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Recently, there has been an increased interest in developing statistical methodologies
for analyzing single case experimental design (SCED) data to supplement visual analysis.
Some of these are simulation-driven such as Bayesian methods because Bayesian
methods can compensate for small sample sizes, which is a main challenge of SCEDs.
Two simulation-driven approaches: Bayesian unknown change-point model (BUCP)
and simulation modeling analysis (SMA) were compared in the present study for three
real datasets that exhibit “clear” immediacy, “unclear” immediacy, and delayed effects.
Although SMA estimates can be used to answer some aspects of functional relationship
between the independent and the outcome variables, they cannot address immediacy
or provide an effect size estimate that considers autocorrelation as required by the What
Works Clearinghouse (WWC) Standards. BUCP overcomes these drawbacks of SMA. In
final analysis, it is recommended that both visual and statistical analyses be conducted
for a thorough analysis of SCEDs.

Keywords: single case design, Bayesian, Markov Chain Monte Carlo Method, statistical simulation model,
interrupted time series analysis, single case experimental designs

INTRODUCTION

Single case experimental designs (SCEDs) investigate change within an individual or a sampling
unit rather than aggregate change for a group of individuals or units. Fields of applications of SCEDs
include special education, psychology, and medicine, among others (e.g., Guyatt et al., 1986; Allen
et al., 2013). SCED studies are interrupted time series designs where an outcome variable is assessed
repeatedly for an individual (or unit) over different phases. There is at least one baseline (phase A)
and one intervention phase (phase B), with multiple observations both before and after treatment.

Single case experimental designs have traditionally relied on visual analysis of graphs from
multiple phases for determining the presence and magnitude of a treatment effect. Often
visual analysis reports are supplemented with reporting phase means, medians, percentages,
and effect sizes such as standardized mean differences or indices based on the amount of data
overlap between phases (Parker et al., 2007). Although visual analysis has definite advantages
with analyzing SCED data, studies have shown that the presence of autocorrelation can
confound the results of visual analysis. For instance, in data with autocorrelation, it is difficult
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to decompose patterns due to trends (slopes) versus patterns
due to autocorrelated errors. Natesan Batley and Hedges (2020)
conducted a simulation study to demonstrate the lack of accuracy
of slope and autocorrelation estimates in SCEDs when both these
parameters are estimated due to indeterminacy. Autocorrelation
is almost impossible to detect by visual analysis alone (Kazdin,
2011; Thyer and Myers, 2011). The presence of autocorrelation
increases Type-I errors (Matyas and Greenwood, 1990) and
decreases interrater reliabilities (Brossart et al., 2006) in visual
analysis. In fact, Jones et al. (1978) found that in data with
moderate-high autocorrelations, visual analysis results were
reduced to nearly chance levels. Therefore, there is increasing
emphasis for more objective methodologies for analyzing
SCED data and determining causal inferences. What Works
Clearinghouse (WWC; Kratochwill et al., 2013), American
Speech-Language-Hearing Association (2004), and Cook et al.
(2014), and Council for Exceptional Children [CEC] (2014) have
all developed standards for SCEDs.

Single case experimental design data analyses pose
challenges for many reasons. First, the sample sizes are
often not adequate to carry out traditional analyses typically
used with grouped data (Shadish and Sullivan, 2011).
Second, the observations are not independent often because
they are repeated measurements of the same individual.
Therefore, the errors of SCED observations typically exhibit
autocorrelation (Huitema, 1985). Most parametric and non-
parametric analyses assume independence of observations.
Third, although maximum likelihood-based approaches
can be used to accommodate and model autocorrelations,
these approaches require larger sample sizes. Finally, most
SCED data are count or proportion data (Rindskopf, 2014;
Shadish et al., 2014). This further exacerbates the issues with
using traditional ANOVA and regression-type analyses with
SCED data.

