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Microbial communities in incipient soil systems serve as the only biotic force shaping 
landscape evolution. However, the underlying ecological forces shaping microbial 
community structure and function are inadequately understood. We used amplicon 
sequencing to determine microbial taxonomic assembly and metagenome sequencing 
to evaluate microbial functional assembly in incipient basaltic soil subjected to precipitation. 
Community composition was stratified with soil depth in the pre-precipitation samples, 
with surficial communities maintaining their distinct structure and diversity after precipitation, 
while the deeper soil samples appeared to become more uniform. The structural community 
assembly remained deterministic in pre- and post-precipitation periods, with homogenous 
selection being dominant. Metagenome analysis revealed that carbon and nitrogen 
functional potential was assembled stochastically. Sub-populations putatively involved in 
the nitrogen cycle and carbon fixation experienced counteracting assembly pressures at 
the deepest depths, suggesting the communities may functionally assemble to respond 
to short-term environmental fluctuations and impact the landscape-scale response to 
perturbations. We propose that contrasting assembly forces impact microbial structure 
and potential function in an incipient landscape; in situ landscape characteristics (here 
homogenous parent material) drive community structure assembly, while short-term 
environmental fluctuations (here precipitation) shape environmental variations that are 
random in the soil depth profile and drive stochastic sub-population functional dynamics.
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INTRODUCTION

Microorganisms serve as the only biotic component of landscape 
evolution and co-evolve with hydrological dynamics to impact 
soil formation and development in incipient landscapes (Cockell 
et  al., 2009; Nemergut et  al., 2013; Bradley et  al., 2014; Rime 
et al., 2016; Zaharescu et al., 2019). Microbial community responses 
to drying-wetting dynamics are variable and feed back into the 
co-evolving and interactive hydrobiogeochemical processes involved 
in landscape evolution. Some studies suggest that repeated drying 
and wetting cycles select for fast-growing microbes that use labile 
substrates released into the soil after rewetting (Jager and Bruins, 
1975; Lund and Goksøyr, 1980; Scheu and Parkinson, 1994; Denef 
et  al., 2001), and rapid drying and wetting events in particular 
may select for microbes adapted to rapid changes in water potential 
(Schimel et  al., 1999) with osmoregulatory capacity (Parr et  al., 
1981; Kempf and Bremer, 1998). Drying and wetting episodes 
may increase soil microbial diversity, activity, and biomass (Schimel 
et  al., 1999) by enhancing species coexistence through increased 
habitat connectivity, nutrient supply from microbial necromass, 
and hydration-controlled microbial motility within the soil 
environment (Fierer et  al., 2003; Dechesne et  al., 2010; Šťovíček 
et  al., 2017). Contrasting results suggest decreases in microbial 
diversity upon rewetting due to increased competition with 
increased soil-pore connectivity (Engelhardt et al., 2018), selection 
for slow growing microbes under drying-wetting stress (Bottner, 
1985; Van Gestel et al., 1993a,b), or present no significant change 
(Fierer et  al., 2003).

Precipitation events leading to drying-wetting cycles 
differentially impact soil depths, with the surface generally 
experiencing greater dynamic conditions and faster drying-out 
rates than the deeper layers, which tend to be  saturated for 
longer periods of time. Soil profiles are influenced by precipitation 
regimes including variable soil hydration properties (Šťovíček 
et  al., 2017) and water availability in pores (Or et  al., 2006) 
and biofilm formation in the soil microenvironment (Vos et al., 
2013). Studies evaluating depth dependency of soil microbial 
communities in incipient soil systems in response to precipitation 
events are scarce (Sengupta et  al., 2019), since most studies 
focus on near-surface interactions. However, generalized insights 
on soil microbial community composition with depth reveal 
decreasing diversity with depth (Fierer et al., 2003; Eilers et al., 
2012; Hao et  al., 2021) and variable community composition 
in the surface horizons, with relatively similar communities 
at deeper depths (Eilers et  al., 2012; Tang et  al., 2018).

Variable hydrologic regimes also affect microbial community 
assembly processes that govern spatiotemporal patterns in microbial 
community composition and establishment (Nemergut et  al., 
2013; Stegen et  al., 2015; Graham et  al., 2016b; Sengupta et  al., 
2019) and include deterministic (Graham et  al., 2017a; shaped 
by variable or homogenous selection processes arising from biotic 
and abiotic conditions) and stochastic (Graham et  al., 2017b; 
Zhou and Ning, 2017; shaped by dispersal or drift) effects. 
Dry-wet cycles have the potential to drive community assembly 
as powerful deterministic variables and/or homogenizing agents 
of dispersal (Evans and Wallenstein, 2012; Schimel, 2018; Zhang 
et al., 2019). The relative influence of stochastic and deterministic 

processes may lead to compositional differences in the communities 
(Stegen et  al., 2015), which have been shown to indirectly affect 
the biogeochemical function (Nemergut et  al., 2013; Graham 
et  al., 2017b). Studies have shown that stochastic processes 
dominate in early successional soils, with progression toward 
deterministic assemblies in late succession (Ferrenberg et  al., 
2013; Dini-Andreote et  al., 2015; Ortiz-Álvarez et  al., 2018), 
while another study reported variable selection structuring incipient 
microbial community in incipient basaltic soil (Sengupta et  al., 
2019) suggesting inadequate understanding of assembly processes 
in incipient systems.

