

log
1∫

exp A(n)(w)dµW(w)

]
= E

[
logE[exp(−A(n)(W))|YT

0 ]
]
≤ logE[exp(−A(n)(W))] ≤ 0,

where for the last inequality, we have applied Fatou’s lemma as in deriving (A18). It then follows that

0 ≤ E[log fY(n)(∆n)
(Y(n)(∆n))] ≤ E

[
n

∑
i=1

∫ tn,i

tn,i−1

g(s, Wtn,i−1
0 , Y(n),tn,i−1

0 )2ds

]
,

which further implies that

I(WT
0 ; Y(n)(∆n)) ≤ E

[
n

∑
i=1

∫ tn,i

tn,i−1

g(s, Wtn,i−1
0 , Y(n),tn,i−1

0 )2ds

]
.

Now, using the fact that Y(n) and Y(n)
(k) coincide over [0, τk ∧ T], one verifies that for any ε > 0,

I(WT
0 ; Y(n)(∆n))− I(WT

0 ; Y(n)
(k),∆n

) ≤ E
[∫ T

τk

g(s, Wbsc∆n
0 , Y(n),bsc∆n

0 )2ds
]

≤ E
[∫ T

τk

g(s, Wbsc∆n
0 , Y(n),bsc∆n

0 )2ds; T − τk ≤ ε

]
+E

[∫ T

τk

g(s, Wbsc∆n
0 , Y(n),bsc∆n

0 )2ds; T − τk > ε

]
≤
∫ T

T−ε
E
[

g(s, Wbsc∆n
0 , Y(n),bsc∆n

0 )2
]

ds +E
[∫ T

τk

g(s, Wbsc∆n
0 , Y(n),bsc∆n

0 )2ds; T − τk > ε

]
.

Using the easily verifiable fact that {τk} converges to T in probability uniformly over all n and the fact
that ε can be arbitrarily small, we conclude that as k tends to infinity, uniformly over all n,

I(WT
0 ; Y(n)

(k) (∆n))→ I(WT
0 ; Y(n)(∆n)). (A44)
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Next, an application of the monotone convergence theorem, together with the fact that τk → T as k
tends to infinity, yields that monotone increasingly

I(WT
0 ; Yτn

0 ) =
1
2
E
[∫ τn

0
(g(s)− ĝ(s))2ds

]
→ I(WT

0 ; YT
0 ) =

1
2
E
[∫ T

0
(g(s)− ĝ(s))2ds

]
as n tends to infinity. By Step 1, for any fixed ki,

lim
n→∞

I(WT
0 ; Y(n)

(ki)
(∆n)) = I(WT

0 ; Y
τki
0 ),

which means that there exists a sequence {ni} such that, as i tends to infinity,

I(W; Y(ni)
(ki)

(∆n))→ I(W; YT
0 ).

Moreover, by (A44),
lim
i→∞

I(WT
0 ; Y(ni)

(ki)
(∆ni )) = lim

i→∞
I(WT

0 ; Y(ni)(∆n)),

which further implies that
lim
i→∞

I(WT
0 ; Y(ni)(∆n)) = I(WT

0 ; YT
0 ).

The theorem then follows from a usual subsequence argument as in the proof of Theorem 2.

Remark A2. Parallel to Remark A1, the arguments in the proof of Theorem 3 can be adapted to yield an
approximation theorem in estimation theory.

More precisely, consider the following continuous-time Gaussian feedback channel under the assumptions
in Theorem 3:

Y(t) =
∫ t

0
X(s, M, Ys

0)ds + B(t), t ∈ [0, T].

The MMSE is the limit of the approximated MMSE, namely,

∫ T

0
E[(X(s)−E[X(s)|YT

0 ])
2]ds = lim

n→∞

∫ T

0
E[(X(n)(s)−E[X(n)(s)|Y(n)(∆n)])

2]ds.

In more detail, the above-mentioned convergence follows from the fact that

∫ T

0
E[(X(n)(s))2]ds→

∫ T

0
E[(X(s))2]ds

and the fact that

E[E2[X(s)|YT
0 ]] = E

[(∫
X(s, ms

0, Ys
0) exp(A(m))dµM(m)∫

exp(A(m))dµM(m)

)2]
,

and the fact that

E[E2[X(n)(s)|Y(n)(∆n)]] = E

(∫ X(n)(s, ms
0, Ys

0) exp(A(n)(m))dµM(m)∫
exp(A(n)(m))dµM(m)

)2
 .

