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In color vision, the quantitative rules for mixing lights to make
a target color are well understood. By contrast, the rules for
mixing odorants to make a target odor remain elusive. A solu-
tion to this problem in vision relied on characterizing receptor
responses to different wavelengths of light and subsequently
relating these responses to perception. In olfaction, experimen-
tally measuring receptor responses to a representative set of
complex mixtures is intractable due to the vast number of pos-
sibilities. To meet this challenge, we develop a biophysical model
that predicts mammalian receptor responses to complex mixtures
using responses to single odorants. The dominant nonlinear-
ity in our model is competitive binding (CB): Only one odorant
molecule can attach to a receptor binding site at a time. This
simple framework predicts receptor responses to mixtures of up
to 12 monomolecular odorants to within 15% of experimental
observations and provides a powerful method for leveraging lim-
ited experimental data. Simple extensions of our model describe
phenomena such as synergy, overshadowing, and inhibition. We
demonstrate that the presence of such interactions can be iden-
tified via systematic deviations from the competitive-binding
model.

olfaction | sensory coding | receptor biophysics |
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In the field of flavors and fragrances, methods for mixing odor-
ants to make a target odor are largely the domain of experts

who have undergone years of training. Their expertise comes
from examining historical formulas as well as extensive trial-
and-error work, and their methods are primarily qualitative. In
vision, by contrast, the rules for mixing lights to make a tar-
get color are quantitative and well developed. These rules are
derived from a detailed characterization of human color percep-
tion and its relation to cone photoreceptor spectral sensitivities
(1–3). Indeed, known tuning curves relate the wavelength of light
to the responses of three types of cone photoreceptors. These
input-response functions are then incorporated into models that
extrapolate from the responses to single wavelengths to an arbi-
trary mixture of wavelengths. Finally, these receptor responses
are used to predict color perception.

Here, we propose an analogous approach for characterizing
the response of receptors to single odorants and modeling the
responses to combinations of odorants. Simple summation mod-
els are widely used (4–8), but fail to account for several observed
interactions, such as suppression, masking, hyperadditivity (or
synergy), hypoadditivity (or compression), configural perception,
and overshadowing. The wide variety of mixture interactions sug-
gests that a simple model would struggle to explain experimental
results, but here we show that a minimal biophysical descrip-
tion of odorant–receptor interaction incorporating the simplest
possible nonlinearity, namely competition between molecules
for the binding site, can successfully predict the responses of
many mammalian odor receptors to complex molecular mixtures.
Previously, Rospars et al. (9) found that responses of olfactory
receptor neurons to some simple binary mixtures were largely

consistent with a similar model and could display both hyper-
and hypoadditivity. Related results for binary mixtures have also
been reported for neurons in the accessory olfactory system (10)
and in the antennal lobes of Drosophila (11) and locust (12). Cruz
and Lowe (13) subsequently developed a biophysically moti-
vated version of this model and applied it to glomerular imaging.
Marasco et al. (14) extended this work to allow different odor-
ants to have different Hill coefficients and thus different degrees
of binding cooperativity, which allowed for the phenomena of
synergy and inhibition, although a biophysical motivation was
lacking. Meanwhile, Reddy et al. (15) developed biophysically
motivated models of the phenomenon of antagonism in receptor
neurons.

Here, we present two key steps forward. First, we collect
receptor data for a large set of odors and show that our
competitive-binding model largely accounts for the response of
olfactory receptors to complex mixtures of up to 12 odorants.
Second, we develop a systematic strategy to identify additional
nonlinear interactions among odorants and receptors that go
beyond the effects of competitive binding. Our approach is
rooted in basic biophysics. For example, the extended mod-
els consider consequences of known phenomena like receptors
with multiple binding sites, facilitation by already bound odor-
ants, noncompetitive inhibition, and heterodimerization of odor-
ant molecules in mixture and predict effects such as synergy,
antagonism (16), and overshadowing (17) in receptor responses.
Such phenomena are reported in studies of human olfactory
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perception (18), but their origin is unknown. We hypothesize that
such nonlinear effects, previously assumed to be of neural origin,
may already have a contribution from interactions at the level of
the receptor.

Results
Competitive-Binding Model. The response of a receptor to an odor
can be modeled in terms of the binding and unbinding of odor-
ant molecules to and from the binding site. We assume that only
one molecule can attach to a binding site at a time, leading to
competition. In the presence of many odorants, the outcome of
competition depends on three parameters: the concentration of
the individual molecules, the efficacy with which the molecule
activates the receptor, and the affinity of the molecule for the
binding site.