Assembly forces that drive compositional differences in taxa 
could also drive functional differences in those communities. 
This assumption has not been empirically tested to date and 
decoupling often observed between taxonomy and function 
(Burke et al., 2011; Louca et al., 2016a,b, 2018). Understanding 
functional assembly forces in landscapes is important, particularly 
in response to abiotic forcings such as dry-wet cycling and 
for predicting recovery of systems following major disturbances 
that “reset” the system (IPCC, 2014; Graham et  al., 2021). 
Therefore, systematic studies at landscape scale are needed to 
understand how hydrological perturbations in the primary 
stages of landscape evolution impact the mechanisms of soil 
microbial community structure, function, and assembly.

We investigated impact of precipitation forcings on microbial 
community at the landscape scale in incipient basaltic soils 
by conducting a temporal experiment at the Landscape Evolution 
Observatory (LEO) facility housed at Biosphere 2  in University 
of Arizona (Pangle et al., 2015; Sengupta et al., 2017; Volkmann 
et  al., 2018). The enclosed and controlled LEO environment 
houses three identical 330 m3 artificial hillslopes filled with 
crushed basaltic tephra with well-defined physical boundary 
conditions including time-zero observations. To evaluate 
microbial community composition, diversity, and taxonomic 
assembly (using amplicon sequencing) and metabolic potential 
and functional assembly (using metagenome sequencing), 
we  collected spatially distributed soil samples before and after 
a 48-day intense precipitation sequence. We  hypothesized that 
after the precipitation sequence, community composition, 
richness, and diversity would increase as a result of increased 
water availability, and the carbon and nitrogen metabolic 
potential of the microbial community would be  enhanced as 
indicated by the presence and abundance of CO2 and N fixation 
pathways. We  also hypothesized that microbial community 
structural and potential functional assembly processes would 
shift from stochastic assembly pre-precipitation to deterministic 
assembly post-precipitation.

MATERIALS AND METHODS

Landscape Evolution Observatory, 
Precipitation Regime, and Soil Coring
Precipitation experiments were carried out on the three hillslopes 
(Figure 1; referred to as “East,” “Center,” and “West”) designed 
as replicates, with each hillslope (30 m long, 11 m wide, and 
1 m deep) positioned at a 10° slope, with a maximum slope 
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of approximately 17° at the transition to the primary zone of 
convergence, and filled to a depth of 1 m with crushed basaltic 
tephra (Pangle et al., 2015) of loamy sand texture. The hillslopes 
were established in 2012 and are sheltered from the outside 
environment, but are open to the internal environment of 
Biosphere 2. Time-zero characteristics of the basalt material 
included low organic carbon (7.03 × 10−5 mg g−1) and nitrogen 
(4.33 × 10−6 mg g−1), and the slopes were packed to a density 
of 1.59 g cm−3 and average porosity of 39% (Pangle et  al., 
2015). LEO is fitted with a dense array of above- and below-
ground sensors and samplers (Pangle et  al., 2015; Sengupta 
et  al., 2017) including 496 soil water content and temperature 
sensors (5TM, Decagon, Pullman, Washington, United  States).

Following more than a year of no rain, the hillslopes were 
subjected to an intense period of precipitation using reverse-
osmosis water during a PERiodic Tracer Hierarchy (PERTH) 
experiment from November 8, 2016, to December 26, 2016 
(Graham et  al., 2021). During this period, the precipitation 
cycle was repeated 15 times (Figure 2): A 3.5-day cycle consisted 
of two precipitation pulses, each of 3-h duration and 12 mm/h 
rate and separated by a 7-h break. Small variations in the 
precipitation intensity over time or between landscapes were 
balanced by adjusting the duration of precipitation. The total 
precipitation per hillslope over the 1.5-month experimental 
period was ~1,200 mm. Water table measurements were made 
using water pressure at different depths in the three hillslopes 
(Kim et  al., 2020, 2021).

Soils were sampled by coring on November 6, 2016, 
pre-precipitation, and on December 21, 2016, to capture post-
precipitation impacts. Six soil coring locations on each hillslope 
were chosen to represent topographic variability at LEO. The 
sampling locations were close to solution samplers and sensors 
(1.0–1.4 m) to obtain complementary physicochemical 
measurements and modeled variables needed to conduct coupled 

hydrogeochemical analysis. Soil samples were collected from 
a personnel transport system above LEO that allows soil coring 
without stepping on the hillslope surface. Sampling location 
1 (27 m from the seepage face), 2 (19 m from the seepage 
face), 3 (9 m from the seepage face), and 4 (3 m from the 
seepage face) represented upslope, convergence, mid-slope, and 
toe-slope regions, respectively, along the center of the slope, 
while locations 5 and 6 represented the side-slope regions 4 m 
apart on each side of the mid-slope region (Site 3). To sample 
undisturbed soils, coring in December was offset by 0.5 m to 
the right from November sites. A 1-m-long steel corer with 
1-in internal diameter and fitted with 1 × 37–3/4-in plastic liners 
(AMS Inc., American Falls, ID, United  States) powered by a 
drill was used to collect soil cores. The resulting hole in the 
soil was backfilled with an equivalent amount of original tephra 
material that had been aged in barrels by receiving precipitation 
water at similar rates as the hillslope soil. The plastic sleeve 
was extracted and sealed post-coring. In the lab, cores were 
sub-sampled at 12 cm increments to retrieve 5 sub-depths 
[0–12 cm (D1), 12–24 cm (D2). 24–36 cm (D3), 36–48 cm (D4), 
and 48–60 cm (D5)] totaling 180 samples (three hillslopes, six 
sites per hillslope, five depths per site, and two time points). 
Each sub-sampled core was homogenized and divided into 
halves for microbiology and geochemical analyses.