Recently, there has been an increased interest in developing
statistical methodologies that can address the problems posed
by SCED data and supplement visual analysis. Examples of
statistical developments for SCEDs include multilevel modeling
(e.g., Moeyaert et al., 2013), semiparametric regression models
(e.g., Shadish et al., 2014), fully Bayesian analysis (e.g.,
Rindskopf, 2014; Natesan and Hedges, 2017; Natesan, 2019;
Natesan Batley, 2020a,b; Natesan Batley et al., 2020a,b,c),
simulation-based analysis (e.g., Borckardt et al., 2008), and
small sample corrections to standardized mean difference effect
sizes comparable to the effect sizes estimated from conventional
between-subjects designs (e.g., Hedges et al., 2012, 2013). Some of
these approaches are simulation-driven because simulations can
compensate for small sample sizes. The present study compares
two such simulation-driven approaches: the Bayesian unknown
change-point model (BUCP) and the simulation modeling
analysis (SMA). Apart from both being simulation-driven Monte
Carlo approaches, these two can be used to estimate intercepts,
slopes, and autocorrelations of single-case design data. Readers
may benefit from reading more basic material presented in
Natesan (2019) and Natesan Batley et al. (2020a). These two
studies present the methodology and the models in detail along
with software codes.

Bayesian methods use Markov chain Monte Carlo (MCMC)
procedures to estimate the model parameters. The MCMC
procedure is simulation-based. The estimates from many
iterations for each parameter form the posterior distribution
of the parameter. Because the posterior distribution is a
probability distribution, statistical inferences made from these
are more straightforward to interpret than those from traditional
confidence intervals (e.g., Gelman et al., 2013; Kruschke, 2013).
The Bayesian unknown change-point (BUCP) model estimates
effect sizes while also taking into account the autocorrelation
between the observations. Bayesian effect size estimate does not
require small sample correction unlike the one proposed by
Hedges et al. (2012, 2013). Bayesian estimation is discussed in
detail in the forthcoming sections.

Like the BUCP, SMA uses a simulation modeling procedure
as the basis to counter the problem of small samples in SCEDs.
The estimated parameters have associated p-values computed for
the data. In addition, SMA also estimates the autocorrelations
that occur due to repeated measurements on the same subject.
However, SMA does not test SCED data according to the
latest standards for establishing intervention effect in SCEDs
(Kratochwill et al., 2013; Cook et al., 2014), particularly an effect
size that considers autocorrelation in its computation and testing
for immediacy. By the term establishing intervention effect, we
mean the WWC standards on criteria for demonstrating evidence
of relation between an independent variable and an outcome
variable. These include documenting consistency of level, trend,
and variability within each phase, immediacy of effect, and an
effect size to demonstrate an intervention effect. Both SMA and
BUCP are freely available and are easy to use.

In sum, there are two aims for this study. The first
is to demonstrate the Bayesian methodology, which is the
latest advance in simulation-driven approaches, for quantifying
immediacy, and estimating the effect sizes for intercept
differences that take into account autocorrelations. These are
two aspects prescribed by the WWC standards required to
establish a functional relationship between the independent
and the outcome variables in SCEDs. The second aim
is to compare Bayesian (BUCP) and non-Bayesian (SMA)
methodologies in their effectiveness in assessing intervention
effect in analyzing SCED data.

Specific Advantages of Bayesian in
SCEDs
Bayesian methods do not depend on asymptotic theory and
work well with small samples, provided the prior distribution
is appropriately specified (Gelman et al., 2013). Therefore, the
Bayesian effect sizes computed from BUCP models do not
need small sample corrections. In the traditional frequentist
framework, the statistical estimate is a fixed value with an
estimate of uncertainty known as standard error. Whereas,
in Bayesian estimation, each parameter of interest has its
own distribution. For example, when estimating mean and
standard deviation, a posterior distribution is associated with
each parameter. The posterior distribution can be summarized
by its mean, median, mode, standard deviation, and credible
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or highest density intervals (HDI). For instance, a 95% credible
interval is the interval spanning 95% of the posterior density.
The values within the credible interval are more credible
than the values outside the interval. Additionally, posterior
distributions can be used to test regions of practical equivalence
(ROPE, Kruschke, 2013) as opposed to conducting classical
null hypothesis significance tests (NHST). Because posterior
distributions are probability distributions, ROPE and credibile
intervals (as opposed to confidence intervals) do not have
replicability issues, unlike NHSTs and confidence intervals.
Finally, Bayesian methodology provides modeling flexibility and
can be extended to count and proportion data, which are more
common than interval data in SCEDs.

