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Summary

1. Fluctuations in early developmental conditions can cause changes in growth trajectories that

subsequently affect the adult phenotype. Here, we investigated whether compensatory growth

has long-term consequences for patterns of senescence.

2. Using three-spined sticklebacks (Gasterosteus aculeatus), we show that a brief period of diet-

ary manipulation in early life affected skeletal growth rate not only during the manipulation

itself, but also during a subsequent compensatory phase when fish caught up in size with

controls.

3. However, this growth acceleration influenced swimming endurance and its decline over the

course of the breeding season, with a faster decline in fish that had undergone faster growth

compensation.

4. Similarly, accelerated growth led to a more pronounced reduction in the breeding period (as

indicated by the duration of sexual ornamentation) over the following two breeding seasons,

suggesting faster reproductive senescence. Parallel experiments showed a heightened effect of

accelerated growth on these age-related declines in performance if the fish were under greater

time stress to complete their compensation prior to the breeding season.

5. Compensatory growth led to a reduction in median life span of 12% compared to steadily

growing controls. While life span was independent of the eventual adult size attained, it was

negatively correlated with the age-related decline in swimming endurance and sexual ornamen-

tation.

6. These results, complementary to those found when growth trajectories were altered by tem-

perature rather than dietary manipulations, show that the costs of accelerated growth can last

well beyond the time over which growth rates differ and are affected by the time available until

an approaching life-history event such as reproduction.
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Introduction

Senescence is a late-life decline in physiological functioning

with age that results in a decrease in organismal perfor-

mance such as locomotor ability, reproduction or an

increase in mortality rate (Williams 1957; Hamilton 1966;

Abrams 1991; Rose 1991). The pattern and pace of senes-

cence is thought to be influenced by trade-offs in the allo-

cation of limiting resources to self-maintenance and other

activities, such as reproduction (called disposable soma

theory; Kirkwood 1977). These trade-offs might produce

individual variation in rates of senescence (a major

assumption of life-history theory; Stearns 1992) because

individuals are expected to maximize their fitness by allo-

cating energy and resources between current and future

reproduction (Schaffer 1974; Partridge 1992), and the pre-

cise allocation will vary according to an individual’s state

(Hendry et al. 2004; Bouwhuis et al. 2010). It is known

that optimal strategies of resource allocation also depend

on environmental conditions: the optimal allocation to

growth will thus vary over time, depending on resource

availability as well as current nutritional state (Mangel &

Munch 2005; Lee et al. 2011).

Compensatory growth is a well-known strategic adjust-

ment that occurs when growth rate is accelerated upon

refeeding after a period of environmentally suppressed
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growth; if complete, it results in normal adult size still

being attained despite the earlier setback [i.e. full catch-up

growth, following the terminology of Hector & Naka-

gawa (2012)]. While such growth compensation might

carry costs, there may be overall fitness benefits. In popu-

lations that experience high rates of juvenile predation,

accelerated growth can increase survival by reducing the

period spent at a vulnerable size (Arendt 1997; Sogard

1997). Moreover, larger individuals may have greater

competitive abilities (Johnston 1993) and an earlier age of

maturation (Rowe & Thorpe 1990). Notwithstanding

these benefits of compensatory growth, previous work has

demonstrated that growth acceleration can also have neg-

ative effects in later life. The hyperphagic response needed

for increased growth after food restriction could increase

the risk of predation while foraging (Ali & Wootton

2000), while the physiological process of growth accelera-

tion may cause increased cellular damage and metabolic

costs (Tarry-Adkins et al. 2013) which could, for instance,

reduce future life span or reproductive capacity (Metcalfe

& Alonso-Alvarez 2010). It has been reported that com-

pensatory growth in fish induced by earlier food restric-

tion causes a reduced ability to swim against fast-flowing

water (�Alvarez & Metcalfe 2005) and a reduced life span

(Inness & Metcalfe 2008), as well as negative effects on

reproductive output (Auer et al. 2010). However, while

several studies have documented the existence of a com-

pensatory growth response to a period of poor nutrition

during early life (reviewed by Ali, Nicieza & Wootton

2003), there has been surprisingly little effort to study the

long-term effects of this cause of growth acceleration on

rates of senescence.

Metcalfe, Bull & Mangel (2002) hypothesized that the

amount of time available to catch up after a period of

poor growth would influence patterns of compensatory

growth: less time available until a key event such as

breeding might result in increased pressure for accelerated

growth (the so-called time-stress hypothesis). However, in

these situations, why should animals opt to accelerate

their growth as opposed to growing normally and breed-

ing at a smaller size and/or continuing to grow through

the breeding season? It has been shown that an increased

body size has reproductive benefits for both sexes in

terms of mate choice (Howard et al. 1998), which is

important at the beginning of the breeding season. More-

over, rapid somatic growth prior to the breeding season

would allow more time for gonad growth and hence

increased fecundity or sperm production. The tendency

to show a catch-up growth response may vary between

populations in relation to the likelihood that they would

naturally experience a time constraint (Dahl et al. 2012;

Orizaola, Dahl & Laurila 2014), suggesting that time

constraints influence whether the benefits of faster growth

would outweigh the costs of growth compensation. Met-

calfe & Alonso-Alvarez (2010) argued that the extent of

growth acceleration should be flexible under time stress

since reduced time available prior to a life-history event

such as reproduction would affect the ability of the ani-

mal to repair any molecular or tissue damage that had

occurred as a result of the accelerated growth. Indeed,
�Alvarez & Metcalfe (2005) found that compensatory

growth caused a greater decrease in swimming perfor-

mance in three-spined sticklebacks (Gasterosteus aculea-

tus) when this occurred close to the breeding season; our

recent work using temperature manipulations to alter

growth patterns in the same species also showed that this

cost was increased when the fish perceived a greater time

stress due to photoperiod manipulation that decreased

the time available for growth prior to breeding (Lee,

Monaghan & Metcalfe 2010, 2012, 2013).