Soil DNA Extraction and 16S rRNA 
Amplicon Gene Sequencing
Soil DNA was extracted using Fast DNA kit (MP Biomedicals®) 
following a modified protocol detailed in Sengupta et  al. (2019). 
Paired-end sequencing (2 × 150 bp) was performed on the bacterial 
and archaeal 16S rRNA gene using V4 
(515F-GTGCCAGCMGCCGCGGTAA and 806R-GGACTACH 
VGGGTWTCTAAT primers) hypervariable region using the 
Illumina MiSeq platform (Illumina, CA, United  States; 

A B

FIGURE 1 | Landscape evolution observatory (LEO; A) upslope view of one of the hillslopes with (B) soil sampling locations (red numbers) and in situ moisture 
sensors (black).
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Caporaso et  al., 2012) for all samples and extraction blanks 
following Illumina sequencing library construction using the 
protocol previously published with modifications (Caporaso et al., 
2012; Laubitz et  al., 2016; Sengupta et  al., 2019). Sequencing 
generated a total of 4,301,309 sequences for 180 samples after 
quality filtering raw reads. Data were analyzed by demultiplexing 
fastq-formatted sequences using split_libraries_fastq.py with a 
Phred quality cutoff of 20, followed by merging reads with a 
minimum of 25-base overlap (Caporaso et al., 2010). A summary 
of the sequences, post-merging and quality filtering was performed 
using mothur (v 1.25; Schloss et  al., 2009). Samples with less 
than 5,000 quality-filtered sequences were dropped, resulting in 
a total of 158 samples for downstream analysis. Operational 
taxonomic unit (OTU) picking was done using UCLUST (Edgar, 
2010), and sequence alignment was performed with PyNAST 
(Caporaso et  al., 2010). Clustering was done with Greengenes 
database at 97% sequence similarity (DeSantis et  al., 2006), 
chimera were removed with Chimera Slayer (Haas et  al., 2011), 
taxonomy was assigned with RDP Classifier (Wang et  al., 2007), 
and tree building was completed with FastTree (Price et  al., 
2010). OTUs with two or more sequences were retained. Unassigned 
OTUs as well as those identified as mitochondria and chloroplast 
were removed. All data files generated from QIIME workflow 
were imported into R environment program (v 3.4.0; R Core 
Team, 2014) for alpha and beta diversity estimation and 
visualization using Phyloseq (McMurdie and Holmes, 2013), 
statistical analyses using vegan (Oksanen, 2015), and differential 

abundance estimation using DESeq2 (Love et  al., 2014). Raw 
fastq files were deposited in NCBI’s SRP135809: PRJNA438505, 
per-sample raw sequence information, and per hillslope/time 
point observed OTU information is hosted on Figshare with 
accessibility information provided in the Data Availability statement.

Environmental Parameters
Air-dried samples were analyzed for pH (U.S. EPA method 
150.2), electrical conductivity (EC; U.S. EPA method 120.1), 
total carbon (TC), inorganic carbon (IC), organic carbon (OC), 
and total nitrogen (TN; U.S. EPA method 415.3; Sengupta 
et  al., 2019). Soil temperature (°C) and soil water content 
(SWC; vol/vol) were measured using Decagon 5TM sensors 
with a dense sensor grid at 15-min resolution. The observations 
were interpolated onto the specific soil core locations (Figure 1B) 
and depths by 3D interpolation using piecewise polynomials. 
Soil moisture and temperature summary statistics were computed 
for each interpolated coring location at the instantaneous time 
of coring (e.g., SWC_mean_Instantaneous, Temperature_
Instantaneous). Annual time points (e.g., SWC_mean_Annual, 
SWC_max_Annual, and Temp_Annual) were computed for the 
year prior to the respective coring date, for example, annual 
means for November included data from 11/08/2015 to 
11/08/2016, while December means included data from 
12/21/2015 to 12/21/2016. A dry duration variable (SWC_
fractimedry_Annual) was calculated as the fraction of time 
soil water content was less than 5%.

A B C

D E F

FIGURE 2 | Alpha diversity increased following landscape wetting. Richness metric plotted for pre-precipitation (A-C) and post-precipitation (D-F) for each slope 
and depth. For depths with the same letter, the difference is not statistically significant within each slope per time point.
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Data Analysis
Samples were assigned categorical variables including Time 
(pre- and post-precipitation), Slope (East, Central, West), Depth 
(D1, D2, D3, D4, and D5), and Location: Top (1), Convergence 
(2), MidCentral (3), Toe (4), MidRight (5), and MidLeft (6). 
Sequences were normalized across samples and richness assessed 
by performing pairwise ANOVA to evaluate significant differences 
in community composition for the whole community, individual 
time points (pre- and post-precipitation), and individual slopes. 
Beta diversity using the Bray-Curtis distance metric index was 
calculated. Nonparametric permutational multivariate ANOVA 
(PERMANOVA, 999 permutations, vegan) with strata/nestedness 
(slope and depth) was performed to evaluate significant effect 
of variables on the communities. Differential abundance of 
OTUs responding significantly to the precipitation treatment 
per-slope was detected using DESeq2, with significant (α = 0.001) 
differential abundance evaluated as log2 folds change in the 
post- compared to the pre-precipitation samples.