METHODS

The BUCP Methodology
In SCEDs change-point is the point when the intervention is
introduced, which is the beginning of the intervention phase.
This is referred to as the design change-point. In visual analysis
change-point is known, and for an intervention to be significant,
it is expected that the relationship between the independent
variable and the outcome variable shifts in the desired direction
from this point onward for the rest of the phase. In BUCP
analysis, however, the entire data from all phases are treated as
one sequence of points and the BUCP algorithm searches for
the change-point(s) in the sequence where there is a substantial
change in the relationship between the independent variable and
the outcome variable. That is, the change-point(s) is estimated.
For example, when there is a clear immediacy (evidence of
treatment effective at the start of an intervention) the estimated
change-point coincides with the design change-point; however,
in case of delayed effect the estimated change-point will be some
time after the start of the intervention. This approach is vastly
different from the traditional visual analysis where the immediacy
is determined by computing the difference in the medians of the
first and last 3–5 observations of phases B and A, respectively,
in a two-phase study. This way of determining immediacy
is highly subjective due to: (a) there being no guideline on
how to interpret the magnitude of this difference to establish
immediacy; in fact, this magnitude depends on the scale of
the outcome variable; (b) not taking into account the patterns
of all the data points in the phases; and (c) the median thus
computed ignoring the autocorrelations between observations.
The BUCP analysis on the other hand, statistically establishes
immediacy and quantifies the effect size while accounting for
autocorrelations.

The BUCP methodology is briefly described here for
estimating intercepts1. For details see Natesan and Hedges
(2017). For pedagogical purposes, the basic two-phase design is
considered. However, the logic is the same for complex designs
and data types. The observed value of the outcome variable y is
assumed to be continuous and normally distributed.

1Only estimation of intercepts (instead of both intercepts and trends) is considered
because Natesan Batley and Hedges (2020) recommend to not estimate intercept,
slope and autocorrelations all in the same SCED analysis.

The observed value at the first time point in phase 1, (yp1),
follows a normal distribution with mean ŷp1 and standard
deviation σε as shown in Eq. 1:

yp1 ∼ norm
(
ŷp1, σ

2
ε

)
(1)

The observed values in the following time points t are distributed
as:

ypt|Hpt−1, 2 ∼ norm
(
ŷpt|(pt−1), σ

2
e
)

(2)

In Eq. 2, Hpt−1 is the past history, 2 is the vector of parameters,
and σe is the white noise created by a combination of random
error (σ2

ε ) and autocorrelation between adjacent time points (ρ).
The relation between ρ (autocorrelation) , σe (white noise) ,
and σε (random error) is,

σe =
σε√

1− ρ2
(3)

The rest of the time-series follow a linear procedure with lag-1
autocorrelated errors (e.g., Harrop and Velicer, 1985; Velicer and
Molenaar, 2013). The linear regression model without the slope
parameter and the serial dependency of the residual (et) can be
expressed, respectively as,

ŷpt = β0p (4)

ept = ρept−1 + ε (5)

In Eq. 4, ŷpt is the predicted value of the target behavior at
time t in phase p; β0p is the intercept of the linear regression
model for phase p; ept is the error at time t for phase p; ρ is the
autocorrelation coefficient; and ε is the independently distributed
error. Let the time points in the baseline phase be denoted as
1, 2, . . . , tb and in the treatment phase as tb+1, . . . , tn. Then
the intercept β0p can be modeled as:

β0p =

{
β01, if t ≤ tb
β02, otherwise

(6)

Immediacy is indicated when the mode of the posterior
distribution of the change-point tb is estimated to be the same
as the design change-point coupled with small posterior standard
deviation. This will be demonstrated in the forthcoming sections.
The effect size is the standardized mean difference of the intercept
estimates in the two phases under consideration.

An important aspect of Bayesian estimation is the use of
priors to estimate the posteriors. In the BUCP program relatively
uninformative priors are used so as to remain agnostic about our
beliefs about the posterior estimates (Natesan Batley and Hedges,
2020). For instance, β is sampled from a normal distribution with
mean drawn from another normal distribution with mean 0 and
precision 0.0001 which corresponds to a standard deviation of
100. The precision for the β value is sampled from a gamma
distribution with shape and rate of 1 each. The autocorrelation
is drawn from a uniform distribution ranging from −1 to
1, the plausible values for autocorrelation. The change-point
can take on any discrete value from 3 to –3 because at least
three observations are needed per phase according to WWC
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standards and to discern a statistical pattern. In sum, all the
priors considered are relatively uninformative, however, it is
strongly recommended that more informative priors be used
by researchers based on information about the study and from
previous research (see Lambert et al., 2005; Gill, 2015 for
some general examples, and Natesan, 2019 for a specific SCED
example). This is because, for small samples prior distribution
plays a large influence on the resulting estimates, especially for
the scale parameter. There is a great variation in the specification
of relatively uninformative priors and their use could lead to
different inferences (Lambert et al., 2005). Readers may download
the BUCP program for implementing this analysis and producing
the plots in the present study from github2. Runjags (Denwood,
2016) is a software package that runs JAGS (Plummer, 2003)
using (R Development Core Team, 2016), all of which will be
required for running the BUCP program.