Then, using a similar argument as in the proof of Theorem 3, we can show

lim
n→∞

E[E2[X(n)(s)|Y(n)(∆n)]] = E[E2[X(s)|YT
0 ]],

which implies the claimed convergence.
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Similarly, we can also conclude that with the assumptions in Theorem 3, the causal MMSE is the limit of
the approximated causal MMSE, namely,

∫ T

0
E[(X(s)−E[X(s)|Ys

0 ])
2]ds = lim

n→∞

∫ T

0
E[(X(n)(s)−E[X(n)(s)|Y(n)(∆n ∩ [0, s])2]ds.

Appendix E. Proof of Theorem 7

In the section, we give the proof of Theorem 7. For notational convenience only, we will assume
m = 2, the case with a generic m being completely parallel. We will first need the following lemma,
which is a key component in our treatment of both continuous-time Gaussian MACs.

Lemma A3. For any ε > 0, there exist two independent Ornstein–Uhlenbeck processes {Xi(s) : s ≥ 0},
i = 1, 2, satisfying the following power constraint:

for i = 1, 2, there exists Pi > 0 such that for all t > 0,
1
t

∫ t

0
E[X2

i (s)]ds = Pi, (A45)

such that for all T,
|IT(X1, X2; Y)/T − (P1 + P2)/2| ≤ ε, (A46)

and
|IT(X1; Y|X2)/T − P1/2| ≤ ε, |IT(X2; Y|X1)/T − P2/2| ≤ ε, (A47)

moreover,
|IT(X1; Y)/T − P1/2| ≤ ε, |IT(X2; Y)/T − P2/2| ≤ ε, (A48)

where

Y(t) =
∫ t

0
X1(s)ds +

∫ t

0
X2(s)ds + B(t), t ≥ 0. (A49)

Here (and often in the remainder of the paper) the subscript T means that the (conditional) mutual information
is computed over the time period [0, T].

Proof. For a > 0, consider the following two independent Ornstein–Uhlenbeck processes Xi(t),
i = 1, 2, given by

Xi(t) =
√

2aPi

∫ t

−∞
e−a(t−s)dBi(s),

where Bi, i = 1, 2, are independent standard Brownian motions. Obviously, for Xi defined as above,
(A45) is satisfied. A parallel version of the proof of Theorem 6.2.1 of [12] yields that

IT(X1, X2; Y) = IT(X1 + X2; Y) =
1
2

∫ T

0
E[(X1(t) + X2(t)− E[X1(t) + X2(t)|Yt

0])
2]dt.

It then follows from Theorem 6.4.1 in [12] (applied to the Ornstein–Uhlenbeck process X1(t) + X2(t)
that as a→ ∞,

IT(X1, X2; Y)/T = IT(X1 + X2; Y)/T → (P1 + P2)/2,

uniformly in T, which establishes (A46).
For i = 1, 2, define

Ỹi(t) =
∫ t

0
Xi(s)ds + B(t), t > 0.

As in the proof of Theorem 6.4.1 in [12], we deduce that for i = 1, 2, IT(Xi; Ỹi)/T tend to Pi/2 uniformly
in T. Now, since X1 and X2 are independent, we have for any fixed T,

IT(X1; Y|X2) = IT(X1; Ỹ1|X2) = IT(X1; Ỹ1),
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and
IT(X2; Y|X1) = IT(X2; Ỹ2|X1) = IT(X2; Ỹ2),

which immediately implies (A47).
Now, by the chain rule of mutual information,

IT(X1, X2; Y) = IT(X1; Y) + IT(X2; Y|X1) = IT(X2; Y) + IT(X1; Y|X2),

which, together with (A46) and (A47), implies (A48).

Remark A3. With Xi, i = 1, 2, regarded as channel inputs, (A49) can be reinterpreted as a white Gaussian
MAC. For i 6= j, I(Xi; Y), the reliable transmission rate of Xi when Xj is not known can be arbitrarily close to
I(Xi; Y|Xj), the reliable transmission rate of Xi when Xj is known. In other words, for white Gaussian MACs,
knowledge about other user’s inputs will not help to achieve faster transmission rate, and therefore, they can be
simply treated as noises. A more intuitive explanation of this result is as follows: for the Ornstein–Uhlenbeck
process Xi as specified in the proof, its power spectral density can be computed as

fi(λ) =
2aPi

2π(λ2 + a2)
,

which is “negligible” compared to that of the white Gaussian noise (which is the constant 1) as a tends to infinity.
Lemma A3 is a key ingredient for deriving the capacity regions of white Gaussian MACs.

