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ABSTRACT: Carbon- and nitrogen-containing aerosols are ubiquitous in urban
atmospheres and play important roles in air quality and climate change. We
determined the 14C fraction modern ( fM) and δ13C of total carbon (TC) and δ15N of
NH4

+ in the PM2.5 collected in Seoul megacity during April 2018 to December 2019.
The seasonal mean δ13C values were similar to −25.1‰ ± 2.0‰ in warm and
−24.2‰ ± 0.82‰ in cold seasons. Mean δ15N values were higher in warm (16.4‰ ±
2.8‰) than in cold seasons (4.0‰ ± 6.1‰), highlighting the temperature effects on
atmospheric NH3 levels and phase-equilibrium isotopic exchange during the
conversion of NH3 to NH4

+. While 37% ± 10% of TC was apportioned to fossil-
fuel sources on the basis of fM values, δ15N indicated a higher contribution of
emissions from vehicle exhausts and electricity generating units (power-plant NH3
slip) to NH3: 60% ± 26% in warm season and 66% ± 22% in cold season, based on a
Bayesian isotope-mixing model. The collective evidence of multiple isotope analysis
reasonably supports the major contribution of fossil-fuel-combustion sources to NH4

+, in conjunction with TC, and an increased
contribution from vehicle emissions during the severe PM2.5 pollution episodes. These findings demonstrate the efficacy of a
multiple-isotope approach in providing better insight into the major sources of PM2.5 in the urban atmosphere.
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■ INTRODUCTION

Carbonaceous aerosol is ubiquitous in the atmosphere,
contributing 20%−90% of the total concentration of fine
aerosol mass and playing an important role with respect to air
quality and climate.1,2 The deterioration in air quality caused
by secondary aerosol formation involving carbonaceous
compounds may cause social and health issues. Carbonaceous
aerosol can be divided into organic carbon (OC) and
elemental carbon (EC). The OC is emitted directly or forms
as secondary OC through gas-to-particle conversion during
complex chemical and physical processes that are not fully
understood.3 The EC enters the atmosphere directly from
incomplete combustion of biomass and fossil fuel, and strongly
absorbs light, thereby affecting climate.4,5

Together with carbonaceous aerosol, secondary inorganic
aerosol (SIA, including NO3

−, SO4
2−, and NH4

+) is an
important component of PM2.5 (particulate matter with a
diameter ≤2.5 μm) haze pollution in East Asia.6−9 It is
generally understood that SIA is formed mainly when gaseous
NH3 reacts with acidic gases such as H2SO4 and HNO3.
Because of its critical role in the formation of SIA, the sources
of NH3, its gas-to-particle conversion processes, and its role in
haze development are of considerable interest. Given the
frequent occurrence of severe haze episodes characterized by
high SIA levels, particular attention has been paid to NH3

emission sources that lead to the formation of SIA. While
NO3

− and SO4
2− aerosols originate mainly from fossil-fuel

combustion, the major sources of NH3 in urban areas are still
debated. Although agricultural emissions are the largest sources
of NH3 globally,

10,11 there is growing evidence that fossil fuel
related and other sources may compete with agricultural
sources in urban areas.6,12−14

Radiocarbon (14C) serves as a useful tool in distinguishing
between fossil (e.g., vehicular emissions and coal combustion)
and contemporary (nonfossil, e.g., biomass burning and
biogenic emissions) sources of atmospheric particulate
matter.15,16 Fossil fuels are depleted in 14C due to radioactive
decay over a long time compared with the 14C half-life (5730
years), while contemporary sources have similar 14C contents
to atmospheric CO2. The

14C/12C ratio is usually reported as
the “fraction modern ( f M)”, indicating the fractional
contribution of modern sources to carbonaceous aerosols.17
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Stable carbon and nitrogen isotopic ratios are also useful in
attributing emission sources and tracing aerosol formation/
transformation processes.6,18 The attribution of atmospheric
particulate matter to emission sources using stable carbon and
nitrogen isotope compositions (δ13C and δ15N) takes
advantage of the relatively distinctive isotopic ratios of their
source endmembers. For example, among reported δ13C values
of fossil fuel endmembers, the δ13C values of carbonaceous
particles emitted from gaseous fossil fuels (−40‰ to
−28‰19) are much lower than those from coal combustion
(−23.4‰ ± 1.3‰19−22) and liquid fossil fuels (−25.5‰ ±
1.3‰19,20,23−29). The δ15N values of NH3 emitted from
vehicular fossil-related sources (6.6‰ ± 2.1‰30) and power-
plant NH3 slip (−12.95‰ ± 1.65‰31) are significantly higher
than those from nonfossil sources including volatilized fertilizer
(−46‰ ± 5‰31,32), livestock waste (−28‰ ± 11‰31−33),
and urban waste (−37.8‰ ± 3.6‰32). Isotopic analysis has
been applied in atmospheric chemistry studies, providing
insight into atmospheric processes from emission to removal,
with wide usage in studies of urban and background areas in
East Asia.6,18,34−39 Such studies have shown that fossil-fuel-
related sources make a greater contribution to NH3 levels than
that estimated from emission inventories particularly in urban
areas (e.g., Chang et al.,32 Pan et al.,18,40,41 and Zhang et al.42).
In ambient samples, δ15N of NH4