In some SCEDs, delayed effects (i.e., latency) may be
expected; that is, the effectiveness of the intervention is
observed at a later time point after the introduction of the
intervention. For instance, a drug or a chemotherapy treatment
may take time to take effect or a child with autism may
take time to learn how to use an iPad as a medium of
communication. In such cases, it is necessary to acknowledge
that the design change-point is different from the actual
change-point, that is, the point when the intervention begins
to take effect. The BUCP model can systematically model
a delayed effect and compute the correct effect size. This
is an important distinction from traditional analysis where
the delayed effect is ignored, and therefore the ensuing
computation of the effect size estimate is inaccurate. Thus,
by allowing the data to speak for themselves, the BUCP
methodology can be used to test immediacy, latency, effect
sizes, and testing for region of practical equivalence (ROPE; a
Bayesian equivalent of statistical significance testing), all in a
single analysis.

Bayesian Statistical Significance in
BUCP
The 95% credible interval (CI) of the posterior distribution of
standardized mean difference determines the limits for 95% of
the credible values for the effect size under this distribution.
The rule of thumb generally used in between-subject designs
(i.e., 0.2, 0.5, 0.8 indicate small, medium, and large effects,
respectively) cannot be used to interpret SCED effect sizes.
This is because it is not uncommon to find standardized mean
difference-type effect sizes such as 3 or higher in SCEDs (Shadish
and Sullivan, 2011) and an effect size of 1 does not necessarily
indicate a clinically significant effect. In this study, an effect
size is tentatively considered to be clinically significant if it is
three or higher. That is, the lower bound of the 95% CI of
the posterior effect size distribution should be three or larger.
However, this value was chosen for illustrative purposes only.
Researchers are encouraged to choose values more appropriate
for their research. Moreover, only in the Bayesian framework
the null or the research hypothesis can be “accepted” as

2https://github.com/prathiba-stat/BUCP

opposed to being “not rejected” as in the classical framework
(Kruschke, 2013).

Simulation Modeling Analysis (SMA)
The SMA technique (Borckardt, 2006; Borckardt et al., 2008) was
developed for analyzing particularly short streams (n < 30 per
phase) of single-case time-series design data. SMA answers the
question similar to that asked in a traditional NHST context: if
there is no functional relationship between the independent and
the outcome variable, what is the probability one would observe
the relationship at least as large as is observed with observed
data? Therefore, small p-values (e.g., p < 0.05) indicate phase
effect. This program simulates several thousands of random
data that have the same phase n-sizes and the same amount of
autocorrelation as the observed data. Results from observed data
are then compared to the distribution for the simulated random
data to determine if the observed correlation is due to chance.
The percentage of times the correlations of the simulated datasets
are larger than the correlation from the observed data is an
estimator for the p-value. Results of SMA include the estimates of
autocorrelation, the mean and standard deviation values for the
two phases, the p-value associated with the level change or phase
effect, and an effect size (i.e., Pearson’s r). The program also tests
the data for different standard slope change models. Users can
modify the program available on http://www.clinicalresearcher.
org/software.htm for other types of SCEDs.

The SMA program is a freeware and easy-to-use tool for
SCED researchers. However, it is not without disadvantages.
Although SMA is a sound statistical procedure, it assumes that
the estimated parameters used to generate data streams are a
reasonable representation of the data characteristics. Secondly,
SMA ignores autocorrelation when computing Pearson’s
correlation effect size. Therefore, it underestimates the effect
size. Thirdly, most SCED data are count data or ratio data. It
is unclear how SMA functions for such data (Borckardt and
Nash, 2014). Fourthly, SMA does not function well for large
data streams, although SCED data time-series are rarely longer
than 10 data points per phase. Fifthly, it facilitates researchers
to test several hypotheses of slope differences. Testing multiple
hypotheses leads to an increase in experiment-wise type-I error
rate. Moreover, a researcher may be tempted to simply test each
hypothesis at the traditionally used 0.05 threshold value and
report only those they find statistically significant. Finally, the
program cannot estimate delayed effects. The focus in SMA is to
measure treatment effect assuming there is a clear immediacy
and not test all aspects of intervention effect as prescribed by the
WWC for SCEDs (e.g., immediacy, appropriate effect size). In
sum, although SMA is very useful, it is not a one-stop-shop for
complete SCED analysis.