Community Assembly Processes
A previously developed null modeling framework was applied 
to estimate relative influences of different ecological processes 
(variable selection, homogenous selection, homogenizing 
dispersal, and dispersal limitation) on the community 
composition of samples (Stegen et  al., 2012, 2013, 2015; Dini-
Andreote et  al., 2015). Community data rarefied to 9,207 
sequences, and inferred phylogenetic relationships among OTUs 
were used to calculate between-community mean nearest taxon 
distance (βMNTD) metric (Stegen et al., 2013) for each pairwise 
community-to-community comparison within the pre- and 
post-precipitation samples. The βMNTD metric quantifies the 
phylogenetic distance between each OTU in one community 
and its closest relative in a second community. This metric is 
important for making ecological inferences based on phylogenetic 
turnover among closest relatives of microbes in a system with 
minor degree of organismal exchange (Stegen et  al., 2013). 
Next, a null distribution of βMNTD was generated by 
randomizing phylogenetic relationships among OTUs and 
re-calculating pairwise βMNTD 999 times. This approach breaks 
association between OTUs and assumes no relationship (null 
model expectation). The degree to which βMNTD deviates 
from a null model expectation measures the relative influence 
of selection on community composition. For each pairwise 
comparison, homogeneous selection or variable selection was 
inferred as the ecological basis of community dissimilarity if 
the observed βMNTD value was significantly less or greater 
than the null distribution, respectively. The β-nearest taxon 
index (βNTI) was used to evaluate significance. βNTI expresses 
the difference between observed βMNTD and the mean of 
the null distribution in units of SDs with βNTI values < −2 
or >+2 indicating significance. If βNTI is greater than 2, then 
variable selection occurs where two communities are more 
dissimilar than would be  expected by random chance (e.g., 
when heterogenous environmental conditions between the 
compared communities result in different compositions; Graham 
et  al., 2016a). Homogenizing selection is considered as the 
dominant process if βNTI is less than −2, which means the 

communities are more similar than could occur by random 
chance. For detailed understanding of the βMNTD and βNTI 
calculations, we  refer readers to Stegen et  al. (2013).

If observed βMNTD does not significantly deviate from 
the null expectation, then the observed compositional difference 
is not due to selection and may be due to either homogenizing 
dispersal or dispersal limitation. In these cases, a version of 
the Raup-Crick metric known as RCbray (Stegen et  al., 2013) 
is used. For each pairwise comparison, the null Bray-Curtis 
distribution is generated using 999 null model runs that simulated 
stochastic community assembly (see Stegen et  al., 2013; for 
details). A value of RCbray < −0.95 indicates communities are 
more similar than expected, and when paired with |βNTI| < 2, 
a dominant influence of homogenizing dispersal is inferred. 
Similarly, a value of RCbray > +0.95 indicates greater dissimilarity 
than expected, and when paired with a βNTI value that is 
non-significant (i.e., |βNTI| < 2), a dominant influence of dispersal 
limitation is inferred. If, for a given pairwise comparison, 
neither null model is significant (i.e., |βNTI| < 2 and 
|RCbray| < 0.95), observed dissimilarity is not the result of any 
one process, and this situation is referred to as being 
“undominated” (Stegen et al., 2015). Mantel tests were performed 
to evaluate significant relationships (p ≤ 0.05, r ≥ 0.30). The R 
code for running the null models can be  found here: https://
github.com/stegen/Stegen_etal_ISME_2013.

Metagenome Analysis
Based on the hydrologic history of the three hillslopes and 
storage-discharge relationships that showed East and West were 
more similar to each other than Center (Kim et  al., 2020, 
2021), representative samples from the East and West slopes 
were selected for metagenomic analysis to evaluate the impact 
of hydrological dynamics on microbial C and N cycling processes. 
A total of 24 samples were selected along three depth profiles: 
0–12 cm (D1), 12–24 cm (D2), and 36–48 cm (D4), two locations: 
the mid-convergence zone and the toe-slope near the seepage 
face, two time points (November and December), and two 
slopes (East and West). Metagenome sequencing was performed 
at the Department of Energy Joint Genome Institute (JGI) on 
an Illumina HiSeq  2,500 using Illumina Regular Fragment, 
300 bp library preparation method. Four samples failed to meet 
sequencing quality requirements and were dropped from further 
analysis. Sequences were obtained as per standard protocol 
outlined in Chen et  al. (2021). Metagenomes are deposited in 
the JGI Integrated Microbial Genomes (60) under project ID 
502880 and can be  accessed through the Genomes OnLine 
Database (GOLD; Mukherjee et  al., 2021). Information about 
the metagenome sequences is available as DataFile 2 on figshare.