Dietary manipulations can be used to alter growth tra-

jectories, with a brief period of food restriction often

inducing compensatory growth once animals are returned

to their previous food levels (e.g. �Alvarez & Metcalfe

2005; Inness & Metcalfe 2008). The degree of time stress

can be altered by using shifted photoperiod regimes that

alter the perceived time of year (e.g. time until a key

event such as the breeding season). By using both diet-

ary and photoperiod manipulations to manipulate

growth rates in three-spined sticklebacks at two different

times of year, we examined: (i) whether compensatory

growth in early life alters the subsequent pattern of age-

related changes in two key traits related to adult fitness

(swimming endurance and breeding ornamentation), (ii)

how changes in these traits with age relate to life span,

and (iii) how these patterns are affected by the degree of

time stress. While the negative effects of compensatory

growth in sticklebacks have already been documented

for some life-history traits, our approach here is to

investigate these questions over longer time periods so as

to produce a more complete analysis of the effects of

compensatory growth on life histories. Our hypotheses

were that compensatory growth would induce faster rates

of decline in locomotor and reproductive traits (i.e. a

faster rate of senescence in performance traits), that

these trends would be associated with changes in life

span and that effects would be greater in fish perceiving

greater time stress.

Materials and methods

F ISH AND REARING CONDIT IONS

We presumed that the amount of time available for growth prior to

the onset of the breeding season might affect the compensatory

growth response, so the same experimental treatments were con-

ducted at two time points with independent fish (hereafter referred

to as the Winter and Spring experiments; experimental design

shown in Fig. S1a). On 1 November 2007 (= Winter experiment)

and 29 January 2008 (= Spring experiment), wild juvenile three-

spined sticklebacks (Gasterosteus aculeatus) were captured with a

dip net and minnow traps in the River Endrick, Scotland, UK

(56°040N, 4°230W). All fish were transferred to acclimatization

aquaria (80 L and density 2 fish L–1) for 3 weeks and fed ad libitum

frozen chironomid larvae. Prior to the start of experiments, the
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temperature was maintained at 9�7 � 0�1 °C, while the photope-

riod was ambient. All fish were anaesthetized and measured for

standard length (�0�01 mm) and wet mass (�0�001 g) on 21

November 2007 and 21 February 2008 for the Winter and Spring

experiments, respectively. We then sorted fish into groups of five

(of differing size, to aid identification), with each group of five fish

in a separate tank (335 9 170 9 185 mm) provided with aeration,

a filter and artificial plants as well as an additional 62�5 mL of sea-

water per tank to prevent the risk of whitespot infection (Ichthyoph-

thirius multifiliis).

DIETARY AND T IME-STRESS MANIPULAT ION

Four replicate tanks of five fish were assigned randomly to each

manipulation, defined in relation to dietary regime: restricted (R

group, fed 2% of body mass) and control (C group, fed ad libitum)

(Fig. 1a). The control group are the same fish as used as controls

in temperature manipulation experiments in Lee, Monaghan &

Metcalfe (2010, 2012, 2013), and so data from these fish are used

simply as a comparison with the novel data from the food

restricted group. A diet of 2% of body mass was chosen for the

growth suppression period since this has earlier been found to

produce reduced growth at 10 °C (Allen & Wootton 1984). At the

end of a 4-week manipulation period (Period 1), all fish were

returned to an ad libitum diet for the rest of the experiment

(Period 2; Fig. S1b; Table S1). The temperature was held at 10 °C
during periods 1 (manipulation) and 2 (compensation), but was

raised to 14 °C during each breeding season in line with ambient

temperature. The first and second breeding seasons were defined

as periods 3 and 5, respectively, with Period 4 being the interven-

ing non-breeding season; full details of the time periods are given

in the supplementary information (Appendix S1).

The fish in the Spring experiment had less time available to

recover from the growth perturbation compared to those in the

Winter experiment, allowing us to examine the time-stress

hypothesis. As an additional manipulation of time stress, we

also gave fish in each experiment an ambient photoperiod

regime (AP) or a day length which corresponded to a point

35 days earlier in the season [= delayed photoperiod (DP)],

thereby delaying the perceived time to the onset of breeding in

DP fish (alleviating time stress). Fluorescent lights were con-

trolled by electronic timers, and the lighting regimes were

manipulated using blackout plastic sheeting around the tanks

in the delayed groups. Both diet and photoperiod were manip-

ulated in a factorial design, yielding four manipulation groups

in each experiment (each with four replicate tanks). Since the

control groups (= normal diet ration) experienced ad lib food

at a constant 10 °C during periods 1 and 2, they showed

steady growth up until the breeding season (Lee, Monaghan &

Metcalfe 2010); the restricted diet groups (= fed 2% of body

mass for a 4-week period, followed by ad lib food) were

expected to show slowed growth followed by (compensatory)

growth acceleration. Following results obtained for a parallel

perturbation of growth trajectories using temperature manipula-

tions (Lee, Monaghan & Metcalfe 2010), fish in the Winter

experiment (being under reduced time stress) were predicted to

show weaker compensatory responses than those in the Spring

experiment, while if fish were sensitive to photoperiod, then fish

in the delayed groups within each experiment should show

weaker compensatory responses (due to reduced time stress)

than their corresponding group exposed to a normal photope-

riod.