DATA

We selected three datasets from recent SCED literature that
exhibited “clear” immediacy, “unclear” immediacy, or delayed
effects (latency) to demonstrate the difference between the
methods. Clear immediacy is exhibited if the data patterns in
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the two phases clearly supported the intervention change-point
as the design change-point. Unclear immediacy is exhibited
when the patterns within the phases show some inconsistency
so that a researcher cannot clearly point out when the actual
change began to take place. Delayed effects are exhibited
when the actual change occurs at least one time point after
the intervention was implemented. All of these grades of
immediacy were determined by visual inspection. The team
of four authors independently categorized the selected datasets
as belonging to one of the immediacy types. There was 100%
agreement in the categorization. The graphs were digitized
using the digitizing software WebPlotDigitizer 3.11 (Rohatgi,
2017). Data that were coded manually were compared to the
data coded by WebPlotDigitizer for each dataset to ensure the
values were identical.

Datasets’ Characteristics
Dataset 1
This dataset was obtained from a multiple baseline design
(MBD) by Coulter and Lambert (2015) and classified as
showing clear immediacy. The dependent variable was the
percent of correct words read per minute in a preselected
150–200-word passage by participants with a learning disability
and reading two grade levels below their same age peers.
The researchers used visual analysis. Autocorrelation was not
calculated; however, the researchers reported an overall (inclusive
of three participants) percentage of all non-overlapping data
(PAND) effect size = 97.91% and 90% CI = [0.94, 0.99]. In
addition to PAND, Coulter and Lambert (2015) reported a
Pearson’s phi value of 0.915, 90% CI = [0.84, 0.98]. BUCP and
SMA estimates for all 3 participants in the MBD were also
computed as an extension of the first case to MBDs.

Dataset 2
Dataset 2 was obtained from one of the subjects of a MBD
by Macpherson et al. (2015) who examined the effects of a

portable video modeling intervention (using iPad R©) on the verbal
compliments and compliment gestures of children with autism.
Dataset 2 contains the number of verbal compliments given by
one participant in the baseline and intervention phases. The
authors of the study used a one-tailed Wilcoxon signed rank test
to conclude the presence of a statistically significant difference
between the observations in the baseline and intervention phases.
Effect sizes and autocorrelation were not reported. The data show
a possible delayed effect.

Dataset 3
The third dataset was taken from Barber et al. (2016) because it
showed unclear immediacy. This study examined the efficacy of
peer-mediated interventions (i.e., stay, play, and talk strategies)
on the social communication skills of preschool children with
autism. Barber et al. (2016) used SMA. A visual plot for the
data suggests that it is unclear when the treatment effect started
and whether there was a statistically significant treatment effect.
SMA results showed no statistically significant level change at
α = 0.05 level (Pearson’s r = 0.729; p = 0.06) but a statistically
significant slope change (r = 0.867, p = 0.02). Autocorrelation
was not reported.

RESULTS

The results for SMA and BUCP analyses for all datasets are shown
in Table 1. Figures 1–4 display the line charts and posterior plots
for all data sets. Each figure has two parts: Part a displays the
line chart of the data and Part b displays the posterior plots. For
Datasets 2 and 3, for the sake of brevity, only posterior plots for
phase means and the effect size are included.

Clear Immediacy
Dataset 1: Multiple Baseline Design
The results will be described in detail for George, followed by
John and Mark. The vertical dotted line in Figure 1A separates

TABLE 1 | Description of datasets and results from simulation modeling analysis (SMA) and Bayesian unknown change-point (BUCP).