Raw reads and assembled metagenomes were downloaded 
from IMG-JGI. Information about metagenomes, including 
gene counts and genome statistics, is provided in DataFile2. 
Assemblies were first filtered to retain contigs larger than 
2,500 bp. Assembled metagenomes were gene-called and 
translated using Prodigal (prodigal -i [fasta] -a [output] -d 
[output] -p meta -m; Hyatt et  al., 2010) and then searched 
for the presence of marker genes corresponding to specific 
functional potential using HMMs obtained from PFAM and 
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TIGRFAM (hmmsearch --cpu 4 --noali -E 0.00001 --tblout 
[output] -o [output] [HMM] [amino acid fasta]; Haft et  al., 
2001; Finn et al., 2016; Eddy, 2020). Metagenomes were mined 
for putative nitrate reducers identified using nitrate reductase 
subunit G (narG), putative nitrogen fixers identified using 
nitrogenase subunit H (nifH), and potential carbon fixers 
identified using RuBisCO large subunit (rbcL). The ribosomal 
protein subunit 3 (rps3) was also identified in each metagenome 
and used as a non-specific, general taxonomic marker gene 
that can be  used to assess the broader microbial community. 
These genes were independently clustered at 100% identity 
using CD-Hit (cd-hit-est -i [DNA fasta] -o [output] -c 1.00 -n 
5 -M 8000 -d 0 -T 4) to obtain unique sequence variants, 
which were subsequently used in phylogenetic tree generation. 
Each set of unique sequence variants was aligned using MUSCLE 
(Edgar, 2004) with default parameters and then trimmed using 
trimAl (with the -gappyout flag; Capella-Gutierrez et al., 2009). 
The trimmed alignments were analyzed using ModelTest-NG 
(Darriba et al., 2020; -t ml flag) to identify an optimal evolutionary 
model when generating the maximum-likelihood tree using 
RAxML-NG (Kozlov et  al., 2019; raxml-ng --all --msa [DNA 
fasta] --model GTR + I + G4 --bs-trees 100). Additionally, reads 
were mapped to the unique sequence variants of each marker 
gene using bowtie2 (using the – fast setting) to obtain an 
estimate of abundance (Langmead and Salzberg, 2012).

The metagenomic data sets (e.g., approximate abundance 
and phylogenetic tree) were used to calculate βNTI for each 
marker gene following the approach described above yielding 
a total of four sets of null modeling results. Importantly, βNTI 
is quantitative; for example, while |βNTI| > 2 indicates 
determinism, relating βNTI values to various metadata will 
allow us to examine the tendency for a community (or 
metacommunity) to be driven by specific environmental processes 
regardless of specific assembly processes. To evaluate the potential 
relationships between the assembly processes impacting these 
sub-populations, average βNTI values were calculated for each 
sample and correlated across null modeling data sets using 
ggpairs (GGally R package v. X; Schloerke et  al., 2021). Two 
different sets of cross-null modeling correlations were performed: 
one where the βNTI averages were calculated across all samples, 
and another where βNTI averages were calculated while controlling 
for depth. Lastly, sub-population assembly was related to 
environmental parameters, while controlling for both depth and 
time. Here onwards, we refer to the 16S rRNA amplicon-derived 
βNTI results as taxonomic community assembly and metagenome-
derived βNTI results as sub-community assembly.

RESULTS

Soil Chemistry
Significant differences in soil chemistry were observed 
(Supplementary Figure  1), with mean and SDs provided in 
Supplementary Table  1. Post-precipitation, the landscape was 
more acidic than pre-precipitation conditions, with a soil pH 
drop of about 0.1–0.5 log units across slopes (East: W = 236.5, 
p < 0.05; Central: W = 154.5, p < 0.05; West: W = 58, p < 0.01). 

Electrical conductivity decreased sharply over the precipitation 
period, with all three slopes exhibiting 40–50% reduction (East: 
W = 1, p < 0.01; Central: W = 22, p < 0.01; West: W = 20, p < 0.01). 
Total carbon in the slopes decreased in the post-precipitation 
samples (East: W = 1,025, p < 0.01; Central: W = 65, p < 0.01; 
West: W = 37, p < 0.01) as well as organic carbon concentration 
decrease in the East slope (W = 140, p < 0.01), while inorganic 
carbon decreased in the Center (W = 120, p < 0.01) and West 
(W = 72, p < 0.01) slopes. Total nitrogen decreased post-
precipitation (East: W = 105, p < 0.01, Central: W = 57, p < 0.01, 
West: W = 92, p < 0.01) in all slopes.

Richness and Community Similarity 
Estimates
Amplicon sequencing generated 27 East pre-precipitation 
(1,084 ± 613 OTUs), 18 Central pre-precipitation (1,282 ± 1,248 
OTUs), 23 West pre-precipitation (1,400 ± 1,225 OTUs), and 30 
each of East post-precipitation (3,202 ± 1739 OTUs), Central 
post-precipitation (2,427 ± 1,521 OTUs), and West post-
precipitation (2,926 ± 1,233 OTUs) samples. Phyla-level relative 
abundance changes were observed in all slopes, pre- and post-
precipitation (Supplementary Figure  2). Richness increased 
significantly from after precipitation [East (F = 38.16, p < 0.005), 
Central (F = 8.5, p = 0.005), and West (F = 17.48, p < 0.005)] but 
did not vary significantly between depths during pre- or post-
precipitation (Figure 3). Deviation from this trend was observed 
for the Central slope: samples had higher richness than samples 
collected at the other depths, post-precipitation (F = 5.5, p = 0.0026).