We modeled the response of a receptor to the binding of an
odorant as a two-step process (SI Appendix, Competitive binding
model) (19). Such models have widely been used to study kinet-
ics of chemical and biological systems starting with Michaelis
and Menten in 1913 (20–24). In the first step, the molecule
binds reversibly to the binding site. At this stage, the bound
receptor can either dissociate, giving back the odorant and the
unbound receptor, or reversibly go to an active state. The tran-
sition to the active state is the second step. In the active state,
the odorant–receptor complex elicits a detectable response. In
our experiments, this response is measured using a luciferase
reporter in a cell-based assay (25).

In this competitive-binding (CB) model, the response of a
receptor F ({ci}) to a mixture of N odorants with concentra-
tions represented by {ci} is given by (derivation in SI Appendix,
Competitive binding model)

F ({ci})=
Fmax

∑N
i =1

eici
EC50i(

1+
∑N

i =1
ci

EC50i

). [1]

Here, EC50i is the concentration at which the response is half
of the maximum for odorant i , ei is the efficacy of the recep-
tor for odorant i , and Fmax parameterizes the total receptor
concentration and overall response efficiency (SI Appendix).

CB Model Predicts Receptor Responses to Mixtures. We used a
heterologous assay to measure receptor responses to three
monomolecular odorants (eugenol, coumarin, and acetophe-
none) known to broadly activate mammalian odor receptors
(26). Dose–response curves were measured for 15 receptors (e.g.,
Fig. 1A) by stimulating the receptors across the full range of
concentrations allowed by our assay ([0,0.3 mM]; Materials and
Methods; see ref. 27 for deposited data). These 15 receptors
were then stimulated with 21 mixtures (12 binary, 9 ternary) of
eugenol, coumarin, and acetophenone (Materials and Methods
and SI Appendix, Table S1) with concentrations now chosen to
avoid receptor saturation.

We first fitted the CB model to the dose–response data for
individual odorants (n = 1 in Eq. 1). We selected parameters to
minimize the root-mean-square error between predictions and
measurements (SI Appendix, Table S4) weighted by the experi-
mental SD (Materials and Methods; example in Fig. 1A, further
details in SI Appendix, Model parameter estimation). The param-
eters that best reproduced the single-odorant data were then
used to predict the response to odorant mixtures (Fig. 1 B
and C).

For most receptors (12 of 15), the root-mean-square error
(rmse) (Materials and Methods and SI Appendix, Fig. S1) was low
(median below 0.1) and small relative to the observed response
(median of rmse/observed response = 0.16) and compared with
the experimental SDs (median rmse/SD = 1.2). (See Extensions
of the Model for the remaining 3 receptors.) The results are
consistent with the hypothesis that the receptor response is gen-
erated by the CB model (chi-square test, null hypothesis that CB
model generates the responses is not rejected, P > 0.999; details
in SI Appendix). We also tested whether the CB model predic-
tions are robust to parameter variations that keep the predicted
dose–response curves within 1 SD of the best fit (SI Appendix,
Fig. S1).

Next we compared the rmse of the CB model to that of a sum-
mation model where responses were predicted to be linear sums
of responses to individual odorants in the dose–response analysis
(Material and Methods). Such summation models have previously
been applied to the responses of olfactory sensory neurons and
in the olfactory bulb (4–7). In addition, the human psychophysics
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Fig. 1. A competitive-binding model predicts olfactory receptor response to binary/ternary mixtures. (A) Response of receptor Olfr895 to individual odor-
ants. Markers show mean experimental response ±1 SD. Solid curves show the competitive-binding (CB) model with parameters chosen to minimize the
error Ei defined as the root-mean-square error between model and data weighted by experimental SDs (main text and SI Appendix, Model parameter
estimation). (B) Response of Olfr895 to binary and ternary mixtures. CB model predictions are plotted against experimental responses averaged over four
replicates. The black diagonal line is the unit slope line. Horizontal bars represent ±1 SD. Vertical error bars are SD over mixture predictions for 300 ran-
domly chosen sets of model parameters constrained so that the error Ei was lower than dEmin