+ was systematically higher
than δ15N values of NH3 due to isotope fractionation between
gas- and particulate-phase, regardless of source types.43,44 The
isotope fractionation effect is affected by complex factors such
as ambient temperature, ammonium partition ratio, and
aerosol acidity, which makes it less straightforward to interpret
the δ15N of NH4

+ in ambient samples.41,45 Given that fM
distinguishes between fossil and nonfossil sources of carbona-
ceous aerosols, multiple carbon and nitrogen isotope ratios of
aerosols are measured simultaneously help to understand
atmospheric δ15N (NH4

+) variations and thus better constrain
NH3 emissions. Consequently, combined isotopic ratios would
be advantageous for identifying the sources of complex entities
such as PM2.5 aerosols. Although there is a growing body of
research on δ15N (NHx), measurements of seasonal variations
in δ15N (NH4

+) are still scarce.35,40,42,44 Here we present long-
term multiple isotopic ratios in PM2.5 measured in Seoul,
Korea, including Δ14C, defined as the radiocarbon composi-
tion, and δ13C values of total carbon (TC = OC + EC) and
δ15N values of NH4

+. During the study period, record-breaking
PM2.5 pollution episodes occurred in February−March 2019.
Proportional contributions of seasonal emission sources to TC
and NH4

+ in PM2.5 were estimated based on these isotopic
ratios, elucidating transformation processes involving gas-to-
particle conversion and photochemical reactions that lead to
isotopic fractionation effects.

■ MATERIALS AND METHODS
Sampling and Chemical analyses. During April 2018 to

December 2019, 92 PM2.5 samples were collected at the Korea
University campus in Seoul (37.59° N, 127.02° E; Supporting
Information (SI) Table S1). The PM2.5 was collected on quartz
filters (Pallflex Products, Putnam, CT) for 1−3 days at a flow
rate of 68 m3 hr−1 using a high-volume air sampler (3000
series, Ecotech, Australia). Filters were stored in a freezer
pending chemical analysis. For PM2.5 chemical compositions,
water-soluble ions (Cl−, NO3

−, SO4
2−, Na+, NH4

+, K+, Ca2+,
and Mg2+) and carbonaceous particulates (OC and EC) were
determined by ion chromatography (IC; Eco-IC, Metrohm,

Switzerland) and by an OC-EC analyzer (Sunset Laboratory
Inc., Portland, OR) with the thermo-optical transmittance
method (NIOSH870), respectively. Water-soluble organic
carbon (WSOC) was analyzed by a total organic carbon
(TOC) analyzer (TOC-L, Shimadzu; at the Korea Basic
Science Institute). TC and total nitrogen (TN) were analyzed
by an elemental analyzer (EA, Fisons NA-1500NC, Thermo,
Waltham, MA). All mass concentrations were corrected for
laboratory and field blanks. Details of analytical methods can
be found in elsewhere.6,39 Hourly concentrations of NH3 were
adopted from the previous work.46

Isotopic Compositions: Δ14C, δ13C, and δ15N. Of the 92
PM2.5 filter samples, 32 samples were analyzed for the three
isotopic compositions including Δ14C, δ13C, and δ15N, 31
samples for Δ14C and δ13C, and the remaining 29 samples for
δ13C. The Δ14C and δ13C data covers the whole period, while
δ15N data represent the nitrogen isotopic composition during
May∼August 2018 and December 2018∼March 2019 (SI
Table S1).
The 14C content of TC was determined for 63 PM2.5

samples shipped frozen to the W. M. Keck Carbon Cycle
AMS facility at UC Irvine. Multiple 1.5 cm2 pieces of each filter
were sealed with CuO (80 mg) under vacuum and combusted
at 900 °C for 3 h, yielding the CO2. The CO2 of sample or
blank was cryogenically purified and reduced to graphite using
a sealed-tube zinc-reaction technique.47 The graphite was then
analyzed together with graphitization standards and blanks by
accelerator mass spectrometry (AMS; NEC 0.5 MV 1.5SDH-1,
National Electrostatics Corporation, Middleton, WI).48 The
14C data are first calculated as Δ14C and reported as fM values
with 13C fractionation correction, using online AMS 13C/12C
calculations.49 The uncertainty was 2‰−3‰ (1 SD for long-
term secondary standard analyses) for modern samples.
For all 92 samples, stable carbon isotopic ratios (δ13C

values) were determined together with TC at UC Irvine, where
TN concentrations were measured as well. The 1.5 cm2 pieces
(one or two) of each filter were analyzed with an EA system
coupled to an isotope ratio mass spectrometry (IRMS;
DeltaPlus XL, Thermo). Stable isotope ratios, δ (‰) is
defined as (Rsample/Rstandard − 1) × 1000, where R is the ratio of
13C/12C for stable carbon isotope or 15N/14N for stable
nitrogen isotope and Rsample (Rstandard) is the R of a sample (the
international standard). We analyzed samples together with
standards and field blanks and their δ13C values are reported
relative to Vienna Pee Dee Belemnite (VPDB) with correction
for filter and field blanks; uncertainty was 0.1‰.
For the nitrogen isotopic composition of NH4

