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Purine nucleotides and nucleosides are at the center of biologic reactions. In

particular, adenosine triphosphate (ATP) is the fundamental energy currency of cellular

activity and adenosine has been demonstrated to play essential roles in human

physiology and pathophysiology. In this review, we examine the role of purinergic

signaling in acute and chronic pulmonary inflammation, with emphasis on ATP and

adenosine. ATP is released into extracellular space in response to cellular injury and

necrosis. It is then metabolized to adenosine monophosphate (AMP) via ectonucleoside

triphosphate diphosphohydrolase-1 (CD39) and further hydrolyzed to adenosine via

ecto-5′-nucleotidase (CD73). Adenosine signals via one of four adenosine receptors to

exert pro- or anti-inflammatory effects. Adenosine signaling is terminated by intracellular

transport by concentrative or equilibrative nucleoside transporters (CNTs and ENTs),

deamination to inosine by adenosine deaminase (ADA), or phosphorylation back into

AMP via adenosine kinase (AK). Pulmonary inflammatory and hypoxic conditions lead

to increased extracellular ATP, adenosine diphosphate (ADP) and adenosine levels,

which translates to increased adenosine signaling. Adenosine signaling is central to

the pulmonary injury response, leading to various effects on inflammation, repair

and remodeling processes that are either tissue-protective or tissue destructive. In

the acute setting, particularly through activation of adenosine 2A and 2B receptors,

adenosine signaling serves an anti-inflammatory, tissue-protective role. However,

excessive adenosine signaling in the chronic setting promotes pro-inflammatory, tissue

destructive effects in chronic pulmonary inflammation.

Keywords: purinergic signaling, nucleotides, ectonucleotidase, adenosine, acute pulmonary inflammation,

chronic pulmonary inflammation

INTRODUCTION

As one of the most ancient signaling pathways, purinergic signaling is driven by the heterocyclic
aromatic compounds known as purines. The purine nucleotide adenosine triphosphate (ATP)
functions as the energy currency at the very foundation of mammalian biologic reactions. In this
review, we examine the roles of purine nucleotides and nucleosides and purinergic signaling in
acute and chronic pulmonary inflammation, with emphasis on ATP, adenosine diphosphate (ADP),
and adenosine (1). In 1929, Drury and Szent-Gyorgyi first reported evidence of purinergic signaling
when they observed an adenine compound from cardiac extracts caused transient heart block when
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injected intravenously into live animals (2). Today, adenosine is
still utilized clinically for its ability to slow the heart rate. Research
over the last few decades has elucidated various biologic effects
of ATP, ADP, and adenosine. We will focus on their effects in
pulmonary injury and inflammation, in disease settings such as
acute and chronic pulmonary inflammation.

Acute Respiratory Distress Syndrome
Acute respiratory distress syndrome (ARDS), previously known
as acute lung injury (ALI), is a life-threatening condition that is
a common cause of respiratory failure, morbidity, and mortality
in critically ill patients (3, 4). ARDS can occur secondary to
a number of insults, including pneumonia, aspiration, trauma,
and sepsis (5). Less common causes of ARDS include acute
pancreatitis, administration of blood products (transfusion-
associated acute lung injury or TRALI), drug overdose, near
drowning, reperfusion injury, hemorrhagic shock, and post-lung
transplant graft dysfunction (6). ARDS is clinically defined as
acute onset (within 1 week of insult) of respiratory failure,
noncardiogenic pulmonary edema (bilateral opacities on chest
imaging), and hypoxemia (as defined by PaO2/FiO2 < 300
mmHgwith aminimum positive end-expiratory pressure (PEEP)
of 5 cm H2O) (7). The pathophysiology of ARDS is characterized
by acute pulmonary inflammation including diffuse alveolar
damage (with both alveolar epithelial and endothelial injury
present), increased pulmonary vascular permeability resulting
in accumulation of protein-rich interstitial and bronchoalveolar
space edema, and excessive recruitment and infiltration of
immune cells (6, 8). There are no specific therapies for ARDS
currently and mortality is 30–40% (6). In this review, we will
discuss the role of purinergic signaling in acute pulmonary
inflammation seen in ARDS.