Data description SMA results BUCP results

Dataset nA nB MeanA

(SD)

MeanB

(SD)

r* p-value Change
point

MeanA [95%
HDI]

MeanB [95%
HDI]

ES Mean
[95% HDI]

Dataset 1
(MBD)

George 13 20 34.62
(8.18)

61
(13.27)

0.75 0.004 13 33.93
[30.51, 37.28]

61.21
[58.30, 64.13]

5.5
[4.60, 6.38]

Mark 10 20 46.1
(4.65)

71.1
(8.52)

0.85 0 10 46.09
[43.05, 49.15]

71.48
[69.4, 73.48]

5.2
[4.41,5.96]

John 19 13 47.8
(8.08)

83.7
(10.59)

0.89 0.0012 19 47.27
[44.49,49.93]

83.28
[79.98, 86.63]

7.3
[6.42, 8.18]

Dataset 2 8 9 4.92
(8.55)

39.73
(43.13)

0.48 0.192 11 5.38
[2.37, 8.32]

56.22
[52.27, 60.39]

10.19
[9.21, 11.22]

Dataset 3 7 16 3.14
(3.14)

14.44
(5.48)

0.73 0.049 16 4.31
[−1.35, 8.89]

14.93
[1.92, 24.48]

2.82
[0.14, 5.37]

n, number of data points in phases A and B; HDI, high density interval or credibility interval; ES, effect size that accounts for autocorrelation; p, mean difference p-value.
*r, correlation between the DV and the phase (does not account for autocorrelation).
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FIGURE 1 | (A,B) Single case experimental design (SCED) raw data for George in Dataset 1 and posterior distributions obtained with Bayesian unknown
change-point (BUCP).

the data for the child George from the two phases. There
are 13 points in Phase A and 20 points in Phase B. Visual
observation of Figure 1A shows clear immediacy at the end of
Phase A at time point 13. It can be seen from Table 1 that
the observed means and standard deviations (SD) for Phases
A and B are 34.62 (8.18) and 61.0 (13.27), respectively. The
SMA analysis showed that there is a statistically significant phase
effect (p < 0.01). That is, the means differ significantly between
Phase A and Phase B. Figure 1B shows Bayesian results for
the same data: posterior distribution plots of means for Phase
A and Phase B, effect size, change-point, and autocorrelation.
The posterior plot for the change-point shows the mode at 13,
which is in agreement with a visual inspection of Figure 1A.
Therefore, one can conclude that BUCP correctly estimated
the change-point. Posterior distributions of means of Phases A
and B are non-overlapping and narrow distributions. As can
be seen from Table 1, means and 95% CIs for Phase A and
Phase B posterior distributions are: 33.93 [30.51, 37.28], and
61.21 [58.30, 64.13], respectively. These estimated means are
very close to the observed means, confirming our confidence
in the estimation of the posterior distributions. The posterior
distribution of the effect size has a mean of 5.5 with 95% CI
[4.60, 6.38]. Suppose the researcher hypothesizes that an effect
size greater than 3 shows a statistically significant treatment
effect. Then the lower bound value of 4.6 of the 95% CI is
much greater than the acceptable value of 3, indicating a large
effect size and that 97.5% of credible values for the effect size
are above a value of 4.6. Therefore, there is sufficient evidence
to show that this effect size is statistically significant and the

research hypothesis that the treatment effect is larger than 3
can be accepted.

Figure 2A shows data plots for all three children, Mark,
George, and John in Dataset 1, who are part of the MBD.
Figure 2B shows their respective posterior distributions for the
change-point. Visual observation data for Mark shows a clear
immediacy at the end of Phase A at time point 10. It can be
seen from Figure 2B that the BUCP modal estimate of the
change point was also 10. This shows support for immediacy. The
means for Mark in Table 1 show that there was a considerable
increase in the percent correct score in phase 2 (46.1 to 71.5%).
The 95% credible intervals for the effect size [4.41, 5.96] do not
contain zero and are above 3, indicating statistically significant
improvement. These results show that, for Mark, because of the
intervention, the percent correct score in Phase 2 has increased,
on an average, by more than five standard deviation units (mean
of the effect size posterior distribution, 5.2).