+ (n = 32), the
procedures of Kaiser et al.,50 Morin et al.,51 and Zhang et al.52

were applied as follows. After solubilization of ammonium ions,
sufficient volume (a few mL) of solution was taken to provide
∼30 nmol. Following the procedure of Zhang et al.,52 the
ammonium was first converted to NO2

− by BrO oxidation and
then to N2O by the azide method.53 The N2O was then
flushed out with He and decomposed to N2 and O2 in a gold
tube 900 °C50 using a fully automated system.51 The N2 was
used to determine the ammonium δ15N value by IRMS (MAT
253, Thermo). All liquid handling (sampling, dilution, reagent
addition, and matrix matching) was performed automatically
with a Gilson 215 liquid handler to minimize errors and
variability between samples and standards. The δ15N values
were based on calibrations involving International Atomic
Energy Agency and U.S. Geological Survey ammonium sulfate
standards IAEA-N-1, IAEA-N-2, USGS25, and USGS26.
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Sample and standard analyses followed the “identical treatment
principle”54 with temperature, matrix, concentrations, and
volumes being identical for samples and standards. Given the
low ammonium blank (<2% on average) and low nitrite
concentrations (<1% on an N basis), no blank/interference
corrections were applied. The overall uncertainty was 0.3‰ (1
SD) for δ15N.51

TC Source Apportionment. The relative contributions of
contemporary (nonfossil) sources (Fc) and fossil fuel sources
(Fff) can be estimated using fM values of TC18 as follows:

F f f ff f c f ff(TC) (TC) ( ) / ( ) ( )c M M M M= { − } { − } (1)

F f f c f ff f c(TC) (TC) ( ) / ( ) ( )ff M M M M= { − } { − } (2)

where fM (c) and fM ( f f) indicate the fM values of
contemporary sources and fossil-fuel sources, respectively. A
mean value of fM (c) was adopted for 14CO2 (1.0112 ± 0.0026;
n = 38), as measured at Point Barrow, Alaska, during January−
May, 2018 (X. Xu, Pers. comm., 2019). The fM ( f f) value was
approximated as being zero.
Simulations. Bayesian stable isotope mixing model55

implemented as SIMMR (full name: Stable Isotope Mixing
Model in R) package in R software (https://cran.r-project.org/
web/packages/simmr/index.html) was used for source appor-
tionment of NH4

+ based on δ15N (NH4
+). As input data, δ15N

(NH3) was estimated and previously reported δ15N values of
major NH3 source endmembers were adopted (SI Table S2):
6.6‰ ± 2.1‰ for vehicular fossil-related sources,30 −12.95‰
± 1.65‰ for NH3 slip from power-plant equipped with
selective catalytic reduction (SCR),31 −46‰ ± 5‰ for
volatilized fertilizer,31,32 −28‰ ± 11‰ for livestock
waste,31−33 and −37.8‰ ± 3.6‰ for urban waste.32. Further
information on the model can be found in Parnell et al.56

Two-day Backward trajectories of air masses were traced at
500 m above ground level (a.g.l.) every 6 h from the sampling
site, using the U.S. National Oceanic and Atmospheric
Administration (NOAA) HYSPLIT (Hybrid Single-Particle
Lagrangian Integrated Trajectory) model with meteorological
input data from the global data assimilation system based on a
regular 1° × 1° longitude−latitude grid (https://ready.arl.
noaa.gov/HYSPLIT.php).57 Given the probability that an
emission source is located at a certain latitude and longitude (i
and j, respectively), the potential source contribution function
(PSCF) was determined as the ratio of the number of
trajectory end points associated with isotopic ratios above a
threshold (here, the 95th percentile) to the total number of
end points in the i, j grid cell. The PSCF analysis is available
using the OPENAIR package in R (https://cran.r-project.org/
web/packages/openair/index.html).58

■ RESULTS AND DISCUSSION
Seasonal Variations in PM2.5. PM2.5 concentrations

varied over a wide range of 4.5−139.0 μg m−3 during the
experiment period. Given the distinct seasonality associated
with synoptic weather patterns in East Asia,59 measurements
were divided into two seasonal groups, namely the “warm”
season from April to September and the “cold” season from
October to March (SI Figure S1).
The mean (±1 SD) PM2.5 concentrations were 46.5 ± 28.8

μg m−3 in the cold season and 23.3 ± 11.5 μg m−3 in the warm
season. In general, the mass concentration of major PM2.5
constituents was higher in the cold season than in the warm
season, while the seasonal variations in EC, WSOC, and SO4

2−

were less evident (Table 1). PM1 measured in Seoul also
showed similar seasonal characteristics between SIA and

nonrefractory concentrations, with noticeably higher NO3
−

and NH4
+ concentrations in the cold season and comparable

SO4
2− concentrations throughout the year.60 Consequently,

the mass contribution of nitrogen species to PM2.5 was
substantially high in the cold season, whereas the contributions
of carbonaceous species and SO4

2− were relatively more
important in the warm season when PM2.5 was low. The drastic
increase in NO3

− relative to SO4
2− concentrations was also

observed in Beijing during winter, when PM2.5 concentrations
were highly elevated 7.
The mean concentrations of TC and TN and TC/TN ratio

were 13.0 ± 4.5 μg m−3, 9.3 ± 6.3 μg m−3, and 1.2 ± 1.0 in the
cold season and 6.9 ± 4.4 μg m−3, 3.4 ± 3.1 μg m−3, and 2.7 ±
2.5 in the warm season, respectively (Table 1). The inorganic
nitrogen mass (NH4