Chronic Lung Diseases
Chronic lung diseases, such as asthma, chronic obstructive
pulmonary disease (COPD), and idiopathic pulmonary fibrosis
(IPF), develop as a result of non-resolvable pulmonary
inflammation and dysregulated tissue remodeling that lead to
a progressive decline in respiratory function (9–11). Chronic
lung diseases are prevalent and lethal, ranking just behind cancer
and cardiovascular disease in mortality rate in the United States.
Therapies for symptomatic control in these diseases are available
but none is able to reverse or cure the aberrant wound healing and
remodeling seen in the lungs of these patients. Though the causes
of chronic lung diseases are varied, a common feature among
these conditions is excessive recruitment and dysregulated
activation of effector cells, including neutrophils, eosinophils,
macrophages, airway epithelial cells (AECs), fibroblasts and
myofibroblasts, leading to release of more mediators that
potentiate pulmonary inflammation and remodeling (9–11).
Prominent features seen in chronic lung diseases include
excessive angiogenesis, airway epithelial cell remodeling and
deposition and metabolism of extracellular matrix (10, 12).
In asthma, there is excessive bronchial collagen deposition
and angiogenesis and thickened basement membrane. In
IPF, fibroblast proliferates excessively and deposits copious
extracellular matrix in alveolar airways. In COPD, alveolar

airways are destroyed by an imbalance between proteases
and anti-proteases governing matrix breakdown. Inflammation,
angiogenesis, and matrix deposition and breakdown are a part
of the normal wound healing process. However, in chronic lung
diseases, these processes are overactive or dysregulated, leading
to disease (10, 11).

The Role of Purinergic Signaling in Acute
and Chronic Pulmonary Inflammation
Inflammatory and hypoxic conditions lead to increased release
of ATP/ADP, which translates to elevated extracellular adenosine
levels (1, 13). Hypoxia and hypoxia-inducible factors (HIFs)
further support the increase in extracellular adenosine via
transcriptional regulation of adenosine metabolizing and
receptor genes (14–19). The significance of extracellular
adenosine metabolism is evident in mice with genetic deletion
of ectonucleoside triphosphate diphosphohydrolase-1 (CD39)
and ecto-5’-nucleotidase (CD73) resulting in decreased
adenosine concentration and signaling despite elevated or
normal ATP levels. These mice have been shown to exhibit
enhanced mucosal inflammation (20, 21). The exaggerated
inflammation is prevented, however, in the presence of ENT or
AK inhibitors (inhibiting termination of adenosine signaling)
(22–24). Adenosine signaling is central to injury response in
the lung. Via engagement of cell surface G-protein-coupled
adenosine receptors, adenosine exerts various effects on
inflammation, repair, and remodeling processes (25), producing
either tissue-protective or tissue destructive results (11, 26).
Adenosine serves an anti-inflammatory, tissue-protective role
[particularly through activation of the A2A and A2B adenosine
receptors (A2AAR, A2BAR)] in acute lung injury (26, 27).
However, chronically elevated adenosine, with activation of A1
adenosine receptor (A1AR), A2BAR, and A3 adenosine receptor
(A3AR), promotes a pro-inflammatory state and excessive,
dysregulated tissue remodeling that contributes to development
and progression of chronic lung diseases (11, 26).

BIOLOGY OF PURINERGIC SIGNALING

Extracellular Nucleotide Release and
Signaling
The roles of purine nucleotides, nucleosides and purinergic
signaling in acute and chronic pulmonary inflammation have
been studied extensively, with emphasis on ATP, ADP, and
adenosine. ATP can be found at physiologic concentrations
in mammalian cells at baseline and the release/accumulation
of ATP in disease states are summarized in Figure 1. In
disease states, such as in inflammation and ischemia, ATP
is released from intracellular stores due to cellular necrosis
(28). During apoptosis, pannexin hemichannels control ATP
release into the extracellular space, where ATP serves as a
phagocyte chemotactic signal (29). Inflammatory cells (like
neutrophils) and endothelial cells can release ATP via connexin
hemichannels (30–32). ADP can be secreted from intracellular
granules by platelets (28). ATP signals through receptors initially
designated P2 receptors (33), then later re-classified into P2X
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receptors (ligand-gated ion channels) and P2Y receptors (G-
protein-coupled receptors). Mice with genetic deletion of P2
receptors are viable and protected from inflammatory diseases
such as asthma, vascular inflammation and graft-vs-host disease
(34–36). Pharmacologic antagonism of P2 receptors resulted
in inhibition of inflammation in inflammatory bowel diseases
(IBD), pulmonary inflammation, and ischemia-reperfusion
injury (28, 35, 37).