We also need some result on the information stability of continuous-time Gaussian processes.
Let (U, V) = {(U(t), V(t)), t ≥ 0} be a continuous Gaussian system (which means U(t), V(t) are
pairwise Gaussian stochastic processes). Define

ϕ(T)(u, v) =
dµ

(T)
UV

dµ
(T)
U × µ

(T)
V

(u, v), (u, v) ∈ C[0, T]× C[0, T],

where µ
(T)
U , µ

(T)
V and µ

(T)
UV denote the probability distributions of UT

0 , VT
0 and their joint distribution,

respectively. For any ε > 0, we denote by T (T)
ε the ε-typical set:

T (T)
ε =

{
(u, v) ∈ C[0, T]× C[0, T];

1
T
| log ϕ(T)(u, v)− IT(U, V)| ≤ ε

}
.

The pair (U, V) is said to be information stable [26] if for any ε > 0,

lim
T→∞

µ
(T)
UV(Tε) = 1.

The following theorem is a rephrased version of Theorem 6.6.2. in [12].

Lemma A4. The Gaussian system (U, V) is information stable provided that

lim
T→∞

IT(U; V)

T2 = 0.

Lemma A4 will be used in the proof of Theorem 7 to establish, roughly speaking, that almost all
sequences are jointly typical.

With Lemmas A3 and A4, Theorem 7 largely follows from a lengthy yet almost routine argument,
which is included below due to a number of technical challenges in the proof.
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Proof of Theorem 7. The converse part. In this part, we will show that for any sequence of
(T, (eTR1 , eTR2), (P1, P2))-codes with P(T)

e → 0 as T → ∞, the rate pair (R1, R2) will have to satisfy

R1 ≤ P1/2, R2 ≤ P2/2.

Fix T and consider the above-mentioned (T, (eTR1 , eTR2), (P1, P2))-code. By the code construction, it is
possible to estimate the messages (M1, M2) from the channel output YT

0 with a low probability of error.
Hence, the conditional entropy of (M1, M2) given YT

0 must be small; more precisely, by Fano’s inequality,

H(M1, M2|YT
0 ) ≤ T(R1 + R2)P(T)

e + H(P(T)
e ) = TεT ,

where εT → 0 as T → ∞. Then, we have

H(M1|YT) ≤ H(M1, M2|YT) ≤ TεT , H(M2|YT) ≤ H(M1, M2|YT) ≤ TεT .

Now, we can bound the rate R1 as follows:

TR1 = H(M1)

= I(M1; YT
0 ) + H(M1|YT

0 )

≤ I(M1; YT
0 ) + TεT

≤ H(M1)− H(M1|YT
0 ) + TεT

≤ H(M1|M2)− H(M1|YT
0 , M2) + TεT

= I(M1; YT
0 |M2) + TεT .

Conditioning on M2 and applying Theorem 6.2.1 in [12], we have

I(M1; YT
0 |M2) =

1
2

E
[∫ T

0
E[(X1(t) + X2(t)− X̂1(t)− X̂2(t))2|M2]dt

]
=

1
2

∫ T

0
E[(X1(t) + X2(t)− X̂1(t)− X̂2(t))2]dt,

where X̂i(t) = E[Xi(t)|YT
0 , M2], i = 1, 2. Noticing that X2 = X̂2, we then have

I(M1; YT
0 |M2) =

1
2

∫ T

0
E[(X1(t)− X̂1(t))2]dt,

which, together with (33), implies that R1 ≤ P1/2. A completely parallel argument will yield that
R2 ≤ P2/2.

The achievability part. In this part, we will show that as long as (R1, R2) satisfying

0 ≤ R1 < P1/2, 0 ≤ R2 < P2/2, (A50)

we can find a sequence of (T, (eTR1 , eTR2), (P1, P2))-codes with P(T)
e → 0 as T → ∞. The argument

consists of several steps as follows.
Codebook generation: For a fixed T > 0 and ε > 0, assume that X1 and X2 are independent

Ornstein–Uhlenbeck processes over [0, T] with respective variances P1 − ε and P2 − ε, and that (R1, R2)

satisfying (A50). Generate eTR1 independent codewords X1,i, i ∈ {1, 2, . . . , eTR1}, of length T, according
to the distribution of X1. Similarly, generate eTR2 independent codewords X2,j, j ∈ {1, 2, . . . , eTR2},
of length T, according to the distribution of X2. These codewords (which may not satisfy the power
constraint in (33)) form the codebook, which is revealed to the senders and the receiver.