+ + NO3
−) dominated TN in the cold

season, exceeding TN concentration due to different analytical
methods. In the warm season, the inorganic nitrogen mass
accounted for 75% of TN, with 25% being attributed to
organic nitrogen. The pronounced seasonality of PM2.5 levels
and its composition have been described elsewhere (Lim et al.,
in press).61

Emission Sources and Atmospheric Processing of TC.
In Seoul, the average contribution of contemporary (Fc) and
fossil fuels (Fff) sources to TC in PM2.5 was 63% ± 10% and
37% ± 10%, respectively (Table 1). While Fc was greater than
Fff, Fff was larger in the cold season (40% ± 6%) than in the
warm season (34% ± 11%).
The average Fff was comparable with those observed at

urban sites globally (20%−60%; Heal et al.16 and references
therein) but lower than those of highly polluted megacities in
China such as Beijing during 2013−2014 (40%−70% depend-
ing on season)62 and spring 2016 (52% ± 7%)6 and
Guangzhou during 2012 (42%).63 In general, contemporary
sources were predominant in rural areas and during warm
periods. For example, Fc was 76% ± 7% at Taehwa Research
Forest (TRF), a peri-urban forest site ∼45 km south of Seoul,
in summer and fall39 and 81% ± 10% at an island site in

Table 1. Seasonal PM2.5 Chemical and Isotopic
Compositions in Seoul during April 2018 to December
2019 (Mean ±1 SD)

composition
warm season

(April∼September)
cold season

(October∼March)

fM(TC) 0.6531 ± 0.1141 0.6065 ± 0.0651
δ13C (TC)a −25.1 ± 2.0 −24.2 ± 0.8
Fc(%); Fff(%) 66 ± 11; 34 ± 11 60 ± 6; 40 ± 6
δ15N
(NH4

+)a,b
16.4 ± 2.8 4.0 ± 6.1

PM2.5(μg m−3) 23.3 ± 11.5 46.5 ± 28.8
TC 6.9 ± 4.4 13.0 ± 4.5
OC 4.0 ± 2.1 7.3 ± 2.0
EC 0.6 ± 1.5 0.6 ± 0.2
OC/EC 12.9 ± 4.7 13.6 ± 3.8
WSOC 2.1 ± 1.7 2.5 ± 1.1
TN 3.4 ± 3.1 9.3 ± 6.3
NH4

+ 2.6 ± 2.1 7.1 ± 6.3
NO3

− 3.6 ± 5.0 19.6 ± 17.4
SO4

2− 5.5 ± 3.6 6.9 ± 6.2
aWeighted-means. bWarm and cold seasons include samples obtained
during May∼August and December∼March, respectively.
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China.64 However, it is noteworthy that considering the high
TC loadings in the cold season, fossil fuels are as important as
contemporary sources for PM2.5 carbonaceous particles.
In addition to fM, δ

13C provides further information about
sources of carbonaceous particles using the available
endmember values of δ13C (SI Table S3): − 40‰ to
−28‰ for carbonaceous particles from gaseous fossil fuels;19

− 33‰ to −29‰ for secondary organic aerosol (SOA)
generated in laboratories;65,66 − 26.7‰ ± 1.8‰ for C3 plants
(wood);20,23,27,29,67−69 − 25.5‰ ± 1.3‰ for liquid fossil
fuels;19−22 and −23.4‰ ± 1.3‰ for coal combus-
tion.19,20,23−29 The highest δ13C were found in C4 plants
(−12.8‰ ± 0.6‰69) and marine carbonaceous aerosols (δ13C
= −22‰ to −18‰70).

The δ13C values were distributed over a narrow range but
slightly enriched in the cold season, with the weighted-mean
δ13C (TC) of −25.1‰ ± 2.0‰ and −24.2‰ ± 0.82‰ for
the warm and the cold seasons, respectively (Figure 1). When
the entire range of PM2.5 concentration was divided into seven
intervals from 0−20 μg m−3 to 120−140 μg m−3, fM and δ13C
were moderately correlated with PM2.5 concentrations,
excepting the highest PM2.5 bins (above 80 μg m−3) (Figure
2). This type of characteristic seasonality in isotopic ratios
depending on PM2.5 concentrations is primarily driven by
synoptic circulation, demonstrating that emission sources and
formation processes of carbonaceous aerosol are significantly
affected by meteorological conditions.
In the warm season, the δ13C values were similar to those

observed at TRF39 and at Beijing and Changdao in China 6

Figure 1. Ranges of δ13C (TC) (a) and δ15N (NH4
+) (b) of PM2.5 in Northeast Asia. Colors indicate different sites: Seoul (this study) in red;