Extracellular Conversion of ATP and ADP
to Adenosine
Extracellular ATP and ADP are swiftly converted to
adenosine monophosphate (AMP), which is then further
metabolized to adenosine (Figure 2). This two-step nucleotide
phosphohydrolysis is mediated by ectoenzymes. Ecto-nucleoside
triphosphate disphosphohydrolases (E-NTPDases), which
include CD39, regulate the conversion of ATP and ADP to
AMP. Metabolism of AMP to adenosine occurs via CD73.
CD39 deficient (CD39−/−) mice are viable and exhibit
increased ATP and ADP levels along with decreased adenosine
levels leading to increased risk of developing uncontrolled,
disordered inflammation (38–40). Decreased expression of
CD39 can be seen in humans with polymorphisms of CD39
noncoding regions, which confers increased susceptibility to the
development of irritable bowel disease and multiple sclerosis
(41, 42). Loss-of-function mutations in the CD73 gene in human
result in familial peripheral artery calcifications (43). Mice
deficient in CD73 (CD73−/−) are viable, and during disease
states, exhibit lower levels of adenosine signaling despite ATP
and ADP levels being nearly unchanged. CD73−/− mice have
higher susceptibility to hypoxia-driven inflammation (44) and
vascular and intestinal barrier dysfunction (16, 45). Used to treat
IBD, the medications methotrexate and sulfasalazine exert part
of their anti-inflammatory effects via CD73-mediated adenosine
generation (46, 47). Medications that increase conversion of ATP
and ADP to adenosine yield therapeutic benefits in ischemia and
inflammatory disorders (38, 48–51).

Extracellular Adenosine Signaling
Extracellular adenosine signals through one of four G-protein
coupled seven membrane spanning cell surface receptors:A1AR,
A2AAR, A2BAR, and A3AR (1, 52–54). Adenosine receptor
subtypes are differentially expressed in each target cell. A2AAR
is greatly expressed on immune cells like neutrophils (55)
and lymphocytes (56) while A2BAR is strongly expressed on
vascular endothelial cells (57). Adenosine receptor knockout
mice are viable and there are no known human diseases
associated with adenosine receptor mutations and defects.
However, adenosine receptor functions have been elucidated in
many pathologic states. For example, adenosine’s chronotropic
effects via A1AR is essential in the treatment of supraventricular
tachycardia (58). A2AAR serves anti-inflammatory functions in
neutrophils, diminishing inflammatory cell activation at various
sites (55, 59). A2AAR antagonists exert benefits in Parkinson’s
disease (60). A2BAR contribute to tissue adaptation in response
to inflammation, ischemia, and hypoxia (51, 61–63). A3AR
functions in aqueous humor production in the eye (64), and

agonism of A3AR has proven effective in the treatment of dry
eye (65).