We remeasured the fish for length and mass every 2 weeks dur-

ing the dietary manipulation period and every 3 weeks thereafter;

all fish were starved for 24 h prior to measuring to prevent varia-

tion in the weight of stomach contents. Tanks were inspected daily

in order to monitor mortality rates throughout the experiment.

QUANT IF ICAT ION OF SWIMMING PERFORMANCE AND

SEXUAL ORNAMENTAT ION

The swimming performance of the fish was quantified as the

amount of time a fish could swim against a constant current of

water known to be too strong for sustained swimming, a measure

of swimming stamina used in previous studies (Ojanguren &

Bra~na 2000, 2003; �Alvarez & Metcalfe 2005; Royle, Metcalfe &

Lindstrom 2006). The full details of the experimental set-up are

given elsewhere (see �Alvarez & Metcalfe 2005; Lee, Monaghan &

Metcalfe 2010) and in the electronic supplement (Appendix S1). In

both experiments, we measured swimming performance twice

(‘T1’ and ‘T2’ in Fig. S1b), first when fish in the different manipu-

lation groups had finished the phase of compensatory growth and
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Fig. 1. Growth trajectories (logarithm of standard length in mm)

of three-spined sticklebacks (Gasterosteus aculeatus) over the early

compensatory period in the (a) Winter and (b) Spring experiment.

Note that the two experiments started on different days, so that

day 1 is 21 November 2007 in (a) and 21 February 2008 in (b).

The thick horizontal line indicates the period of dietary manipula-

tion (28 days); black circles and dashed line represent the

restricted diet and open circles and solid line the ad libitum con-

trol. Asterisks indicate significant differences in length between

treatment groups (P < 0�05). ‘T1’ and ‘T2’ indicate the timing of

swimming trials (i.e. at the end of the period of compensatory

growth and 18 weeks later, after the breeding season). The tem-

perature for both groups was kept at 10 °C until the start of the

first breeding season (‘B’), at which point the temperature was

raised to 14 °C and male sticklebacks were isolated from female

sticklebacks (see Materials and methods for more details).
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had converged on the same mean size prior to breeding, and again

18 weeks later (at the end of the first breeding season). Swimming

endurance is defined as the amount of time that a fish swam at the

highest flow rate.

At the onset of the breeding season, the colour of the eye sclera

in both male and female sticklebacks changes from silver to blue

or blue-green (Barber et al. 2000) and the intensity of the eye col-

our is positively correlated with mating condition (Kraak, Bakker

& Mundwiler 1999; Flamarique et al. 2013), so eye colour can be

used as a readily quantifiable measure of breeding ornamentation

that can be applied to both sexes. At the beginning of each breed-

ing season (periods 3 and 5), we allocated each male that was

developing the characteristic breeding coloration of blue eyes and

a red throat to an individual tank, which was of the same size and

arrangement as its group tank (this breeding experimental

protocol is illustrated in the electronic supplementary material,

Appendix S1). As the intensity of blue eye coloration in this popu-

lation tends to remain high for about 4 months over the breeding

season and then declines sharply, we began weekly measurements

of eye coloration at the end of the dietary manipulation (25

December 2007 for the Winter experiment and 25 March 2008 for

the Spring) until the end of the second breeding season using a 4-

point scale (Boughman 2007; Lee, Monaghan & Metcalfe 2012): 0

(no blue coloration) to 4 (strong bright blue coloration). All fish

were scored by the same person using this standardized procedure

on the same day. The duration of breeding ornamentation was

then defined as the number of weeks during each breeding season

that fish maintained a relatively strong blue eye colour (3 + for

males, 2 + for females). Note that while female fecundity and male

red throat coloration and rate of nest building were also quanti-

fied (see supplement information; Appendices S1 and S2; Tables

S2-S5; Figs S3-S6), these data are not considered in the main anal-

yses since relatively small sample sizes of fish surviving to the sec-

ond breeding season (and hence allowing calculation of changes

over successive breeding seasons) made it important to focus on

traits where the data set could include both sexes.

The change in traits with age was defined as follows:

change = ((a1 + a2)/a1) – 2, where a1 is the earlier measurement

and a2 the later one (for swimming endurance, the measurements

were at the beginning and end of the first breeding season; for

breeding ornamentation, the values were the duration above the

threshold score in the first and second breeding seasons). Values

greater than zero thus indicate an increase (and values less than

zero a decrease) in the trait value over time.

COMPENSATORY GROWTH RATE

Compensatory growth rate (% per day) was defined as the growth

rate during the compensatory period (Period 2) after the dietary

manipulation and was calculated as follows: compensatory growth

rate = 100�[ln(Lc �Li
�1)]�t�1, where Li was the length at the end of

Period 1 and Lc was the standard length when fish in the different

manipulation groups had finished the phase of compensatory

growth and had appeared to converge on the same mean size prior

to breeding (based on inspection of growth trajectories), and t was

the interval in days between Lc and Li, being 105 days in the Win-

ter experiment and 84 days in the Spring experiment.