i e, where Emin
i is the error for the best-fit parameters and

de is the ceiling function (SI Appendix, Standard deviation in CB model predictions). In general this amounts to picking random parameter sets such that
the model dose–response curves lie within 1 SD of the experimental mean (SI Appendix, Materials and Methods). (C) Response of 12 olfactory receptors
from humans and mice to binary and ternary mixtures (CB model vs. average experimental responses: binary mixture responses, open symbols; ternary
mixture responses, solid symbols; diagonal line, unit slope line). For these 12 receptors, the median root-mean-square error (rmse) was below 0.1. (See
SI Appendix, Fig. S1 for alternative measures of prediction error.) (D) rmse of summation model plotted vs. the rmse of CB model. rmse of summation
model lies above the diagonal unit slope line for most mixtures, indicating that the summation model predictions are worse compared with those of the
CB model.
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literature frequently assumes a summation model as the default
for the perceived intensity of binary mixtures (8, 28). We found
that the rmse for the CB model was lower than that for the
summation model (Fig. 1D). This improvement occurred even
though mixture concentrations were chosen to lie in an approxi-
mately “linear” regime that avoided saturation. We also tested
whether the CB model predictions were better than the sum-
mation model predictions in terms of other measures of pre-
diction error (SI Appendix, Fig. S2 A and B). The median CB
model predictions lie within ∼15% of the actual magnitude of
the response to individual mixtures. These results confirm the
model’s accuracy.

To further challenge the model, we studied the response of
olfactory receptors to mixtures that were more comparable in
complexity to natural odors, which typically have about 3–40 per-
ceptually important components (29, 30). We focused on mouse
receptor Olfr168, which responds to a large number of odor-
ants (26). From the data in Saito et al. (26) we identified 12
odorants that evoked responses in this receptor (Materials and
Methods). Similar to the procedure above, we first fitted the
dose–response measurements for all 12 odorants to get the best
parameters for the receptor (Fig. 2A and SI Appendix, Table S5;
see ref. 27 for deposited data). Then, we used the competitive-
binding model to predict receptor responses to mixtures with
all 12 odorants present in diverse proportions (Materials and
Methods and Fig. 2B). Trivially, a combination of many odors
at a moderate concentration will activate receptors to satura-
tion. To avoid this, we chose concentrations of the mixture
components such that the receptor activation in response to
the full mixture was above threshold and below saturation. The
model predicted the receptor responses to such complex mix-
tures very well (Olfr168: CB median rmse = 0.16). The results
are consistent with the hypothesis that the receptor response
is generated by the CB model (chi-square test, null hypoth-
esis that CB model generates the responses is not rejected,
P > 0.999; details in SI Appendix). The CB model also out-
performed a summation model of mixture response by more
than 10-fold (Olfr168: summation median rmse = 1.91). Thus,
for complex odor mixtures such as those occurring naturally,
our nonlinear competitive-binding model presents a dramatic
improvement over a summation model.

We wondered whether the specificity of receptor–odorant
interactions determines model accuracy or whether good pre-
diction results from simply fixing responses to be sigmoidal in
the response range of a typical receptor. To test this, we com-
pared the CB model to a shuffled model where, instead of
using the specific dose–response curves of mixture components,

we selected dose–response parameters randomly from all such
parameters available in our dataset (Materials and Methods) and
averaged the prediction error over 300 such random choices. The
competitive-binding model outperformed the shuffled model for
both binary–ternary mixtures (shuffled rmse = 10–100 times CB
rmse; SI Appendix, Fig. S3C) and the 12-component mixtures
(shuffled median rmse = 0.95 ∼ 6 times CB median rmse).

Extensions of the Model. So far, we have considered the sim-
plest possible form of odorant–receptor interaction: Only one
odorant molecule binds a receptor binding site at a time. Surpris-
ingly, most of the receptors studied in our experiments were well
described by this model. Competitive binding can produce essen-
tially three types of nonlinear receptor responses to presentation
of mixtures (Fig. 3 A–C): (i) domination by the odorant that gives
the highest response individually (overshadowing, Fig. 3A), (ii) a
response in between those to the individual odorants (suppres-
sion, Fig. 3B), and (iii) domination by the odorant that gives the
lowest individual response (also called overshadowing, Fig. 3C).
These effects can arise both from the intrinsic properties of the
receptor–odorant interaction (difference in EC50) and/or due
to extrinsic factors such as the ratio of concentrations. Such
qualitative effects have been reported previously (14) in a phe-
nomenological model that has a more complex form of response
to mixtures. We have shown here that these effects can already be
exhibited by a simple model directly rooted in biophysical com-
petition between the odorant molecules seeking to occupy the
receptor.