Pre-precipitation samples showed little dissimilarity with 
depth – while surficial samples were distinct and separated 
from a diffused clustering of the deeper samples without strong 
depth-dependent stratification (Figure 4). The post-precipitation 
samples showed more gradual depth-dependent clustering, 
though surficial samples remained separate followed by distinct 
Depth 2 (12–24 cm) and Depth 3 (24–36 cm) clusters, while 
Depth 4 and 5 (36–60 cm) were similar in their beta diversity. 
Length-dependent dissimilarity was observed only for the East 
slope post-precipitation (R2 = 0.25, p = 0.007).

Environmental Variables Impacting 
Community Dissimilarity
Permutational multivariate ANOVA results 
(Supplementary Table 2) showed that in pre-precipitation samples, 
TN, OC, EC, and SWC_annual significantly impacted community 
dissimilarity. Post-precipitation, TN, pH, EC, SWC_annual, and 
SWC_instantaneous, and Temperature_Instantaneous were 
significant. SWC_fractimedry impacted community composition 
at both time points and was the only variable that interacted 
with Depth to influence the community characteristics in 
pre-precipitation and the second one to influence post-precipitation 
characteristics (the second being instantaneous temperature).

Differential Community Composition
Sequence analysis using DESeq2 revealed that microbial 
community membership shifted consistently with precipitation 
across slope (Figure  5). All three slopes showed similar trends 
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of enriched OTUs, pre- and post-precipitation. Firmicutes 
(c. Bacilli) were enriched uniformly across all slopes 
pre-precipitation, while Bacteroidetes, Gemmatimonadetes, 

Planctomycetes, Proteobacteria, and Verrucomicrobia OTUs were 
enriched across all depths post-precipitation (Figures  5A–C). 
The East slope with a total of 231 differentially abundant OTUs 

A B C

D E F

FIGURE 3 | Beta diversity depth-dependent clustering increased with landscape wetting. Non-metric multidimensional scaling of pre-precipitation (A-C) and 
post-precipitation (D-F) samples plotted as Bray-Curtis matrix. Permutational multivariate ANOVA (PERMANOVA) performed on individual slopes nested for depth 
was significant for all time points (pre- and post-precipitation).

A B C

D E F

FIGURE 4 | Homogeneous selection was the dominant structural community assembly process. Histograms of βNTI values for each hillslope pre- (A-C) and 
post-precipitation (D-F). βNTI values < −2 indicate homogenous selection and those > +2 indicate variable selection.
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categorized into 34 classes that were enriched in the post-
precipitation samples, while four classes were enriched in 
pre-precipitation samples with OTUs predominantly belonged 
to phyla Firmicutes (class Bacilli) and Actinobacteria (class 
Acidimicrobia; Figure 5A). The Central slope had 54 differentially 
abundant OTUs with 18 differentially abundant classes of which 
class Bacilli and Alphaproteobacteria were enriched in the 
pre-precipitation samples (Figure 5B). The West slope included 
81 differentially abundant OTUs grouped into 20 classes of 
which four (Bacilli, Bacteroidia, Clostridia, and 
Gammaproteobacteria) were enriched in the pre-precipitation 
samples (Figure  5C).

Structural Community Assembly 
Processes
Pre- and post-precipitation communities exhibited deterministic 
influences of ecological assembly, with homogenous selection 
as the dominant structural community assembly process 
(βNTI < −2). Within each slope, community assembly appeared 
to be marginally driven by variable selection post-precipitation 
(as evidenced by the increase in frequency of βNTI toward 
+2 values) but largely remained homogenous (Figure 6). Mantel 
tests measuring the correlation between distance matrices of 
βNTI (dependent variable) and environmental variables 
(predictor variable) are provided in Supplementary Table  3. 
Strong positive correlation (p ≤ 0.05, r ≥ 0.30) was observed 
in the Central slope for DNA concentration, TC, TN, IC, 
SWC_mean_annual, and SWC_fractimedry_annual significant 
for pre-precipitation samples, while pH was significantly 
positively correlated in post-precipitation samples. Strong 
correlations were not observed for the East slope and only 
significantly positive pH and SWC_mean_annual in the West 
slope, post-precipitation. The RCBray results are not discussed 
since βNTI results were significant (dominantly <−2), indicating 
homogenous selection.

Sub-Community Assembly Processes 
Defined by Functional Potential
Ecological null modeling performed by calculating βNTI for 
the four marker genes derived from the metagenome sequences 
revealed that the majority of sub-community assembly dynamics 
appeared to be  governed by stochastic processes (|βNTI| < 2; 
Supplementary Figure  3). Given the quantitative nature of 
βNTI (e.g., higher absolute values trend toward determinism 
even if they are in the stochastic range), we performed pairwise 
correlations between the average βNTI values for each marker 
gene (Figure 7A) to further investigate the ecological assembly 
processes between these sub-populations. By relating the βNTI 
values for rps3 to βNTI values for the various functional marker 
genes, we can further evaluate whether sub-population assembly 
diverges from general community assembly. This is because 
rps3 is well-conserved that should be  encoded by every 
microorganism within a given community (Hug et  al., 2016). 
Given that depth-resolved differences were observed in beta 
diversity analyses by amplicon analysis, we calculated the mean 
for within-depth βNTI comparisons. For example, if a sample 
was from Depth1, only βNTI values between that sample and 
other Depth 1 samples were averaged. Upon correlation of all 
average within-depth βNTI values (narG-nifH, narG-rbcL, narG-
rps3, nifH-rbcL, nifH-rps3, and rbcL-rps3), we  observed a 
significantly positive relationship for the narG-nifH comparison 
only (Figure 7A). Separating the values by depth and correlating 
again, however, revealed stark differences. We  observed a 
significantly negative narG-rbcL relationship in Depth 4, a 
significantly positive nifH-rbcL relationship in Depth 2, and a 
significantly positive nifH-rps3 relationship in Depth 1 
(Figure  7A). While not significant, we  also observed negative 
nifH-rbcL and nifH-rps3 relationships in Depth 4 (Figure  7A).