STAT IST ICAL ANALYS IS

To test for differences in body length and mass between treatment

groups, multivariate analysis of variance (MANOVA) was used at the

beginning of each experiment before fish had been allocated to

their treatment tanks as well as at the end of the compensatory

period. We used linear mixed-effect models (LMEs) in order to

analyse the effects of the dietary and photoperiod manipulations

on compensatory growth rate in both experiments, with season of

experiment (Winter or Spring), dietary (restricted or control,

denoted R and C, respectively) and photoperiod (AP or DP) treat-

ments and sex (male or female) as fixed effects, fish length (manip-

ulated length at the end of Period 1) as a covariate and tank as a

random effect, plus all interactions.

Any association between compensatory growth rate and other

traits could be caused by an effect of dietary treatment (i.e. a

between-treatment group effect) or an effect due to variation in

individuals within a dietary treatment group (i.e. a within-treat-

ment group effect). To distinguish within- from between-group

effects, we used the technique of ‘within-group centring’ (van de

Pol & Wright 2009). A first variable that expresses only the

between-group variance component was given by the mean value

of the trait in question, calculated over all fish in the same diet-

ary treatment group. A second variable that expresses only the

within-group variance component was computed by subtracting

this treatment mean value from the individual values in a given

dietary treatment group. LME based on within-group centring

was used to analyse the factors influencing age-related changes in

swimming endurance and in the duration of breeding ornamenta-

tion. The full model included season of experiment, photoperiod

treatment and sex as fixed effects and mean compensatory growth

rate for a dietary treatment (as a between-group effect) and

within-group variation about this treatment mean for compen-

satory growth rate (as the within-group effect) as covariates. We

also included the identity of the original rearing tank as a

random effect, plus all 2-way interactions. Equivalent LMEs sub-

sequently explored the factors influencing life span; the full mod-

els contained experiment, photoperiod treatment and sex as fixed

effects and compensatory growth rate (partitioned into within-

and between-dietary treatment effects as above), change in

swimming endurance and change in the duration of breeding

ornamentation (similarly partitioned into within- and between-

dietary treatment effects) as covariates, all 2-way interactions,

and the random effect of rearing tank identity.

For all models, we started with a full model and sequentially

dropped non-significant variables so that the final models only

included significant terms (or terms that were components of sig-

nificant interactions). All means are presented with standard

errors, and all of the analyses were performed with the software R

v.2.15.2 (R Development Core Team 2012) and the package lme4

(Bates, Maechler & Bolker 2012). All experiments were performed

under licence from the UK Home Office (PIL 60/11377).

Results

COMPENSATORY GROWTH RATE

At the beginning of the two experiments, there was no dif-

ference in the mean standard length or mass of stickle-

backs allocated to the dietary treatment groups (MANOVA,

Winter: Wilks’ k = 0�987, F2,77 = 0�52, P = 0�132;
Spring: Wilks’ k = 0�988, F2,77 = 0�46, P = 0�636) or the

two photoperiod treatments (Winter: Wilks’ k = 0�999,
F2,77 = 0�03, P = 0�975; Spring: Wilks’ k = 0�999,
F2,77 = 0�01, P = 0�995). In the Winter experiment, the

mean standard length of R fish at the end of the manipula-

tion period (= manipulated length) was significantly smal-

ler than that of C fish (linear mixed-effect models (LMEs),

F1,12�69 = 6�08, P = 0�029; Fig. 2a), but there was no effect

of photoperiod treatment (F1,11�68 = 0�06, P = 0�806) or

sex (F1,49�36 = 0�41, P = 0�523). Not surprisingly, there was
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a positive effect of initial length at the start of the Winter

experiment on the fish’s length at the end of the manipula-

tion period (F1,46�59 = 123�89, P < 0�001). The analysis of

the Spring experiment found similar effects of initial length

(F1,64�36 = 5238�98, P < 0�001) and dietary treatment group

(F1,12�95 = 108�73, P < 0�001; Fig. 2b) on manipulated

length, but also a significant effect of photoperiod treat-

ment (F1,12�94 = 6�76, P = 0�022), with fish being larger at

the end of the manipulation period under the ambient than

under the delayed photoperiod. Again there was no effect

of sex (F1,67�09 = 0�42, P = 0�521). Broadly similar results

were obtained for analyses of fish body mass in both

experiments (see Appendix S2).

When again given food ad libitum, R fish grew rapidly so

that after 15 weeks in the Winter experiment and 12 weeks

in the Spring experiment, the differences in length and mass

between R and C fish were no longer significant (Winter:

Wilks’ k = 0�937, F2,64 = 2�16, P = 0�123, Spring:

Wilks’ k = 0�978, F2,69 = 0�79, P = 0�458), nor were there

differences between photoperiod groups (Winter: Wilks’

k = 0�996, F2,64 = 0�12, P = 0�885, Spring: Wilks’

k = 0�968, F2,69 = 1�14, P = 0�325). Compensatory growth

rates (= growth rate during the compensatory period, Per-

iod 2) were significantly higher in the Winter experiment

than in the Spring experiment (Table 1 and Fig. 1). While

there was no effect of photoperiod (LME, F1, 97�8 = 0�15,
P = 0�700) or sex (F1, 97�8 = 0�14, P = 0�709) on compen-

satory growth rate, it was affected by dietary treatment and

manipulated length, with the growth of R fish and of smal-

ler fish being greatest (Table 1, Fig. 1). There was also a

significant interaction between season and dietary treatment

(Table 1), the fastest growth rate being that of R fish in the

Winter experiment (Fig. 1).