Encoding: To send message i ∈ M1, sender 1 sends the codeword X1,i. Similarly, to send j ∈ M2,
sender 2 sends X2,j.
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Decoding: For any fixed ε > 0, let T (T)
ε denote the set of jointly typical (x1, x2, y) sequences, which

is defined as follows:

T (T)
ε = {(x1, x2, y) ∈ C[0, T]× C[0, T]× C[0, T] : | log ϕ1(x1, x2, y)− IT(X1, X2; Y)| ≤ Tε,

| log ϕ2(x1, x2, y)− IT(X1; X2, Y)| ≤ Tε, | log ϕ3(x1, x2, y)− IT(X2; X1, Y)| ≤ Tε},

where

ϕ1(x1, x2, y) =
dµX1X2Y

dµX1X2 × µY
(x1, x2, y),

ϕ2(x1, x2, y) =
dµX1X2Y

dµX1 × µX2Y
(x1, x2, y),

ϕ3(x1, x2, y) =
dµX1X2Y

dµX2 × µX1Y
(x1, x2, y).

Here we remark that it is easy to check that the above Radon-Nykodym derivatives are all well-defined;
see, e.g., Theorem 7.7 of [19] for sufficient conditions for their existence. Based on the received output
y ∈ C[0, T], the receiver chooses the pair (i, j) such that

(x1,i, x2,j, y) ∈ T (T)
ε ,

if such a pair (i, j) exists and is unique; otherwise, an error is declared. Moreover, an error will be
declared if the chosen codeword does not satisfy the power constraint in (33).

Analysis of the probability of error: Now, for fixed T, ε > 0, define

Eij = {(X1,i, X2,j, Y) ∈ T (T)
ε }.

By symmetry, we assume, without loss of generality, that (1,1) was sent. Define π(T) to be the event that

∫ T

0
(X1,1(t))2dt > P1T,

∫ T

0
(X2,1(t))2dt > P2T.

Then, P̂(T)
e , the error probability for the above coding scheme (where codewords violating the power

constraint are allowed), can be upper bounded as follows:

P̂(T)
e = P(π(T) ∪ Ec

11
⋃
∪(i,j) 6=(1,1)Eij)

≤ P(π(T)) + P(Ec
11) + ∑

i 6=1,j=1
P(Ei1) + ∑

i=1,j 6=1
P(E1j) + ∑

i 6=1,j 6=1
P(Eij).

So, for any i, j 6= 1, we have

P̂(T)
e ≤ P(π(T)) + P(Ec

11) + eTR1 P(Ei1) + eTR2 P(E1j) + eTR1+TR2 P(Eij)

Using the well-known fact that an Ornstein–Uhlenbeck process is ergodic [76,77], we deduce that
P(π(T))→ 0 as T → ∞. In addition, by Lemma A4 and Theorem 6.2.1 in [12], we have

lim
T→∞

P((X1,1, X2,1, Y) ∈ T (T)
ε ) = 1 and thus lim

T→∞
P(Ec

11) = 0.
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Now, we have for any i 6= 1,

P(Ei1) = P((X1,i, X2,1, Y) ∈ T (T)
ε )

=
∫
(x1,x2,y)∈T (T)

ε

dµX1(x1)dµX2Y(x2, y)

=
∫
T (T)

ε

1
ϕ1(x1, x2, y)

dµX1X2Y(x1, x2, y)

≤
∫
T (T)

ε

e−IT(X1;X2,Y)+εTdµX1X2Y(x1, x2, y)

= e−IT(X1;Y|X2)+εT ,

where we have used the independence of X1 and X2, and the consequent fact that

IT(X1; X2, Y) = IT(X1; X2) + IT(X1; Y|X2) = IT(X1; Y|X2).

Similarly, we have, for j 6= 1,
P(E1j) ≤ e−IT(X2;Y|X1)+εT ,

and for i, j 6= 1,
P(Eij) ≤ e−IT(X1,X2;Y)+εT .