Potential environmental impacts on sub-population assembly 
were assessed by relating environmental variables to average 
within-depth and within-time βNTI values (Figures  7B,C). 

A B C

FIGURE 5 | Microbial community membership shifted consistently with precipitation across slopes. Nested differentially abundant OTUs in (A) East, (B) Central, 
and (C) West hillslopes with differential enrichment of classes. In the figures, log2fold change greater than zero indicates enriched classes post-precipitation, while 
values less than zero indicate reductions relative to pre-precipitation.
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While many parameters were correlated in the within-depth 
comparisons, the nifH-TN, rbcL-TOC, and rbcL-TIC relationships 
were noteworthy (Figure 7B). The within-time correlations had 
a similar pattern of relationships, though the nifH-TN and 
nifH-TC comparisons were particularly strong (Figure  7C).

DISCUSSION

Soil microbes are the earliest biotic component on new landscapes 
and are impacted by the abiotic changes that occur over variable 
spatial and temporal scales (Phillips, 1988; Maurer and Gerke, 2016; 

FIGURE 6 | β-nearest taxon index values of the marker genes derived from metagenome sequences show stochastic processes governing the functional 
community assembly dynamics.

A B

C

FIGURE 7 | Stochastic processes governed functional community assembly, with related patterns between marker genes and with environmental variables. βNTI 
comparisons to investigate sub-population assembly dynamics. (A) Pairwise correlation plot between the average βNTI values for four sub-populations defined by 
nitrate reductase subunit G (narG), nitrogenase subunit H (nifH), RuBisCO large subunit (rbcL), and ribosomal protein subunit 3 (rps3) sequences. (B) Depth-
controlled (i.e., only within-depth βNTI values were analyzed) correlation matrix with colors indicating the correlation coefficient. (C) Time-controlled (i.e., only βNTI 
values from the same date were analyzed) correlation matrix with colors indicating the correlation coefficient.
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Vitousek et  al., 2016; Ma et  al., 2017). For example, mineralogy 
of parent material remains essentially unchanged for years, while 
hydrologic process like soil water content undergo frequent 
perturbations and therefore impact microbial characteristics on 
shorter timescales. Our study evaluated changes in microbial 
community composition, diversity, and structural and functional 
assembly in an incipient landscape in response to a 
precipitation regime.

Microbial community composition and diversity changed 
with precipitation, with increasing alpha diversity and 
compositional similarity among communities. Depth-dependent 
structuring of the communities led to a more even community 
composition, similar to results reported in a meta-analysis of 
bacterial primary succession patterns (Ortiz-Álvarez et  al., 
2018). Community functional assembly through metagenomic 
null modeling revealed sub-populations experiencing depth-
dependent assembly processes. For example, while we  see a 
significant positive correlation between putative nitrate reducers 
and carbon fixers in Depth 2, this significance disappears and 
switches negative in Depth 4 (Figure  7A). This suggests that 
the sub-populations putatively involved in the nitrogen cycle 
and carbon fixation experience counteracting pressures at the 
deepest depths. Correlations with environmental parameters 
reveal that this divergence might be driven by TIC concentrations 
(Figure 7B). We observe that TIC is positively related to rbcL-
based βNTI, but negatively related to nifH-based βNTI. As 
with the nifH-TN correlation, the relationship between TIC 
and rbcL-based βNTI might point to a direct selective interaction 
between RuBisCO diversity and available CO2, which is variable 
and often limiting in these weathering hillslopes (Cueva et  al., 
2019). We  also observed that the nifH-TC and nifH-TN 
relationships were stronger when controlling for time than 
depth (Figures  7B,C). Given that precipitation was the 
differentiation factor through time, we  suggest that this result 
was a potential signal for nutrient mobilization and that the 
time-controlled correlations better reflect the nifH sub-population 
dynamics. By having ready access to mobilized nutrients, the 
nifH sub-population better mirrored nitrogen behavior, either 
helping cause it or by responding to it.

We also observed coordinated assembly processes between 
the sub-populations of putative nitrate reducers and putative 
nitrogen fixers (Figure  7A). This pattern suggests that some 
common pressure (or set of pressures) is acting upon disparate 
ends of the nitrogen cycle (i.e., nitrate to nitrite and nitrogen 
gas to ammonia). By performing correlations with various 
environmental parameters, the amount of TN appears to 
be driving this coordination in part (Figure 7B). We hypothesize 
that total nitrogen content exerts a homogenizing effect on 
narG/nifH phylotypes due to differences in reaction efficiency 
(Nelson et  al., 2020).