EFFECT OF GROWTH TRAJECTORIES ON SWIMMING

ENDURANCE

Swimming endurance prior to the first breeding season was

not significantly different between fish from the Winter

and Spring experiments (LME, F1, 25�23 = 0�93, P = 0�343)
nor between photoperiod treatment groups (F1, 23�52
= 3�68, P = 0�067). The endurance of R fish in this first
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Fig. 2. Age-related changes in swimming

endurance (a and b) and duration of breed-

ing ornamentation (c and d) of three-spined

sticklebacks in relation to their earlier rate

of compensatory growth. Zero change is

indicated by the double-dashed line. Indi-

vidual data points and within-treatment

regression lines are plotted from the Winter

(left panels) and Spring (right panels)

experiments, categorized by dietary treat-

ment (restricted: black circle and dashed

line; control: open circle and thin solid

line). Larger square symbols and thicker

solid lines denote treatment mean values

and between-treatment regression lines (see

van de Pol & Wright 2009 for statistical

explanation and Table 2 for full statistical

analysis).

Table 1. Compensatory growth rate in relation to dietary and photoperiod treatments in the Winter and Spring experiments. The full lin-

ear mixed-effect model (LME) included season of experiment (Winter or Spring), dietary (restricted or control) and photoperiod (ambient

or delayed) treatments as fixed effects, manipulated fish length (at the end of Period 1) as a covariate and tank as a random effect, plus

interactions among variables. Non-significant variables were dropped from the final model. Note that a positive estimate is associated with

a faster rate of compensatory growth. The parentheses represent the reference coding of the categorical variable

Final model Estimate � SE F d.f. P

Intercept 0�600 � 0�098
Season (Winter) 0�065 � 0�014 14�80 1, 98�80 <0�001
Dietary (Restricted) 0�164 � 0�011 288�54 1, 98�80 <0�001
Manipulated fish length �0�102 � 0�029 12�59 1, 98�80 <0�001
Season (Winter) 9 dietary (Restricted) 0�046 � 0�016 8�44 1, 98�80 0�004
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test, however, was significantly lower than that of C fish

(F1, 25�22 = 18�07, P < 0�001). There was also an effect of

fish length at the first test (F1, 118�89 = 123�36, P < 0�001):
the larger the fish’s length at the end of the dietary manip-

ulation period, the greater its swimming endurance (see

Fig. S2).

The declines in swimming endurance over the first

breeding season were greater in the Spring than in the

Winter experiment (Fig. 2a,b), and were significantly

affected by both between- and within-dietary treatment

effects of compensatory growth (Table 2): the greater the

rate of compensatory growth in the period leading up to

the breeding season, the greater the decline in endurance.

While there was no effect of sex on the change in endur-

ance (F1, 96�55 = 0�039, P = 0�845), it was influenced by

photoperiod, with the delayed fish showing less deteriora-

tion in swimming endurance than did the ambient fish

(Table 2). The interaction between experiment and within-

treatment variation of compensatory growth affected this

change (Table 2), since a given rate of growth led to a

bigger decline in swimming endurance in the Spring than

in the Winter experiment (Fig. 2a,b).

EFFECT OF GROWTH TRAJECTORIES ON THE

DURAT ION OF BREEDING ORNAMENTAT ION

The period over which fish maintained a blue eye

colour above the threshold level in the first breeding season

(= 2008) was significantly longer in the Winter than in the

Spring experiment (LME, F1, 24�26 = 22�11, P < 0�001) and
longer in males than in females (F1,77�91 = 47�46, P < 0�001).
While there were no effects of dietary treatment (F1,23�75 =
1�91, P = 0�180) or photoperiod (F1,23,39 = 0�11, P = 0�746)
on this duration, there was a significant interaction

between season of experiment and dietary treatment

(F1,23�02 = 16�74, P < 0�001): C fish in the Winter experi-

ment maintained their coloration for the longest duration,

while R fish in the Spring were the shortest.

The reduction in the duration of breeding coloration

between the first (= 2008) and second (= 2009) breeding

seasons was greater in the Spring than in the Winter exper-

iment, and greater in males than in females (Table 2). The

age-related change in breeding ornamentation was

unaffected by photoperiod treatment (F1, 28�28 = 0�069,
P = 0�795) but was significantly affected by compensatory

growth rate, with faster growth (both between dietary

treatments and at an individual level within a treatment)

being associated with a bigger reduction in eye ornamenta-

tion in the second breeding season (Table 2). The signifi-

cant interactions (Table 2) indicated that the deleterious

effect of growth rate on the decline in breeding ornamenta-

tion was greater in the Spring experiment (Fig. 1) and in

females.

L IFE SPAN

The exposure to different dietary rations during Period 1

had no immediate or direct effect on mortality patterns

because no fish died during the period of dietary manipula-

tion. Most fish (83�1%) were still alive at the beginning of

the first breeding season (a typical survival rate for juvenile

fish under laboratory conditions), with no evident differ-

ences in pre-breeding survival between the treatment

groups. However, survival decreased from the first breed-

ing season onwards, so that only 57�5% of fish were alive

by the beginning of the second breeding season.