It then follows that

P̂(T)
e ≤ P(π(T)) + P(Ec

11) + eTR1+εT−IT(X1;Y|X2) + eTR2+εT−IT(X2;Y|X1) + eTR1+TR2+εT−IT(X1,X2;Y).

By Lemma A3, one can choose independent OU processes X1, X2 such that IT(X1; Y|X2)/T →
(P1 − ε)/2, IT(X2; Y|X1)/T → (P2 − ε)/2 and IT(X1, X2; Y)/T → (P1 + P2 − 2ε) uniformly in T.
This implies that with ε chosen sufficiently small, we have P̂(T)

e → 0, as T → ∞. In other words,
there exists a sequence of good codes (which may not satisfy the power constraint) with low average
error probability. Now, from each of the above codes, we delete the worse half of the codewords
(any codeword violating the power constraint will be deleted since it must have error probability 1).
Then, with only slightly decreased transmission rate, the remaining codewords will satisfy the power
constraint and will have small maximum error probability (and thus small average error probability
P(T)

e ), which implies that the rate pair (R1, R2) is achievable.

Remark A4. The achievability part can be proven alternatively, which will be roughly described as follows:
for arbitrarily small ε > 0, by Lemma A3, one can choose independent Ornstein–Uhlenbeck processes Xi with
respective variances Pi − ε, i = 1, 2, such that IT(Xi; Y)/T approaches (Pi − ε)/2. Then, a parallel random
coding argument with Xj, j 6= i, being treated as noise at receiver i shows that the rate pair ((P1 − ε)/2, (P2 −
ε)/2) can be approached, which yields the achievability part.

Appendix F. Proof of Theorem 8

For notational convenience only, we only prove the case when n = 2; the case when n is generic is similar.
The converse part. In this part, we will show that for any sequence of (T, (eTR1 , eTR2), (P1, P2))

codes with P(T)
e → 0, the rate pair (R1, R2) will have to satisfy

R1 ≤ a2
11P1/2, R2 ≤ a2

22P2/2. (A51)
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Fix T and consider the above-mentioned (T, (eTR1 , eTR2), (P1, P2)) code. By the code construction,
for i = 1, 2, it is possible to estimate the messages Mi from the channel output YT

i,0 with an arbitrarily
low probability of error. Hence, by Fano’s inequality, for i = 1, 2,

H(Mi|YT
i,0) = Tεi,T ,

where εi,T → 0 as T → ∞. We then have

TR1 = H(M1) = H(M1|M2) = I(M1; Y1|M2) + H(M1|M2, Y1) ≤ I(M1; Y1|M2) + Tε1,T ,

As in the proof of Theorem 7, we have

I(M1; YT
1,0|M2) =

a2
11
2

∫ T

0
E[(X1(s)− E[X1(s)|M2, Ys

1,0])
2]ds.

It then follows that

TR1 ≤
a2

11
2

∫ T

0
E[(X1(s)− E[X1(s)|M2, Ys

1,0])
2]ds + Tε1,T ,

which implies that R1 ≤ a2
11P1/2. With a parallel argument, one can derive that R2 ≤ a2

22P2/2.
The proof for the converse part is then complete.

The achievability part. We only sketch the proof of this part. For arbitrarily small ε > 0,
by Lemma A3, one can choose independent Ornstein–Uhlenbeck processes Xi with respective variances
Pi − ε, i = 1, 2, such that IT(Xi; Y)/T approaches a2

ii(Pi − ε)/2. Then, a parallel random coding
argument as in the proof of Theorem 7 with Xj, j 6= i, being treated as noise at receiver i shows that the
rate pair (a2

11(P1 − ε)/2, a2
22(P2 − ε)/2) can be approached, which yields the achievability part.

Appendix G. Proof of Theorem 10

One of the important tools that plays a key role in discrete-time network information theory is the
entropy power inequality [2,47], which can be applied to compare information-theoretic quantities
involving different users. The following lemma, which, despite its strikingly different form, serves the
typical function of a discrete-time entropy power inequality.

Lemma A5. Consider a continuous-time white Gaussian channel characterized by the following equation

Y(t) =
√

snr
∫ t

0
X(s)ds + B(t), t ≥ 0,

where snr ≥ 0 denotes the signal-to-noise ratio in the channel and M is the message to be transmitted through
the channel. Then, for any fixed T, IT(M; Y)/snr is a monotone decreasing function of snr.