Our model can be easily extended to incorporate additional
biophysical interactions that produce effects such as synergy (18)
and inhibition (31). Although previous work (9, 13, 14) has
explored possible mathematical functions that can be used to
fit such nonlinearities in receptor response data, a biophysical
understanding of the origin of these effects has been missing.
Some recent progress on this front is reported by the authors
of ref. 15 who focused on antagonism in receptors and proposed,
e.g., additional interactions with cell membranes as a mechanism
for nonspecific suppression. These authors also argued on theo-
retical grounds that antagonism can normalize receptor neuron
population activities, improving the performance of decoders of
the response ensemble. Our approach of starting from the sim-
plest interactions at the molecular level provides an avenue for
systematically identifying important interactions. For example,
consider facilitation, where the binding of an odorant promotes
the binding of other odorants to the same site. Such an inter-
action modifies Eq. 1 (Materials and Methods and SI Appendix,
Facilitation) and produces effects such as synergy (Fig. 3D), in
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Fig. 2. A competitive binding model predicts olfactory receptor response to 12-component mixtures. (A) Response of receptor Olfr168 (mouse) to 12
individual odorants. Markers show mean experimental measurements ±1 SD. Solid curves show CB model. (B) CB model predictions vs. experimental
responses for Olfr168. The error bars represent±1 SD. (B, Inset) rmse of summation model (SM) plotted vs. the CB model. The black diagonal line is the unit
slope line.
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Fig. 3. (A–C) Phenomena exhibited by the competitive-binding model. The competitive-binding model with different parameter choices shows diverse
effects for binary mixtures (purple) of two odorants (red and blue). Shown here are effects due to variations of EC50: (A) overshadowing by the odorant with
the higher individual response (EC501 = 10−4.0); (B) suppression, where the response is in between the responses of the individual odorants (EC501 = 10−5.5);
and (C) overshadowing by the receptor that produces the lower individual response (EC501 = 10−7.0). Value of the other model parameters: Fmax = 1,
e1 = 0.5, e2 = 0.8, and EC502 = 10−5.5. We assume equimolar mixtures (c1/c2 = 1). (D and E) Phenomena exhibited by the extended model including odorant
facilitation. Facilitation of odorant binding by another odorant molecule in mixture leads to additional effects like synergy and inhibition. (D) Synergy:
receptor response is higher than response to both the individual odorants. (E) Inhibition: response to mixtures is lower than the response to either individual
odorant. Functional forms for facilitation and parameter choices leading to synergy and inhibition are given in SI Appendix, Facilitation.

which the response of the receptor is higher than the sum of
the response to both individual odors, and inhibition (Fig. 3E)
where the response is below the response to both individual
odorants. This is in addition to the effects already produced
by competitive binding (overshadowing and suppression, Fig. 3
A–C). Alternatively, if there are multiple independent binding
sites for odorants, the mixture response will be the sum of the
individual components (SI Appendix, Independent binding sites).
More complex biophysical interactions, such as noncompetitive
inhibition (SI Appendix, Noncompetitive inhibition), heterodimer-
ization (SI Appendix, Odorant dimerization), catalysis by odor
molecules, etc., can similarly be added to the basic model in a
principled way.

To illustrate our proposed systematic approach to adding
interactions, we considered the three receptors whose responses
to binary and ternary mixtures deviated significantly from the
predictions of the CB model (median rmse >0.1). For each of
these receptors, we searched as follows for additional interac-
tions between receptors and odorants. If the observed receptor
responses were higher than the predictions of the CB model, we
hypothesized a synergistic interaction. If the observed receptor
responses were lower than the predictions of the CB model, we
inferred the presence of suppression. We also looked at the com-
position of the mixtures for which the deviations were significant
and identified the common odorant (if any) and incorporated an
interaction with this odorant compensating for over- or under-
predictions. The parameters of the extended CB model were
chosen, similar to the CB model, by minimizing the root-mean-
square error between observed response and predictions of the
modified model weighted by the SD. Applying this procedure to
the three remaining receptors significantly improved predictions
(Fig. 4). Two receptors required inclusion of facilitative inter-
actions (OR5P3, synergy between coumarin and acetophenone;
Olfr1062, synergy between all three pairs), and one receptor
(Olfr1104) required inclusion of suppression by eugenol (for
functional forms and model parameters see Materials and Meth-
ods and SI Appendix, Modified models). Overall, the extended
CB model (rmse mean = 0.10, median = 0.06) outperformed
a summation model (rmse mean = 0.17, median = 0.16) and
a shuffled model (rmse mean = 0.90, median = 0.86). These
results predict specific odor–receptor interactions that can be
tested experimentally.