Life span was significantly affected by the season of

experiment (i.e. Winter vs. Spring; Table 3). On average,

fish in the Spring experiment, which had been under

greater time stress, died at a younger age than did those in

Table 2. Linear mixed-effect model (LME) analyses of factors predicting changes in swimming endurance and in the duration of breeding

ornamentation (blue eye colour) of three-spined sticklebacks. In both cases, the full models included season of experiment (Winter or

Spring), photoperiod treatment (ambient or delayed) and sex (male or female) as fixed effects, compensatory growth rate (partitioned into

between-group effects due to diet treatment, and within-group effects due to remaining individual variation) as a covariate, and tank as a

random effect, plus 2-way interactions. Non-significant variables were dropped from the final models. Note that for swimming endurance

a positive estimate indicates an increase in endurance over the breeding season, while for breeding ornamentation it indicates a longer per-

iod of blue eye coloration in the second than in the first breeding season. The parentheses represent the reference coding of the categorical

variable

Analysis Final model Estimate � SE F d.f. P

Swimming endurance Intercept �0�037 � 0�010
Season (Winter) 0�047 � 0�010 20�50 1, 15�68 <0�001
Photoperiod (Ambient) �0�021 � 0�010 4�94 1, 16�60 0�041
Between-group effect of growth �0�148 � 0�062 5�59 1, 15�86 0�031
Within-group effect of growth �0�829 � 0�143 26�56 1, 93�44 <0�001
Season (Winter) 9 within-group effect of growth 0�626 � 0�200 9�75 1, 93�61 0�002

Breeding ornamentation Intercept 0�488 � 0�060
Season (Winter) �0�606 � 0�082 54�74 1, 19�01 <0�001
Sex (Male) �0�321 � 0�081 15�88 1, 76�63 <0�001
Between-group effect of growth �8�174 � 0�558 188�16 1, 31�90 <0�001
Within-group effect of growth �1�561 � 0�545 8�22 1, 76�56 0�005
Season (Winter) 9 between-group effect of growth 5�956 � 0�636 87�76 1, 28�25 <0�001
Sex (Male) 9 between-group effect of growth 1�256 � 0�542 5�37 1, 76�26 0�023
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the Winter experiment (the median life span of fish in the

Spring experiment was 735 days, whereas that of fish in

the Winter experiment was 802 days). This is despite the

Spring experiment not having started until the fish were

almost adult and so only including fish that had already

passed the juvenile stage naturally associated with rela-

tively higher mortality. There was also a significant effect

of sex on life span (Table 3), with males dying sooner than

females in both experiments (Winter: median life

span = 730 days in males, 966 days in females; Spring:

557 days in males, 841 days in females). However, life

span was not affected by photoperiod (F1,24�60 = 2�81,
P = 0�106), nor was it related to the rate of compensatory

growth (between-group effect of growth, F1,21�10 = 3�38,
P = 0�080; within-group effect of growth, F1,74�15 = 0�707,
P = 0�403).
Life span was predicted by the change over time in the

two measures of whole-organism performance. While there

was no between-group effect of the change in swimming

endurance (F1,21�34 = 3�38, P = 0�080), there was a signifi-

cant within-group effect (Table 3): the faster the deteriora-

tion in swimming endurance over the first breeding season,

the shorter was the fish’s life span (Fig. 3a,c). Similarly, a

greater reduction in the duration of breeding ornamenta-

tion between the first and second breeding season was

associated with a shorter life span, with significant

between- and within-treatment group effects (Table 3;

Fig. 3b,d).

Discussion

We have investigated how compensatory growth induced

by changes in food availability in early life affected age-re-

lated declines in swimming endurance and in the duration

of sexual ornamentation, as well as how these rates of

senescence in organismal traits are associated with life

span. A compensatory (i.e. accelerated) growth trajectory

was successfully induced by restricting the availability of

food during a short-term period in juvenile life. As pre-

dicted, growth acceleration caused a more rapid deteriora-

tion in both locomotor endurance and breeding

ornamentation, and a shorter life span. Moreover, these

long-term negative effects of a compensatory growth tra-

jectory were more pronounced when a reduced amount of

time (either to catch up in size or to recover from that

growth acceleration) was available before the commence-

ment of the breeding season, supporting the predictions of

the time-stress hypothesis (Metcalfe, Bull & Mangel 2002).

Unexpectedly, growth rates during the phase of compen-

satory growth were on average faster in the Winter experi-

ment (despite the fish being under less time stress than in

the Spring experiment), but this may have been because

fish in the Winter experiment were younger and smaller in

body length at the beginning of the experiment than in the

Spring experiment. In general, however, the subsequent

performance (in terms of both senescence in locomotion

and reproduction) and longevity of the R fish were less

affected in the Winter than in the Spring experiment,

despite the faster compensatory growth of this group of

fish. This may have been because of the greater time avail-

able for fish to recover from any damage caused by fast

growth in the Winter experiment – a similar result for

swimming performance was found by �Alvarez & Metcalfe

(2005) and Lee, Monaghan & Metcalfe (2010).