BUCP estimate of change-point for the third child, John was
19, that is, the time-point immediately after the intervention
started. Thus, again, there is support for immediacy. There was a
considerable increase in the percent correct score in phase 2 (47.3
to 83.3%). Credible intervals for the effect size do not contain
zero, indicating improvement. Furthermore, the lower bound
of the 95% credible intervals for the effect size is 6.42, much
higher than the acceptable value of 3 for statistically significant
difference. These results indicate that, for John, because of the
intervention, the percent correct score in phase 2 has increased,
on an average, by more than six SD units (mean of the effect size
posterior distribution, 7.3).
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FIGURE 2 | (A,B) Single case experimental design (SCED) raw data for MBD dataset 1 paired with the posterior distribution for change-points obtained with
Bayesian unknown change-point (BUCP).
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Delayed Effect
Dataset 2
Visual observation of Figure 3A reveals a delayed effect, with the
treatment effect appearing around time point 10 rather than at 8
when the intervention started. The observed means and standard
deviations for Phase A and Phase B, in Table 1, are 4.92 (8.55)
and 39.73 (43.13), respectively. The SMA results which presume
8 as the change-point indicate a statistically non-significant phase
effect (p > 0.19). The BUCP analysis estimated the change-
point at 11, correctly indicating a delayed effect. Note that this
posterior could not be plotted in Figure 3B because there is
no variation in the change-point value in any of the iterations.
Estimated means and 95% CIs for Phases A and B are 5.38 [2.37,
8.32] and 56.22 [52.27, 60.39], respectively. These means are very
different from the observed means computed by considering 8 as
the change-point. The posterior plot of the effect size is shown
in Figure 3B with its mean at 10.19 and 95% CI [9.21, 11.22],
indicating a large effect with 97.5% of credible values for the effect
size above 9.21.

Suppose this delayed effect were expected as a function of
the type of intervention. In such a case, because of the delayed
effect, SMA has erroneously concluded that there is no treatment
effect. On the other hand, the BUCP analysis, by correctly
detecting the delayed effect and correctly estimating the change-
point, showed a statistically significant treatment effect with a
large effect size. These results show how misleading the results
can be when immediacy is assumed to happen at the start
of the treatment.

Unclear Immediacy
Dataset 3
Visual observation of Figure 4A indicates that there is
immediacy; however, it is not clear when. In other words, there
is a delayed effect, but unlike Figures 1A or 3A, it is not clearly
distinguishable visually when the change-point occurred. The
observed means and SDs for Phase A and Phase B as shown
in Table 1 are 3.14 (3.14) and 14.44 (5.48), respectively. The
SMA results, which assume the time point 7 as the change-
point showed a statistically significant result (p< 0.05). However,
the BUCP analysis estimated the change-point to occur much
later than when the intervention was implemented, that is, at 16
resulting in the estimated means and 95% credibility intervals
as 4.31 [−1.35, 8.89] and 14.93 [1.92, 24.48], for Phases A and
B, respectively. Of course, this throws some questions about the
reliability and validity of the data. Specifically, are the changes
in the data due to an intervention or just random fluctuations?
If the researcher had sufficient information to support that the
change in the data pattern is due to the intervention effect and
there is a reason for the change-point to be occurring at the
estimated change-point, he/she could continue with computing
the effect size. The effect size posterior mean is 2.82 with 95% CI
[0.14, 5.37]. The lower bound value of 0.14 for the CI is certainly
below the cut-off value of 3, and more than 50% of the credible
values are below the cut score of 3, clearly indicating a statistically
non-significant result. Therefore, the researcher would “accept”
the null that there is no statistically significant treatment effect
according to the criterion set in this study.

FIGURE 3 | (A,B) Single case experimental design (SCED) raw data for dataset 2 paired with the posterior distributions obtained with Bayesian unknown
change-point (BUCP).
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FIGURE 4 | (A,B) Single case experimental design (SCED) raw data for dataset 3 paired with the posterior distributions obtained with Bayesian unknown
change-point (BUCP).

This data set also illustrates the importance of accurately
estimating the change-point. For Datasets 2 and 3, SMA results
presuming the change-point to be at the time of intervention
reached an erroneous conclusion while the BUCP analysis
detected the delayed effect and appropriately estimated the
change-point and subsequently, the posterior means. Of course,
what the BUCP cannot determine is whether this delay is
expected due to the nature of the intervention. This can only be
determined substantively.

DISCUSSION AND CONCLUSION

This study explained and discussed BUCP, a recently developed
statistical methodology, for measuring effect sizes that account
for autocorrelations and do not require small sample corrections
for SCEDs. BUCP also investigates and quantifies immediacy
in SCED studies. This study compared and contrasted the
performance of BUCP with SMA, two simulation-driven
approaches for analyzing SCED data. A limitation of the BUCP
effect size is that it is a within subject effect size, that is, the
variance used to compute it comes from the measurements of
a single subject. This means that the BUCP effect size in the
current study cannot be aggregated across studies in a meta-
analytic context.