Termination of Adenosine Signaling
Extracellular adenosine can be transported into the cell via
concentrative or equilibrative nucleoside transporters known
as CNTs and ENTs. Diffusion-limited, these channels allow
adenosine to diffuse freely across the cellular membrane,
following its concentration gradient (24). Adenosine
movement into intracellular space diminishes adenosine
signaling (66). Adenosine signaling can also be terminated
by deamination of extracellular adenosine to inosine by
cell surface CD26-conjugated adenosine deaminase (ADA)
(67, 68) or via phosphorylation back into AMP via adenosine
kinase (23). Genetic deficiency of ENTs is not lethal. ENT-
deficient mice exhibit elevated adenosine levels that provide
protection during disease states like organ ischemia (69).
Pharmacologic blockade of ENT with dipyridamole, resulting
in accumulation of extracellular adenosine causing coronary
artery vasodilation, is employed in stress echocardiography
to identify coronary atherosclerotic lesions (70). ENT
antagonism is also used to inhibit platelet aggregation and
prevent recurrence of stroke (71) and to preserve the patency
of hemodialysis grafts (72). ADA-deficient mice exhibit
elevated extracellular adenosine levels, which result in severe
pulmonary inflammation and fibrosis (73). In human, a defect
in the ADA gene causes severe combined immunodeficiency
(SCID) resulting from metabolites of adenosine exerting
cytotoxic effects on lymphocytes. ADA-associated SCID has
been successfully treated with ADA gene therapy (74). The
anti-inflammatory effects of cyclosporine may be partially due to
inhibition of adenosine kinase, resulting in elevated adenosine
levels (75).

PURINERGIC SIGNALING IN ACUTE
PULMONARY INFLAMMATION

Extracellular nucleotides and nucleosides (particularly ATP
and adenosine) along with the ectonucleotidases CD73
and CD39 (responsible for the conversion of ATP to
adenosine) and nucleoside transporters (ENTs) have been
demonstrated to play essential roles in the pathogenesis of
acute pulmonary inflammation (Figure 3). We will examine
their roles below.

Nucleotides in Acute Pulmonary
Inflammation
Extracellular ATP is elevated in acute pulmonary inflammation
and has been shown to play an essential role in disease
pathogenesis, though that role is still controversial. Using
a mouse model of LPS-induced acute lung inflammation,
Kolosova et al. demonstrated the role of ATP in reducing
pulmonary inflammation and enhancing endothelial cell barrier
function (76). Dagvador et al. reported that LPS activation of
the P2X7 receptor on alveolar macrophages (AM) promoted

depletion of ATP, leading to necrosis. These necrotic AMs
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FIGURE 1 | Release of ATP during inflammatory conditions. During conditions of inflammation such as during ischemia-reperfusion injury, hypoxia, inflammatory

bowel disease, acute lung injury, and vascular thrombosis, ATP and ADP are released into the extracellular space via several mechanisms. ATP and ADP are released

from apoptotic cells through pannexin-hemichannels and from connexin-hemichannels located on activated immune cells. Additionally, ATP and ADP can be released

after cell lysis occurs in necrotic cells and though vesicular release by activated platelets. Once released, ATP and ADP act as potent signaling molecules by binding to

and activating P2X receptors (ligand-gated ion channels) and P2Y receptors (G-protein-coupled receptors). Pictured are several examples of how ATP and ADP

activate P2x and P2Y receptors during inflammatory states. P2Y6 and P2X7 receptors on vascular endothelium promote inflammation whereas activation of the P2X1,

P2Y1, and P2Y12 receptors mediate platelet activation. In the setting of chronic lung diseases such as asthma, P2X7 and P2Y2 receptors promote activation of

dendritic cells. Components of the figure were modified from SMART Servier Medical Art Library.

then release pro-interleukin 1α (IL-1α), which enhance vascular

permeability via activation of endothelial cells and loss of
vascular endothelial cadherin. Deficiency of P2X7R attenuated
AM necrosis and pro-IL-1α secretion (77). Using adoptive
transfer techniques in a murine hyperoxia model of acute lung
injury, Nowak-Machen et al. reported tissue protective effects
of ATP-mediated P2X7 receptor activation. They demonstrated
an essential role for pulmonary invariant natural killer T
(iNKT) cells in the pathogenesis of hyperoxia-induced acute
lung injury. They showed that the ectonucleotidase CD39 is
highly expressed in iNKT cells and regulates activation of
these cells in the model. Absence of CD39 and iNKT were
protective against hyperoxic lung injury. They revealed ATP-
induced purinergic signaling mediates iNKT cell death and
specific blockade of P2X7 receptor signaling induces hyperoxic
pulmonary inflammation (78). While some studies show an
anti-inflammatory role for ATP, Matsuyama et al. reported
an opposing role. They observed that ATP concentration is
increased in bronchial alveolar lavage fluid (BALF) from lungs
with pulmonary inflammation caused by high tidal volume
mechanical ventilation. ATP induces pulmonary inflammation
in these lungs via the P2Y receptor and specific antagonism
of P2 receptor partially attenuated the inflammatory response,
suggesting a partial role for the ATP-P2Y receptor system
in ventilator-induced pulmonary inflammation (79). Moreover,