Taehwa Research Forest (TRF, summer and fall, 2014)39 in green; Beijing (BJ, late spring, 2016)6 in brown, Changdao (CD, late spring, 2016)6 in
orange, and Qingyuan Forest (QF, summer and winter, 2014−2016)35 in pale green. Marker shapes indicate different seasons: warm season and
cold season in circle and square, respectively. Points denote mean values (concentration-weighted means for Seoul) and error bars indicate
minimum and maximum values.
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(Figure 1a). The most depleted 13C (δ13C below −26‰) was
observed in marine air masses transported from the east or
south of the Korean Peninsula with low PM2.5 concentrations
(17.1 ± 7.5 μg m−3), implying emissions from biomass
combustion/biogenic emissions in remote regions and
subsequent SOA formation during transport. In addition, the
highest δ13C (−18.1‰) possibly resulted from the Asian dust
event during the outflow, corresponding to the δ13C values for
soil organic matter, typically between −20‰ and −15‰.71

Excluding this extreme outlier, the mean δ13C of the warm
season fell within the range of biomass (C3 plants) combustion
to liquid fossil-fuels. As evidence supporting the contribution
of biomass combustion, the TC/TN and WSOC/OC ratios
were higher in the warm season (2.7 ± 2.5 and 0.55 ± 0.38,
respectively) than in the cold season (1.2 ± 1.0 and 0.36 ±
0.19, respectively).
During the cold season, δ13C values shifted slightly toward

the endmembers of coal combustion and were in the range
between liquid fossil-fuel and coal combustion. Actually, the
mean δ13C (−24.2‰ ± 0.8‰) is in excellent agreement with
what was observed in Changdao, China (−24.5‰ ± 0.44‰;
Figure 1a), which is an area influenced by coal combustion in
highly populated areas.6 A greater contribution of coal
combustion is also in accordance with the PM2.5 chemical
characteristics, showing lower WSOC/OC and volatile OC
fraction of (OC1 + OC2)/OC compared to the warm season
(Table 1). In Figure 2, the highest δ13C values above −23‰
(i.e., above 95th percentile of δ13C observations; red circles in
middle panel) are commensurate with endmembers of coal
combustion. These samples are characterized by lower NO3/
SO4

2− molar ratios (2.84 ± 0.71), higher TC/TN ratios (1.60
± 0.35), similar f M values, but much lower PM2.5
concentrations (24.5 ± 15.5 μg m−3) than the seasonal mean
(Table 1). During these periods, air masses passed over the
northeast China such as Liaoning Province (SI Figure S2).
The record-breaking PM2.5 episode during 28 February to 6

March 2019 provided a unique opportunity to investigate
emission sources and atmospheric processes under dynamic
variations in PM2.5 concentrations. During the study period,
PM2.5 concentrations greater than 80 μg m

−3 were encountered
exclusively during this episode. In Figure 2 and SI Figure S3, it
is evident that δ13C increased from −25.5‰ to −23.6‰ as the
PM2.5 concentration increased from 0−20 μg m−3 to 60−80 μg

m−3, and above that (80−140 μg m−3) it remained high with a
decrease in fM. In this extreme episode, NO3

− was dominated
(up to 69 μg m−3) and SO4

2 remained relatively low (up to 28
μg m−3), while TN and TC concentrations increased with
PM2.5 concentrations. Airmasses originated from heavily
populated areas in the North China Plain (NCP) were slowly
transported to Seoul metropolitan areas. The combined
signatures of carbon isotopes and chemical composition
imply a greater contribution of fossil fuel sources, further
highlighting the key role of vehicle emissions in PM2.5 mass
increase during the severe PM2.5 pollution episode. As
discussed above, the seasonal characteristics of both fM and
δ13C indicate that the contribution of liquid fossil fuels to
PM2.5 carbonaceous aerosols is significant year-round in Seoul.
It is noteworthy that four samples yielded fM values

exceeding >1, which are generally considered contaminated.
Interestingly, three of them were obtained from a single winter
episode, during which the air was highly stagnant. Their PM2.5
concentrations varied over a wide range (21, 97, and 139 μg
m−3), but δ13C values remained around the cold-season mean,
suggesting unknown but fossil-fuel related 14C contamination
sources in urban areas.
These findings demonstrate the efficacy of dual isotopic

analysis including δ13C and fM in source apportionment of
carbonaceous aerosols. In addition, the stable carbon isotopic
ratio is known to be affected by atmospheric photochemical
processes.37,72 For example, laboratory-formed secondary
organic compounds showed a significant depletion in 13C
relative to those of its precursors,66,73 while particulate δ13C
became considerably higher as being aged in outflow regions of
East Asia.37,72 These changes in δ13C largely resulted from the
kinetic isotope effect (KIE) during atmospheric chemical
reactions. In the present study, 13C was most depleted during
the summer, and the minimum δ13C of about −26‰ was
found to be associated with a high fM greater than 0.6 and a
large contribution of volatile OC components ((OC1 +
OC2)/OC ≈ 0.4). Therefore, the 13C-depleted carbonaceous
particles were likely to be produced from gaseous precursors
via photochemical reactions. The secondary formation finger-
print of carbonaceous aerosol was evident in summer when
PM2.5 concentrations were low (Figure 2). Given the distinct
seasonal features of δ13C in relation to PM2.5 mass, the
measured δ13C values primarily reflect the emission sources of
carbonaceous aerosol.

Isotopic Fractionation During NH3−NH4
+ Conversion.