Proof. For notational convenience, in this proof, we write IT(M; Y) as IT(snr). By Theorem 6.2.1
in [12], we have

IT(snr) =
snr
2

∫ T

0
E[(X(s)− E[X(s)|Ys

0 ])
2]ds,

and Theorem 6 in [25], we have (the derivative is with respect to snr)

I′T(snr) =
1
2

∫ T

0
E[(X(s)− E[X(s)|YT

0 ])
2]ds.
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It then follows that(
IT(snr)

snr

)′
=

1
snr

(
I′T(snr)− IT(snr)

snr

)
=

1
2snr

(∫ T

0
E[(X(s)− E[X(s)|YT

0 ])
2]ds−

∫ T

0
E[(X(s)− E[X(s)|Ys

0 ])
2]ds

)
≤ 0,

which immediately implies the lemma.

We are now ready for the proof of Theorem 10.

Proof of Theorem 10. For notational convenience only, we prove the case when n = 2, the case when
n is generic being parallel.

The converse part. Without loss of generality, we assume that

snr1 ≥ snr2.

We will show that for any sequence of (T, (eTR1 , eTR2), P) codes with P(T)
e → 0 as T → ∞, the rate pair

(R1, R2) will have to satisfy
R1

snr1
+

R2

snr2
≤ P

2
. (A52)

Fix T and consider the above-mentioned (T, (eTR1 , eTR2), P)-code. By the code construction,
for i = 1, 2, it is possible to estimate the messages Mi from the channel output YT

i,0 with an arbitrarily
low probability of error. Hence, by Fano’s inequality, for i = 1, 2,

H(Mi|YT
i,0) ≤ TRiP

(T)
e + H(P(T)

e ) = Tεi,T ,

where εi,T → 0 as T → ∞. It then follows that

TR1 = H(M1) = H(M1|M2) ≤ I(M1; YT
1,0|M2) + Tε1,T , (A53)

TR2 = H(M2) ≤ I(M2; YT
2,0) + Tε2,T . (A54)

By the chain rule of mutual information, we have

I(M1, M2; YT
2,0) = I(M2; YT

2,0) + I(M1; YT
2,0|M2) ≥ I(M2; YT

2,0) +
snr2

snr1
I(M1; YT

1,0|M2), (A55)

where, for the inequality above, we have applied Lemma A5. Now, by Theorem 6.2.1 in [12], we have

I(M1, M2; YT
2,0) =

snr2

2

∫ T

0
E[(X(s)− E[X(s)|Ys

2,0])
2]ds ≤ snr2

2

∫ T

0
E[X2(s)]ds,

which, together with (A53), (A54), (A55) and (44), immediately implies the converse part.
The achievability part. We only sketch the proof of this part. For an arbitrarily small ε > 0,

by Theorem 6.4.1 in [12], one can choose an Ornstein–Uhlenbeck processes X̃ with variance P− ε,
such that IT(X̃; Yi)/T approaches snri(P− ε)/2. For any 0 ≤ λ ≤ 1, let

X(t) =
√

λX1(t) +
√

1− λX2(t), t ≥ 0,

where X1 and X2 are independent copies of X̃. Then, by a similar argument as in the proof of
Lemm A3, we deduce that IT(X1; Y1)/T, IT(X2; Y2)/T approach snr1λ(P− ε)/2, snr2(1− λ)(P− ε)/2,
respectively. Then, a parallel random coding argument as in the proof of Theorem 7 such that

• when encoding, Xi only carries the message meant for receiver i;
• when decoding, receiver i treats Xj, j 6= i, as noise,



Entropy 2019, 21, 67 49 of 51

shows that the rate pair (snr1λ(P− ε)/2, snr2(1−λ)(P− ε)/2) can be approached, which immediately
establishes the achievability part.

Remark A5. For the achievability part, instead of using the power sharing scheme as in the proof, one can also
employ the following time-sharing scheme: set X to be X1 for λ fraction of the time, and X2 for 1− λ fraction of
the time. Then, it is straightforward to check this scheme also achieves the rate pair (snr1λ(P− ε)/2, snr2(1−
λ)(P− ε)/2). This, from a different perspective, echoes the observation in [78] that time-sharing achieves the
capacity region of a white Gaussian BC as the bandwidth limit tends to infinity.
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