P2Y6 receptor has been shown to be induced in endothelial
cells upon LPS exposure and its induction results in increased
vascular inflammation (34). To summarize, the function
of ATP and its receptors are diverse in acute pulmonary
inflammation dependent on their roles in different cell types and
disease conditions.

In addition to its critical role in inflammation, ATP and its
receptors are also crucial on alveolar surfactant maintenance and
secretion as well as the regulation of microbiome during acute
pulmonary diseases. Pulmonary surfactant plays a central role
in acute and chronic lung disease (80). ATP and ATP receptors
have been shown to be important in surfactant production and
secretion (81, 82). Mechanical stretch of alveolar type I (AT I)
cells resulted in the release of high levels of extracellular ATP,
which desensitized the ATP receptors on alveolar type II (AT
II) cells leading to impairment in surfactant production. The
reduced surfactant, in turn, collapsed the alveoli and exaggerated
the increase in extracellular ATP. Subsequently, high extracellular
ATP levels (>300µM) exacerbated pulmonary edema and acute
lung injury (83). Moreover, the paracrine regulation of surfactant
production between AT I and AT II cells has been indicated
as AT II cells secrete surfactant lipid in response to tonic
stretch only in the presence of AT I cells. This study further
demonstrated that ATP releases by the AT I cells were crucial in
this response as treatment of apyrase and adenosine deaminase
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FIGURE 2 | Extracellular adenosine signaling and its termination. Adenosine partakes in a number of signaling events during inflammatory conditions. ATP and ADP

that is released serve as the source of extracellular adenosine. CD39 (Ecto-nucleotide triphosphate diphosphohydrolase 1, E-NTPDase1) dephosphorylates

extracellular ATP and ADP on the cell surface to generate AMP, which is further dephosphorylated by CD73 (ecto-5’-nucleotidase, Ecto5’NTase) into adenosine. Once

generated by enzymatic dephosphorylation, adenosine plays several important roles in regulating inflammation and immunity. Binding with A2AAR and A2BAR on

immune cells promotes the inhibition of inflammation mediated by a number of innate immune cells including dendritic cells, monocytes, macrophages, and

neutrophils. Adenosine interaction with A2AAR on T cells has demonstrated the suppression of effector functions and promotes the transition to T-regulatory status.

On vascular endothelial cells, A2AAR and A2BAR activation decreases cellular inflammatory responses and promotes the integrity of barrier functions, respectively.

Epithelial cells from several tissues including lung, gastrointestinal, myocardial, and renal contain A2BAR that, when activated by adenosine, are shown to play critical

roles in decreasing inflammation and promoting barrier integrity during inflammation and injury. Several mechanisms are involved in regulating adenosine in order to

allow for appropriate termination of signaling. Equilibrative nucleoside transporters (ENT)-1 and−2 deplete the extracellular accumulation of adenosine by transporting

it into the nucleus. Adenosine kinase and adenosine deaminase are enzymes that both act to “inactivate” adenosine and inhibit its ability to bind to its receptors.

Adenosine deaminase converts adenosine back to AMP and adenosine deaminase converts adenosine to inosine, which is an important step in the metabolism of

nucleotides. Components of the figure were modified from SMART Servier Medical Art Library.