In this study, the NH4
+ concentrations increased almost

linearly with PM2.5 concentrations (R = 0.95), demonstrating a
pronounced role of SIA in PM2.5 mass increase. There were
strong positive correlations between SIA species (R > 0.9) as
well. It is, therefore, crucial to understand the transformation
of gas-phase NH3(g) to particulate NH4

+
(p) in which acidic

gases are neutralized and converted to the particle phase. For
δ15N (NH4

+), the warm and cold seasons refer to June∼August
and December∼mid-March, respectively.
Over the experiment period of δ15N (NH4

+), the NH4
+

concentration varied from 0.1 μg m−3 to 28.6 μg m−3 with a
noticeably higher cold-season mean (11.7 ± 8.4 μg m−3) than
a warm-season mean (1.8 ± 0.8 μg m−3) (Table 2), which is
the same seasonal trend with PM2.5 concentration. Accord-
ingly, the mass ratio of NH4

+/PM2.5 was much higher in the
cold season (19%) than in the warm season (8%), similar to
that observed in Seoul from 2012 to 2016.74 Likewise, in
Chinese urban sites, NH4

+ and PM2.5 concentrations were

Figure 2. Source signatures of fM (TC), δ13C (TC), and δ15N (NH4
+)

as a function of PM2.5 mass concentration. In the center panel, pink
open circles indicate upper bounds of δ13C (TC) data set.
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higher in the cold season, but the NH4
+/PM2.5 mass ratio

showed less seasonal variation compared to Seoul 7.
In contrast, δ15N (NH4

+) values were markedly higher in the
warm season than in the cold season with weighted means of
16.4‰ ± 2.8‰ and 4.0‰ ± 6.1‰, respectively, leaving a
seasonal difference of 12.4‰. These seasonal pattern of δ15N
(NH4

+) was opposite to that of δ13C (Figure 1). Furthermore,
δ15N (NH4

+) was negatively correlated with PM2.5 changes
(Figure 2). This seasonality should be associated with emission
sources and/or formation processes that differ seasonally.
The observed seasonal trend in δ15N (NH4

+) values (Figure
1b) is similar to those reported for Qingyuan Forest (northeast
China),35 urban Beijing (northeast China),6 Gosan Climate
Observatory (an island in South Korea),75 and urban Wroclaw
(Poland),76 but differs from those reported for urban
Guangzhou (China),77 mountainous Guiyang (China),78 and
rural Alberta (Canada).43 The annual mean δ15N (NH4

+)
values were below zero in Guangzhou and Guiyang, and
relatively low at high temperatures in Alberta. δ15N (NH4

+)
values are thus site-specific and depend mainly on major
emission sources and atmospheric NH3 concentrations.
The seasonal difference in δ15N (NH4

+) values may be
attributed to three factors: (1) the temperature-dependent
isotopic-exchange equilibrium factor, εNH4+−NH3; (2) the
isotopic fractionation effect, which depends on the NH3−
NH4

+ conversion efficiency associated with atmospheric NH3
levels and chemical composition; and (3) seasonal emission
sources.35,40,44,79

A phase-equilibrium isotopic-exchange reaction has been
suggested as the major pathway for relative 15N enrichment in
NH4

+ compared to NH3 in chamber experiments.79 Con-
sistently, ambient measurements show clearly higher δ15N
(NH4

+) than δ15N (NH3),
43,44 supporting the phase-

equilibrium isotopic-exchange reaction largely responsible for
the different δ15N values between two phases. If chemical
equilibrium is reached with a stoichiometric ratio of
NH3:H2SO4, isotopic exchange equilibrium may be attained.
The isotopic-exchange equilibrium factor of nitrogen between
precursor gas and aerosol (εNH4+−NH3) was theoretically
calculated in closed systems as 35‰ at 25 °C;80 31‰ ±
4‰ for NH3(g) ↔ NH4

+
(s) and 35‰ ± 4‰ for NH3(g) ↔

NH4
+
(aq) at 20 °C;81 experimentally determined as +33‰ at

25 °C;79 and almost equal values were found from field
observations44 and a laboratory experiment using a dynamic
chamber.82 Therefore, a linear fitting relationship between
isotopic-exchange equilibrium factor and temperature40 was
employed based on the results of Urey80 and applied to our
seasonal measurements, as follows:

T(12.4678 1000/ ) 7.6694NH4 NH3ε = × −+− (3)

where T is ambient temperature (Kelvin).
In general, the isotopic fractionation effect increases as

temperature decreases. This equation yielded a 3.9‰ higher
εNH4+−NH3 during the cold season (37.7‰ ± 1.0‰) than

during the warm season (33.8‰ ± 0.5‰), which does not
account for the observed seasonal difference of a 12.4‰ higher
δ15N (NH4

+) value in the warm season.
δ15N (NH4

+) was positively correlated with ambient
temperature in the warm season (R2 = 0.40) (SI Figure S4).
It seems to indicate volatilization of NH3 with increasing
temperature. In East Asia, NH3 mixing ratios are generally
higher during the warm season,13,83,84 likely due to emissions
from agriculture and urban waste related to NH3 volatilization
by temperature-controlled bacterial enzymatic activity. At high
temperatures, NH3 conversion to NH4

+ is not favored and
particulate NH4NO3 is unstable, leaving more NH3 than NH4

+

in the atmosphere.85 Then, the isotopic equilibrium exchange
reaction is more likely to occur, resulting in 15N enrichment in
particle phase. This inference was demonstrated from
measurements of δ15N for both NH3 and NH4