Determining immediacy is an important aspect of establishing
intervention effect in SCEDs. However, until now, there have
been no criteria as to what a meaningful difference between
means/medians is to establish immediacy. Given that this
difference is computed only for 3–5 data-points in each phase,

testing statistical significance in the classical framework is
unreasonable. This difference depends on the range of the
outcome variable as well. For instance, problem behaviors
may range from zero to 20 in a given time-period while
performing computer mouse operation may range from zero
to a few hundred. Thus, an immediacy value of 12 may
indicate strong immediacy while an immediacy value of 85
may indicate weak immediacy, depending on the scale of the
outcome variable. The BUCP model, on the other hand, is
sensitive to patterns that show weak immediacy compared to
those that show strong immediacy. This sensitivity is indicated
in the shape of the posterior distribution of the change-
point. If there is a clear single mode in the posterior and
this mode aligns with the time point when the intervention
was implemented, there is evidence to support immediacy
(Natesan and Hedges, 2017).

Although visual analysts study latency, it is unclear how
statisticians would deal with such delayed effects. There is also
little guidance on this in existing standards. In fact, there may
be no one-size-fits-all decision when it comes to delayed effect
being a threat to intervention effect. When delayed effect is
not considered, the effect sizes are underestimated. Therefore,
examining immediacy in an objective manner is important in
SCEDs. The BUCP methodology is a useful technique in this
regard. It considers the entire data pattern in the two phases and
estimates the change-point.

Only in the Bayesian framework the null or the research
hypothesis can be “accepted” as opposed to being “not
rejected” as in the classical framework (Kruschke, 2013).
Since the publication of SMA in 2008, several standards for

Frontiers in Psychology | www.frontiersin.org 9 January 2021 | Volume 11 | Article 617047

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-617047 January 7, 2021 Time: 16:4 # 10

Natesan Batley et al. Bayesian Single Case Design Analysis

establishing intervention effect in SCEDs have been published
(e.g., Kratochwill et al., 2013; Cook et al., 2014). Unlike BUCP,
SMA does not model two aspects of these standards, effect sizes
that account for autocorrelation and immediacy of intervention
effect. For example, when there was clear immediacy, the means
of the two methods were comparable. However, when there was
delayed effect, only BUCP was able to identify and incorporate
this delayed effect in its effect size computation. Hence, SMA
is a good technique to analyze SCED data where there is clear
immediacy, but falls short and provides inaccurate information
about the effectiveness of an intervention when there is delayed
immediacy. The BUCP analysis, on the other hand, is an effective
tool in estimating the effectiveness of an intervention even in
cases of delayed immediacy. In this sense, the BUCP analysis can
also serve as a diagnostic tool.

Because the BUCP methodology is a Bayesian technique,
it reveals a wealth of information about the possibilities
of statistics of the parameters in the form of posterior
distributions. In traditional analysis, mean or median are
considered acceptable values to evaluate the outcome variable.
However, posterior distributions are obtained based on repeated
Monte Carlo simulations of a combination of the prior
and the likelihood (data). Depending upon the shape of
this distribution and the contextual information such as the
sample size, one can examine the mean or the median of
this distribution, in combination with credibility intervals
of the desired length. The present study also demonstrated
how regions of practical equivalence could be built around
a hypothesized value to test statistical significance in the
Bayesian framework. In addition, BUCP offers more modeling
flexibility over SMA by being able to incorporate the
scale of the data.

This study has illustrated and highlighted the strengths of the
performance of BUCP compared to SMA on a limited set of
data. However, a more extensive simulation study that compares
the performance of the two models in a more systematic

manner would provide a more complete comparison of the two
approaches. The BUCP model is not without its drawbacks.
Apart from the long computing time (about 47 s on average
per analysis) and the learning curve, even though BUCP is
highly sensitive to data patterns, a unimodal clear change-point
estimate is not conclusive evidence of immediacy. Therefore,
visual inspection of the data must always accompany interpreting
statistical estimates in SCED data analysis. The two aspects of
data analysis, visual and statistical, together can evaluate the
causal validity of SCED findings via transparent, objective and
replicable procedures.
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