abolished this phenomenon (84). Further study has indicated
that activation of the P2X7 receptor resulted in the release of
ATP from AT I cells which subsequently activated the P2Y2
receptor in AT II cells. Hyperventilation elevated surfactant
secretion however P2X7−/− mice lost the response, suggesting
the importance of P2X7 receptor in surfactant maintenance (85).
Lung microbiome has been underneath the spotlight recently
to be associated with the pathogenesis of ARDS (86) and ATP
regulates lung microbiome via several different mechanisms. For
instance, Marks et al. have shown that ATP induces the escape of
Streptococcus pneumoniae from biofilms during both in vitro and
in vivo colonization, suggesting a crucial role of interkingdom
signaling to regulate microbe dispersion (87). ATP has also been
shown to confer iron-chelating ability which resulted in the
growth inhibition of various bacteria such as Staphylococcus,
Pseudomonas, and mycobacteria (88). In conclusion, ATP and
its receptors have a multi-faceted role in acute pulmonary
diseases and infections by regulating surfactant homeostasis and
lung microbiome.

Ectonucleotidase in Acute Pulmonary
Inflammation
CD39 (ecto-apyrase) and CD73 (ecto-5′-nucleotidase) act to
shift the balance from ATP signaling to adenosine signaling
via enzymatic conversion of ATP and ADP to AMP, then to
adenosine. In an intratracheal LPS murine model of acute
pulmonary inflammation, genetic deficiency of CD73 led to
greater mortality and impairment in resolution. The study
revealed levels of CD73 are highest in regulatory T cells (Tregs)
during lung injury and presence of CD73 is necessary for proper
immunosuppressive functions of Tregs. Adoptive transfer studies
suggest CD73-mediated generation of adenosine in Tregs is
essential in resolution of acute pulmonary inflammation (20).
Reutershan et al. (48) demonstrated an essential role of CD39 and
CD73 in neutrophil transmigration in response to LPS injury in
the lung. Levels of pulmonary CD39 and CD73 transcripts were
increased after LPS. Genetic deficiency of CD39 or CD73 resulted
in enhanced pulmonary PMN accumulation, along with changes
in barrier permeability, in response to LPS injury. Inhibition
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FIGURE 3 | Adenosine signaling in acute pulmonary inflammation. ATP and ADP (not shown) are released into the extracellular space from various cells during

pulmonary injury. Extracellular ATP is rapidly metabolized to AMP via CD39 and then to adenosine via CD73. In acute lung injury/ARDS, adenosine can signal through

one of four adenosine receptors: the A1AR, A2AAR, A2BAR, and A3AR with A2AAR and A2BAR receptor expression being induced during hypoxic and inflammatory

conditions on several cell types including alveolar epithelial cells, neutrophil, and macrophages. Studies have shown an anti-inflammatory, tissue protective role with

attenuation of pulmonary inflammation and edema with A2AAR and A2BAR adenosine signaling.

of phosphohydrolysis of extracellular nucleotides using Sodium
polyoxotungstate (POM-1) resulted in enhanced pulmonary
PMN accumulation in wild-type but not knockout mice.
Replacement of apyrase or nucleotidase in genetically deficient
mice decreased neutrophil accumulation and pulmonary edema
after LPS administration. In a ventilator-induced model of
acute pulmonary inflammation, pulmonary adenosine levels
were increased with mechanical ventilation. CD39 and CD73
are responsible for the generation of extracellular adenosine and
both were increased with mechanical ventilation. CD39 deficient
mice that were mechanically ventilated showed enhanced
pulmonary edema and inflammation. Genetic deficiency or
pharmacologic inhibition of CD73 worsened ventilator-induced
lung inflammation. Administration of soluble CD39 or CD73
to deficient mice rescued the phenotypes. Moreover, the role
of CD73 mediated production of adenosine on endothelial
barrier function has been harnessed in the clinic. Bellingan
et al. demonstrated IFN-beta-1a up-regulated CD73 production
in ex vivo studies of human lung tissues. They then conducted
a phase I/II, open-label study to test the safety, tolerability,

and efficacy of intravenous human recombinant IFN-beta-1a
(FP-1201) in ARDS patients. After a dose-escalation phase to
determine optimal tolerated dose, ARDS patients were treated
with FP-1201 for 6 days and followed for the primary endpoint
of 28-day mortality. The trial revealed human IFN-beta-1a
was well tolerated and treatment led to an 81% reduction in
odds of 28-day mortality (89). These findings are now being
substantiated in a larger phase III double-blind randomized
controlled clinical trial examining treatment with human IFN-
beta-1a inmoderate to severe ARDS (90). These findings revealed
a protective role for CD39 and CD73 in the lung during acute
pulmonary inflammation.