The assembly dynamics of sub-communities defined by 
functional potential was primarily responsible for community 
and sub-population according to metagenomic null modeling, 
homogenous selection (deterministic assembly with βNTI < −2) 
structured the community according to amplicon-based null 
modeling. This suggests no significant influence of variables 
measured in our system on community assembly processes. 

Hillslopes may have shifted from an initial stochastic community 
composition as indicated in primary succession of microbial 
communities (Ferrenberg et al., 2013) to a deterministic assembly 
influenced by homogenous environment selection. We  posit 
that the mineralogy of the system is the most likely driver 
influencing the assembly metrics. Since mineralogy is not 
expected to shift within the 45 day-span of sampling, it likely 
exerts a selection force that is homogenous between and within 
hillslopes. This contrasts with a study in the scaled-down 
(0.5 m ×2 m × 1.0 m) version of LEO, called miniLEO that 
underwent prolonged 2-year intensive precipitation regime, 
where despite having similar depth-dependent community 
composition and structure to LEO, variable selection was the 
dominant assembly process (Sengupta et  al., 2019). The strong 
homogenous selection in LEO suggests that in an incipient 
landscape, differential selection processes may occur at different 
landscape scales. It may also be  likely that over a period of 
time, assembly processes are less susceptible to environmental 
variations at the landscape scale, while environment heterogeneity 
significantly influences microbial community assembly at smaller 
spatial scales (Figure  8).

In contrast, there appears to be  no selection for functional 
potential at the landscape scale. Instead, local hotspots likely 
formed as a result of precipitation events and align function 
with local environmental features including nutrient, moisture, 
and temperature, giving rise to stochastic functional assembly. 
While mechanistic evaluation of sub-community assembly 
processes using metagenome data have not been documented 
so far or contrasted with structural community assembly features, 
there are a few potential explanations for this divergence between 
null modeling methods (e.g., fewer metagenomic samples, less 
diversity captured due to sequencing technique, rps3 sequences 
approximate phylogeny differently than 16S rRNA sequences). 
An extension of this work may include evaluating the putatively 
active community (i.e., use rRNA and cDNA) once adequate 
biomass has been reached to determine community assembly 
response of the active members (Richter-Heitmann et al., 2020).

Precipitation events induced stratification of moisture 
conditions that likely influenced depth-dependent community 
restructuring in LEO. While not the focus of this research, 
parallel studies evaluating hydrological dynamics in the landscape 
revealed differing storage-discharge relationships in the slopes, 
suggesting differential water retention characteristics across 
depths (Supplementary Figure  4). Such heterogeneous 
hydrological structures that impact flow regime and accessibility 
of habitats can impact biological interactions (e.g., viruses and 
predation) and therefore shape the microbiome variability. Soil 
insulation against temperature fluctuations may also contribute 
to depth separation of the communities; post-precipitation 
community dissimilarity was influenced by instantaneous 
temperature (Supplementary Table  2).

The differential abundances of OTUs in our results showed 
a high abundance of Firmicutes, pre-precipitation, which are spore 
forming organisms and thrive in low-moisture conditions like 
the long pre-precipitation drying period (She et  al., 2018). The 
increase in Proteobacteria abundance agrees with studies reporting 
similar increases following rewetting events (Castro et  al., 2010). 
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Microbial inputs to the incipient basaltic material are relatively 
low and include atmospheric deposition of microbes from the 
LEO space and from precipitation water. Cell counts in 
precipitation water (<103 cells ml−1) were significantly lower 
than cell counts in water discharged from the slopes (>105.5 
cells ml−1; Honeker et  al., in preparation). The increase in 
phyla post-precipitation (Figure 5) suggests that microorganisms 
present in the basaltic hillslopes are likely in a state of stasis 
with the potential to become active when in contact with 
water (Halverson et  al., 2000; Niederberger et  al., 2019), as 
has been observed in soils from colonization patterns of soil 
microbial communities following rewetting of dry soils (Crits-
Christoph et  al., 2013). However, we  cannot differentiate 
whether precursor microbe proliferation in the lower depths 
or microbes flushed down during the rainfall events led to 
community restructuring.

Our study characterized microbial community composition 
and assembly in an incipient basaltic soil system subjected to 
precipitation in a controlled environment. Results showed that 
microbial community composition stratified in a depth-dependent 
manner, with communities exhibiting greater evenness after 
prolonged period of precipitation. We  also hypothesize that 
mineralogy at the landscape scale likely impacted taxonomic 
community assembly, while sub-community assembly was 
influenced by local depth-dependent stratification of functional 
genes, likely due to depth-dependent moisture-driven dispersal 
events in the hillslopes. While differences between taxonomy 
and function have been reported where environmental conditions 
strongly influence functional group distribution but weakly 
influence taxonomic composition (Louca et  al., 2016a), our 
results present a conceptual advance underlying this difference. 
Varying ecological processes may be  an emergent feature in 
an incipient landscape and impact different components of 
the microbial community. We propose that contrasting assembly 
traits may shape different components of a microbial community 
in an incipient soil system and are largely driven by persistent 
(homogenous parent material) or fluctuating (periodic 
precipitation) processes in the system environment. The 
microbiomes of incipient systems may therefore assemble in 

a fundamentally different way than in established ecosystems, 
challenging the idea of a universal model for all successional 
stages of landscape evolution.
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