+ at a rural
site in Japan, where the annual mean of δ15N (NH4

+) was
33.3‰ ± 8.2‰ higher than that of δ15N (NH3) (i.e., Δ15N
(NH4

+−NH3) in eq 4) at high NH3 levels (annual mean NH3/
NH4

+ molar ratio of 9.0).44 On the other hand, in the cold
season, the conversion to the particle phase is thermodynami-
cally favorable at low temperature and is further facilitated by
the acidity of aqueous-phase aerosol due to abundant acidic
gases in the urban atmosphere. Therefore, the δ15N (NH4

+)
and δ15N (NH3) values of the final mixture can be expressed
by an isotopic mass balance for a well-mixed closed system as
follows (e.g., Heaton et al.79 and Pan et al.18):

N(NH ) N(NH ) N(NH NH )15
4

15
3

15
4 3δ δ= + Δ −+ +

(4)

fN(NH NH ) (1 )15
4 3 NH4 NH3 NH4εΔ − = × −+

+− + (5)

where fNH4+ is the ratio of NH4
+/(NH3 + NH4

+) in the
atmosphere.
During the warm season, the average f NH4+ was 0.15 ± 0.05

based on ambient NH3 measurements in Seoul during May−
August 2018.46 Kawashima et al. (2019)44 reported that the
annual-average Δ15N (NH4

+−NH3) is 33.3‰ with f NH4+ < 0.2
and Δ15N (NH4

+−NH3) converges to εNH4+−NH3 when fNH4+ is
sufficiently small. Therefore, in this study, the δ15N (NH3) of
the warm season was estimated with fNH4+ = 0. The mean
f NH4+ for November−December 2020, measured at the NIER
site in Seoul, was 0.4886 and 0.5 ± 0.1 was adopted for the
cold-season mean fNH4+, considering its variability. Finally, the
mean δ15N (NH3) was estimated to be −16.7‰ ± 3.2‰ in
the warm season and −11.5‰ ± 3.5‰ (−15.6‰ to −8.1‰)
in the cold season (Table 2 and Figure 3).
The f NH4+ value is one of the main causes of uncertainty

when estimating contributions of major emission sources of
NH3 from measured δ15N (NH4

+), unless it was based on
simultaneous measurements of NH3 and NH4

+ concentrations.
The seasonal fNH4+ applied in the present study was similar to
reported values in urban Beijing (0.16 in July to 0.64 in
January).84 A slightly increasing pattern of f NH4+ with
increasing PM2.5 concentrations during the warm season (SI
Figure S3) was also consistent to warm season fNH4+ variations
in urban Beijing (0.1 ± 0.1 for the period of PM2.5 < 35 μg m−3

and 0.3 ± 0.05 for 35 μg m−3 < PM2.5 < 75 μg m−3).87 These
comparable f NH4+ values and seasonal patterns may suggest at
some extent a common mechanism governing the NH3−NH4

+

conversion in the urban atmosphere of northeast Asia. In
conditions of relatively low atmospheric NH3 concentrations
such as in cold season, gaseous NH3 may be rapidly absorbed
into acidic aqueous-phase aerosols88 produced from the

Table 2. Measured and Estimated NH3 and NH4
+

Parameters

parameter warm season cold season

NH4
+(μg m−3) 1.8 ± 0.8 11.7 ± 8.4

fNH4+ 0 0.5 ± 0.1
δ15N (NH4

+)measured 16.4 ± 2.8 4.0 ± 6.1
δ15N (NH3)estimated −16.7 ± 3.2 −11.5 ± 3.5
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reactions of increased condensable gases with mineral and/or
sea-salt aerosol transported along with northwest winds.89,90

Thus, NH3 is likely to be consumed before reaching the N
isotope equilibrium, leading to δ15N (NH4

+) values relatively
close to the source δ15N (NH3) values. In contrast, under the
abundant atmospheric NH3 such as in warm season, the N
isotope equilibrium may be achieved, leading to 15N enrich-
ments in the observed aerosol NH4

+.
In this study, although the warm-season δ15N (NH3) was

slightly lower than the cold-season value, the confidence
intervals for the two means were not significantly different. As
a result, the seasonal difference of 12.4‰ in δ15N (NH4

+)
observed in Seoul was attributed mainly to isotopic
fractionation associated with the conversion of NH3 to
NH4

+, which implies there is a dominant emission source of
NH3 throughout the year.
Emission Sources of Atmospheric NH3. Based on the

δ15N (NH3) values estimated above, the emission sources of
NH3 were apportioned using a Bayesian isotopic mixing model
with a source-endmember profile (SI Table S2). Recently
reported δ15N values of NH3 source samples in urban Beijing
(−37.1‰ ± 5.0‰ for livestock waste, −40.4‰ ± 5.3‰ for
volatilized fertilizer, and −10.6‰ ± 5.3‰ for power-plant
NH3 slip)