It is clear that growth and development in animals may

incur significant costs (Roff 2002). The fish were able to

accelerate their growth after the period of food restriction

presumably through hyperphagia (Ali & Wootton 2000),

but it is well known that accelerated growth negatively

affects the development of muscle cellularity (Galloway,

Kjorsvik & Kryvi 1999; Johnston et al. 2002). �Alvarez &

Metcalfe (2005) showed that swimming endurance was

lower in fish that had previously been subjected to food

restriction and had then gone through a phase of compen-

satory growth, possibly due to changes in cellular structure

caused by the accelerated growth. Compensatory growth

may lead to cumulative increases in oxidative damage to

biomolecules due to greater production of reactive oxygen

species or decreased investment in antioxidant protection

or repair (Samuels & Baracos 1995; Tarry-Adkins et al.

2013). This oxidative damage is a strong candidate for

senescence-related changes in individuals (Stadtman 1992;

Hamilton et al. 2001) because oxidative damage can be

correlated with a decline in physiological functioning

with age (= senescence). Therefore, the reduction in

physical endurance over the breeding season (locomotor

Table 3. Life span of three-spined sticklebacks in relation to

changes in their swimming endurance and in the duration of

breeding ornamentation (blue eye colour). The full model included

season of experiment (Winter or Spring), photoperiod treatment

(ambient or delayed) and sex (male or female) as fixed effects,

compensatory growth rate, age-related changes in swimming

endurance and in the duration of breeding ornamentation (parti-

tioned into between-group effects due to diet treatment, and

within-group effects due to remaining individual variation) as

covariates, and tank as a random effect, plus 2-way interactions.

Non-significant variables were dropped from the final model. Note

that a positive estimate indicates a longer life span. The parenthe-

ses represent the reference coding of the categorical variable

Final model Estimate � SE F d.f. P

Intercept 971�727 � 14�236
Season (Winter) 67�443 � 17�261 15�27 1, 24�72 0�001
Sex (Male) �34�707 � 17�336 4�01 1, 77�49 0�049
Within-group

effect of

swimming

endurance

569�979 � 167�019 11�65 1, 77�28 0�001

Between-group

effect of

breeding

ornamentation

101�304 � 24�049 17�74 1, 24�42 <0�001

Within-group

effect of

breeding

ornamentation

185�904 � 38�039 23�89 1, 77�68 <0�001
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senescence) and the reduction in sexual ornamentation

with age, especially in fish that had undergone accelerated

growth, may be a consequence of increased levels of accu-

mulated biomolecular damage, further exacerbated by the

cost of breeding. While the mechanisms underlying the

links between early growth rate, senescence and life span

are currently not known, a link to oxidative stress seems

plausible since studies have suggested that increased oxida-

tive stress levels and rates of cellular damage and senes-

cence induced by compensatory growth may accelerate

telomere shortening (Jennings, Ozanne & Hales 2000;

Tarry-Adkins et al. 2008; Geiger et al. 2012), which itself

is linked to life span (Heidinger et al. 2012; Boonekamp

et al. 2014).

Under conditions of finite resources, natural selection

favours allocation strategies that will maximize long-term

fitness over the organism’s life span. It is well documented

that reproductive effort and investment are affected by a

trade-off between growth and reproduction (Stearns 1989;

Green & Kaker 1991). For instance, Poizat, Rosecchi &

Crivelli (1999) showed that female sticklebacks lose

somatic condition over the course of the breeding season

but increase their investment in gonad weight relative to

body weight. Presumably, a phase of restricted food avail-

ability in early life may affect this later resource allocation

between soma and gonads; while compensatory growth

may partly be achieved through hyperphagia (Ali & Woot-

ton 2000), as was predicted in a related exercise modelling

optimal patterns of growth following a period of growth

retardation (i.e. faster rate of food consumption during the

phase of compensatory growth, Lee et al. 2011), this may

not be sufficient to achieve the desired growth rate, leading

to changes in resource allocation. A diversion of resources

towards skeletal growth could negatively affect the devel-

opment of reproductive tissues, in a similar manner to the

way in which it is thought to interfere with the develop-

ment of non-reproductive structures (Ricklefs, Shea &

Choi 1994; Arendt, Wilson & Stark 2001; Arendt 2003).

The accumulation of damage can also negatively affect

reproductive investment. There is increasing evidence of a

negative relationship between oxidative stress and repro-

ductive capacity in wild organisms (Bize et al. 2008; Perez,

Lores & Velando 2008), suggesting that oxidative stress

may in some way constrain reproduction (Metcalfe &

Alonso-Alvarez 2010). There are thus different mechanisms

through which compensatory growth might result in accel-

erated reproductive and whole-organism senescence and

reduced life span, but further experiments that include

measurements of oxidative damage and repair rates are

needed to distinguish between these hypotheses.

Growth and reproduction in ectotherms are sensitive to

both temperature and photoperiod; while both of these

environmental factors can indicate the time of year, pho-

toperiod is thought to be the cue used most often as a time

reference since it is not susceptible to temporal fluctua-

tions. The photoperiod manipulations in general had less

of an effect than the direct manipulation of time available

(i.e. the comparison of the Winter and Spring treatments),

but nonetheless had an effect on locomotor performance,

showing that a shift in the perceived time of year affected

the extent of the negative impact of compensatory growth.