Discussion
In this work, we showed that a minimal biophysical model of
odorant–receptor interaction incorporating just the simplest pos-
sible nonlinearity, namely competition between molecules for
the binding site, can successfully predict the responses of many
mammalian odor receptors to complex molecular mixtures. This

is surprising because noncompetitive interactions are common
in pharmacology, but we nevertheless found that our simple
model explains the majority of the experimental results. More
general interactions between odorants and receptors can be
easily added to our model, at the cost of additional parame-
ters. For example, we showed that the nonlinearities implied
by just competitive exclusion and facilitation are sufficient to
produce diverse effects that have been previously reported in
the perception of odor mixtures including synergy (18), over-
shadowing (17), suppression (32), and inhibition (31). These
effects were thought to have a neural origin, but our results
suggest that they may be driven partly by the biophysics of
receptors.

Experimental studies of olfaction have largely focused on sim-
ple odors consisting of only one or two odorant molecules.
However, natural odors are generally complex, containing hun-
dreds of volatile components, with 3–40 being essential for the
characteristic odor (30). Thus, to understand how olfactory cir-
cuits operate in naturalistic environments, models must account
for complex sensory stimuli, as visual neuroscience has done for
some time. A first step toward this goal is to understand how the
receptors themselves respond to mixtures of many molecules. In
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Fig. 4. Adding synergy and suppression improves predictions for three
receptors. (A) The response of three olfactory receptors with the CB
model (open symbols) and the extended CB model (solid symbols).
Extensions: (i) OR5P3, synergy between coumarin and acetophenone; (ii)
Olfr1062, synergy between all three pairs; and (iii) Olfr1104, suppression
by eugenol. (B) rmse of the CB model vs. the extended CB model for
the three receptors for each mixture. (C) rmse of the summation model
vs. the extended CB model. In A–C, the black diagonal line is the unit
slope line.
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practical terms, the combinatorial explosion of the number of
mixtures with different compositions means that the only hope
for progress is to have a model that can predict mixture responses
from dose–response curves, which can conceivably be measured
for large panels of odorants in high-throughput experiments.
Such a predictive model is most likely to be successful if it is
rooted in the basic biophysics and biochemistry of molecular
sensing, as our model is.

In olfaction, the low background activity of most receptors
also makes it difficult to identify inverse agonists or antago-
nists using single molecules. But these effects, and more gen-
eral noncompetitive interactions, do occur in mixtures. Fortu-
nately, such interactions will typically involve small numbers
of molecules as the probability of multiple molecules meet-
ing to interact at the same time should decline exponentially
with the number of interacting molecules. Thus, future studies
should be able to explore the landscape of interactions by test-
ing receptor responses to mixtures with just a small number of
components.

We demonstrated a strategy to identify such interactions and
used it to identify some receptors with suppressive and synergis-
tic interactions. Note that this process of identifying interactions
will converge efficiently only if we begin at a biophysically well-
motivated starting point like our competitive-binding model. If
we begin instead with an ad hoc model like linear addition of
responses, many corrections will be needed to get a good descrip-
tion, as in the accumulation of epicycles required to describe
simple elliptical orbits in the Ptolemaic model of the solar sys-
tem. Even if we start with the competitive-binding model, the
complexity of the added interactions must be discounted against
the gain in accuracy, especially when including multiple interac-
tions. This can be achieved via modern techniques in parametric
statistical inference, e.g., ref. 33, that trade off model complexity
against prediction accuracy.

In the study of color vision, models of the early visual sys-
tem are combined with lookup tables of human responses to
primary colors obtained through psychophysical experiments
(34) to predict responses to arbitrary colors. These models
have led to accepted industry standards that are used to pro-
duce color graphics through electronic or print means. Perhaps
lookup tables of dose–response curves for olfactory recep-
tors could be combined with models such as ours to pre-
dict responses to complex mixtures, ultimately allowing olfac-
tory designers to create desired odors from a set of primary
odorants.

Materials and Methods
See SI Appendix for detailed methods, biophysical models, and mathemati-
cal derivations.