87 were close to the values used in this study.
The simulation results point out that fossil fuel-related

emissions are the dominant atmospheric NH3 source in Seoul,
accounting for 60% ± 26% and 66% ± 22% in the warm season
and the cold season, respectively (Figure 4; SI Figure S5). The
remaining 40% ± 15% in the warm season and 34% ± 14% in
the cold season, is attributed to nonfossil emission sources
including volatilized fertilizer, agricultural livestock, and urban
waste. Given the seasonal changes in synoptic weather
conditions and the variety of NH3 sources with a wide range
of N isotopic ratios, the insignificant differences in NH3 source
signatures between the two seasons suggest that fossil fuel-
related emissions are the main source of NH3 in Seoul. Our

source apportionment results are consistent to recent isotope-
based studies emphasizing significant contributions (about
50−80%) of urban fossil fuel-related sources to atmospheric
NH3 in East Asia.6,12,41,42,87,91 Not to mention, source
apportionment based on an isotopic mixing model needs to
be treated with caution.56,92

The national emission inventory of NH3 is yet to be
improved, with 63% of NH3 being attributed to unidentified
area sources other than agricultural sources (15%), vehicular
emissions (15%), and combustion sources (7%).93 Area
sources include a broad group of processes such as stationary
fuel combustion, cooling towers, material storage, and hospital
and laboratory sterilizers that potentially produce emissions
from fossil fuels (EPA website; https://www.epa.gov/air-
emissions-inventories/volume-3-area-sources-and-area-source-
method-abstracts). Long-term flux estimates from source
regions identified by satellite observations indicate significantly
underestimated NH3 emissions in current bottom-up invento-
ries, with 67% of identified point sources missing.94 This
isotope-based estimate of the contribution from fossil fuel-
related sources is greater than that of the national bottom-up
emission inventories of South Korea (22%), but is in line with
a recent global NH3 emission inventory that highlights that the
emission density of NH3 is an order of magnitude higher in
urban areas than in rural areas.10 Our finding is in agreement
with long-term12,13,95 or intensive14 measurement results of
atmospheric NH3 in China and the U.S. showing large
amounts of NH3 emissions from urban sources.
NH3 emissions from vehicle exhaust have been reported in

laboratory experiments and on-road measurements as undesir-
able side effects associated with three-way catalytic converters
(TWC) and selective catalytic reduction (SCR) equipped in
gasoline powered vehicles and diesel-powered vehicles,
respectively.95−99 The results of the present study are basically
in line with a recent study in urban Seoul,100 where a strong
positive correlation (R2 = 0.94) was reported between the NH3
concentration and the traffic load multiplied by ambient
temperature. The discrepancy between experimental studies
and inventories indicates that our current understanding of
NH3 emissions is poor and further studies are required.
During the warm season, the volatilization of NH3 from

urban sources is accelerated at higher temperatures and thus,
phase-equilibrium isotopic exchange would be promoted by
the increased atmospheric NH3, resulting in an enrichment of
15N in particle-phase NH4

+. Consequently, the estimated δ15N

Figure 3. Measured δ15N (NH4
+) values and estimated δ15N (NH3)

values with the most probable f NH4+ value. f NH4+ is seasonally varying
with 0 for the warm season and 0.5 ± 0.1 for the cold season (see the
text). Different symbol colors indicate different samples. Colored
rectangles indicate the δ15N (NH3) ranges of different source-
endmembers (6.6‰ ± 2.1‰ for vehicular fossil-related sources,30

−12.95‰ ± 1.65‰ for NH3 slip from power-plant equipped with
selective catalytic reduction (SCR),31 −46‰ ± 5‰ for volatilized
fertilizer,31,32 −28‰ ± 11‰ for livestock waste,31−33 and −37.8‰ ±
3.6‰ for urban waste;32 SI Table S2).

Figure 4. Seasonal source apportionment of atmospheric NH3 in
Seoul, with the most probable fNH4+ value.
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(NH3) from the measured δ15N (NH4
+) demonstrated the

contribution of fossil fuel-related sources to atmospheric NH3
in Seoul was similar between the warm and cold seasons.
During the cold season, δ15N (NH4

+) values further decreased
with a substantially high contribution of fossil fuels to TC
when PM2.5 was highest (100−140 μg m−3) (Figure 2). The
collective evidence of multiple isotopic analysis highlights
common emission sources for NH3 and carbonaceous
compound from fossil fuel-combustion during the highest
PM2.5 pollution periods.
To summarize, this study employed a multiple-isotope

approach to quantitatively identify emission sources for NH4
+

of PM2.5 in Seoul, one of the megacities in East Asia. The
seasonally measured δ15N (NH4

+) demonstrates that fossil
fuel-related sources including vehicle emissions and power-
plant NH3 slip were dominant, comprising 60% ± 26% in the
warm season and 66% ± 22% in the cold season. The
combined isotopic signatures of δ15N (NH4

+) and fM and δ13C
of TC further suggest vehicle emissions as a main source of
NH4

+, which was evident during the severe PM2.5 haze-
pollution episodes during the cold season. Therefore, the
findings of this study could play a role in bridging the
knowledge gap between ambient measurements and bottom-
up emission inventories. In recent years, it has been observed
that NHx concentrations and δ15N (NHx) values are vertically
varying and subject to regional transport.42,84,101 Further
studies are needed to determine vertical profiles of species-
specific isotopic ratios of multiple phases, in conjunction with
detailed chemical composition in urban Seoul.
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