This supports the ‘time-stress’ hypothesis that both growth
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Fig. 3. Life span in three-spined stickle-

backs in relation to age-related changes

(square root transformed) of swimming

endurance (a and c) and blue eye col-

oration (b and d). Zero change is indicated

by the vertical double-dashed line. Individ-

ual data points and within-treatment

regression lines are plotted from the Winter

(a and b) and Spring (c and d) experiments,

categorized by dietary treatment (restricted:

black circle and dashed line; control: open
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Table 3 for full statistical analysis).
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rate and resource allocation decisions can be affected by

the perception of time of year and, in particular, the time

available until key life-history events (Metcalfe, Bull &

Mangel 2002). The observed pattern for the negative effect

of a given growth rate to be more pronounced when the

perceived time stress was shorter (i.e. both in the Spring

experiment and under the ambient rather than delayed

photoperiod) may be due to changes in the trade-off

between growth and reproductive investment, since when

time was short there was less time to repair any damage

incurred by growth acceleration. In other words, an

increased time stress might induce more resources to be

allocated to growth (with less to reproduction), so altering

the effects of compensatory growth on subsequent swim-

ming endurance and reproductive investment. The effects

of time stress on growth rates have been found in a range

of taxa (Gotthard 2008). Time conflicts between growth

rate and reproduction can also occur after the reproductive

season (Dawson et al. 2000). Therefore, we suggest that

the degree of time stress interacts with prior growth trajec-

tory to determine the animal’s optimal current rate of

growth, taking into account the trade-off between growth

and reproduction and the effect of accelerated growth on

performance in later life. However, this hypothesis requires

more investigation.

In summary, while compensatory growth led to individ-

uals catching up in size after a period of poor food rations,

and so may have had a short-term beneficial impact on

reproductive success, this study showed significant negative

effects of such accelerated growth on both locomotor

(swimming) endurance and the degree of reproductive

investment. The negative effects became stronger rather

than weaker over time (e.g. with faster growth leading to

faster declines in swimming performance over the breeding

season and a reduced investment in reproduction in the

second year). Moreover, the perception of amount of time

available prior to breeding altered these costs of compen-

satory growth. Future studies are needed to determine the

mechanisms underlying these effects.
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Supporting Information

Additional Supporting information may be found in the online

version of this article:

Appendix S1. Additional methods.

Appendix S2. Additional results.

Table S1. Description of experimental manipulations. Note that

during Period 1 Restricted (R) fish were fed a restricted diet (2%

of body mass) while Control (C) fish were fed ad libitum.

Table S2. Mixed model analyses of red throat colouration of male

sticklebacks in relation to age (first breeding or second breeding),

season of experiment (Winter or Spring), dietary (restricted or

control) and photoperiod (ambient or delayed) treatments, manip-

ulated fish length (at the end of the dietary manipulation, ln trans-

formed) and compensatory growth rate after the 4 weeks of

dietary manipulation, plus tank as a random effect.

Table S3. Mixed model analyses of time required by male stickle-

backs to build a nest in relation to age (first breeding or second

breeding), season of experiment (Winter or Spring), dietary (re-

stricted or control) and photoperiod (ambient or delayed) treat-

ments, manipulated fish length (at the end of the dietary

manipulation, ln transformed) and compensatory growth rate
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after the 4 weeks of dietary manipulation, plus tank as a random

effect.

Table S4. No. of eggs in 1st clutch and mean mass of an egg from

that clutch in relation to season of experiment (Winter or Spring),

dietary (restricted or control) and photoperiod (ambient or

delayed) treatment, length at the time of spawning (ln trans-

formed) and compensatory growth rate after the 4 weeks of diet-

ary manipulation in the Winter and Spring experiments.

Table S5. Proportion that the eggs produced in the first breeding

season made up of the total number of eggs produced by a female

over both the first and second breeding seasons, in relation to sea-

son of experiment (Winter or Spring), dietary (restricted or con-

trol), photoperiod (ambient or delayed), length at time of

spawning (ln transformed) and compensatory growth after the 4

weeks of dietary manipulation in the Winter and Spring experi-

ments.

Table S6. Maximum lifespan (defined as the age by which 90% of

the population in a treatment group had died) in relation to diet-

ary and photoperiod treatments.

Fig. S1. (a) Illustration of the experimental design, with three

treatments (dietary, photoperiod and season of experiment).

Fig. S2. Effects of dietary treatment on swimming performance in

three-spined sticklebacks: (a and b) swimming endurance (ln(s)) at

the end of the compensatory period in relation to fish length at

the time (ln(mm)) and (c and d) change in swimming endurance

over the breeding season (as the amount of the advance in the sec-

ond trial compared to the first trial, see Materials and Methods

for a formula) in relation to fish length at time of first swimming

test.

Fig. S3. No. of weeks that male three-spined sticklebacks main-

tained a strong red throat colour (i.e. exceeding the population

mean score) in their first (white bar) and second (grey bar) breed-

ing season, in relation to dietary manipulation (restricted or con-

trol) and photoperiod regime ((a) ambient or (b) delayed) in both

the Winter (left panel) and Spring (right panel) experiments.

Fig. S4. Time taken by male three-spined sticklebacks to build a

nest (days, mean � SE) in relation to dietary manipulation (re-

stricted or control) and photoperiod manipulation ((a) ambient or

(b) delayed) in both the Winter (left panel) and Spring (right

panel) experiments.

Fig. S5. Mean mass of individual eggs (mg, a and c) from the first

clutch and size of the first clutch (number of eggs, b and d) pro-

duced by one year old female three-spined sticklebacks during the

first breeding period in relation to their length at the time of

spawning (mm, ln transformed).

Fig. S6. Proportion that the eggs produced in the first breeding

season made up of the total number of eggs produced by a female

over both the first and second breeding seasons.
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