Measurement of Dose–Response Curves and Mixture Response. Receptor
responses were measured as luminescence of Firefly and Renilla reporters in
a cell-based assay following the protocol for the Dual-Glo Luciferase Assay
System (Promega) described in refs. 25 and 35. The enzyme is linear over
seven orders of magnitude (36). In our system, luminescence from the fire-
fly luciferase is a measure of receptor activity while luminescence from the
Renilla luciferase measures how many cells are alive and successfully trans-
fected. To measure receptor response, we first calculate the ratio of Firefly
to Renilla luminescence on stimulation by the odor (SI Appendix, Cell-based
assay). To standardize these measurements, we also measure the Firefly to
Renilla luminescence ratio of a standard receptor (Olfr544) stimulated with
nonanedioic acid at two concentrations (0 µM and 100 µM) under identical
conditions. The luminescence ratio of the receptor is then divided by the
difference between the luminescence ratios of the standard receptor at the
two concentrations (SI Appendix, Preprocessing). This gives the standardized
response of a receptor to the odor. Finally, we subtract the standardized
response of the receptor at zero concentration of the odor to get the net
response above baseline.

From 22 human and mouse receptors in ref. 26, we selected 18 respond-
ing to at least 2 of eugenol, acetophenone, and coumarin (Sigma-Aldrich).

We measured the dose–response curves to these odorants at seven concen-
trations as well as a no-odor control. These seven concentrations spanned
the total concentration range allowed in our assay (up to 0.3 mM), which
is much higher than the biologically relevant concentrations found in the
mucosa. We set a threshold for consistency that the difference between
the standardized baseline response for a receptor to any pair of odorants
should be within 0.2 of each other (see, e.g., the nearly overlapping base-
lines in Figs. 1A and 2A where this difference is nearly zero). Fifteen of the
18 receptors passed this test and were further stimulated with 21 mixtures
(12 binary, 9 ternary) of eugenol, coumarin, and acetophenone (Materials
and Methods and SI Appendix, Table S1) with concentrations selected to
avoid receptor saturation.

From the data in ref. 26, we also identified one receptor, Olfr168,
that was broadly tuned and for which dose–response curves were
available for 12 odorants. We measured responses of this receptor to
24 mixtures of the 12 odorants and a no-odor control. Six mixtures
contained all 12 odorants at equimolar concentrations. To select the
other 18 mixtures, we first fitted our competitive-binding model to the
dose–response data and used it to select pseudorandom concentrations
of each odorant such that the predicted responses spanned the full
dynamic range while avoiding saturation (compositions in SI Appendix,
Table S3).

Model Parameter Estimation Using Dose–Response Measurements. For each
odorant (i), we chose parameters (EC50i and the product Fmaxei) that mini-
mize the root-mean-square error between the measured average response
(ȳex(ci)) at concentrations ci and the model predictions (F(ci)), divided by the
experimental SD (details in SI Appendix, Model parameter estimation); i.e.,

Ei =

√√√√ 1

M

∑
ci

(
(F(ci)− ȳex(ci))

σ(ci)

)2

. [2]

Ei < 1 would mean that, on average, the model predictions lie within 1
SD away from the mean experimental observation. The minimization was
performed using MATLAB fminunc. (Also see SI Appendix, Dealing with
unconstrained parameters and SI Appendix, Fig. S5 and S6 for an alternative
procedure for parameter estimation.)

Null Models. We considered a summation model where the receptor
response to mixtures was a sum of the response to individual odorants at
their concentrations in the mixture (SI Appendix, Alternative models for
comparison). We also considered a shuffled model that has the same mathe-
matical form as the competitive binding model (Eq. 1), but with parameters
chosen randomly with replacement from the set of dose–response param-
eters used in our analysis (57 sets; 45 sets from the 15 receptors of the
binary–ternary analysis and 12 sets of the receptor Olfr168 from the 12-
component analysis). Each parameter of the shuffled model is chosen
independently. We report average prediction error (rmse) over 300 such
random choices.

Competitive-Binding Model and Extensions. Mathematical derivation of the
models from the biophysics of molecular binding is given in SI Appendix. The
model for synergistic interaction (SI Appendix, Facilitation) has the form

F(c1, c2) =
Fmax

(
e1

c1
EC501

+ e2
c2

EC502
+ e12

c1c2
EC5012

)
(

1 +
c1

EC501
+

c2
EC502

+
c1c2

EC5012

) , [3]

where e12 and EC5012 are the parameters of the interaction between the
two odorants. The model with suppression (SI Appendix, Noncompetitive
inhibition) has the form

F(c1, c2) =
Fmax

(
e1

c1
EC501

+ e2
c2

EC502

)
[
1 +

c1
EC501

+
(

c2
EC502

)(
1 + K1

c1
EC501

)], [4]

where K1 is the suppression parameter for odor 1.

Data and Software Availability. Data and software are available from Open
Science Framework (27).
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