Adenosine in Acute Pulmonary
Inflammation
In acute pulmonary inflammation, elevated extracellular
adenosine promotes tissue-protective responses to hypoxia,
including dampening inflammation, augmenting tissue tolerance
of ischemia, and re-establishing normal oxygenation. Studies
have shown beneficial effects of adenosine in the acute phase of
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lung injury (91–93). In a murine model of intratracheal LPS-
induced pulmonary inflammation, treatment with adenosine
or NECA (5’-N-ethylcarboxamidoadenosine—non-selective
AR agonist), resulted in a decrease in inflammatory response
and improvement of barrier function, as seen by decreased
cell counts, Evans blue dye albumin (EBDA) extravasation,
protein and cytokine levels, and reduced neutrophil infiltration.
Adenosine prevents LPS-induced protein degradation of
A2AAR and A3AR (94). Administration of peroxisome
proliferator-activated receptors γ (PPARγ) and A2AAR agonists
resulted in a synergistic effect with regards to attenuating
pulmonary inflammation and edema, improving gas exchange
and pulmonary function in a murine model of LPS-induced
pulmonary inflammation. PPARγ and A2AAR were shown to
regulate each other’s expression. PPARγ binds a DR10 response
element (−218 to −197) of A2AAR gene promoter leading to
upregulation of receptor expression. A2AAR signals via protein
kinase A (PKA)-cAMP response element binding protein
(CREB), promoting CREB binding to cAMP-responsive element
(CRE)-like site within PPARγ gene promoter, thus upregulating
PPARγ expression (95). Similarly, in an LPS-induced murine
model of pulmonary inflammation, induction of A2BARwas seen
in response to LPS. This induction occurred via mRNA stability.
Genetic deficiency or pharmacologic blockade of A2BAR led to
an exacerbation of pulmonary inflammation and tissue injury.
Studies using A2BARbone marrow chimeric mice supported a
lung protective role for A2BAR signaling. Administration of BAY
60-6583, a specific agonist of A2BAR, resulted in a reduction
in pulmonary inflammation and pulmonary edema (91). In
a murine model of intra-tracheal LPS-induced pulmonary
inflammation, CD73 expression was significantly elevated in
lymphoid cells while CD39 was highly abundant on myeloid
cells. CD39, CD73, and A2AAR were significantly elevated in T
helper cells. Specifically, CD4T cells of injured lungs generate
adenosine from ATP at an accelerated rate. Since pulmonary T
cells are the dominant cell type present in the later phase of acute
pulmonary inflammation, the increase in adenosine along with
upregulation of A2BAR likely govern the repair process after
acute injury (8).

Prior studies have supported a lung protective role for
adenosine signaling through A2BAR. In a two-hit model of
acute pulmonary inflammation that involves intra-tracheal LPS
instillation combined with detrimental mechanical ventilation,
Hoegl et al. demonstrated that tissue-specific A2BAR signaling,
namely in alveolar epithelial cells, mediates this protective
role. Specific deletion of A2BAR in alveolar epithelial cells, in
comparison to myeloid and endothelial deletions, significantly
attenuated pulmonary inflammation and edema (96). Adenosine
levels are increased in mechanically ventilated lungs. Using cyclic
mechanical stretch to mimic ventilator-induced inflammation,
Eckle et al. demonstrated a significant selective induction of
A2BAR in pulmonary epithelial cells, an increase mediated by
hypoxia-inducible factor 1 (HIF-1). Genetic or pharmacologic
inhibition of HIF1α prevents A2BAR induction, supporting a
role for HIF in transcriptional control of adenosine signaling
in ALI (97). Using a murine model of oleic acid (OA)-induced
acute pulmonary inflammation, Xu et al. demonstrated that

activation of A2BAR, using a selective agonist (BAY60-6583),
resulted in decreased AEC apoptosis, an effect that was abolished
with the administration of a selective A2BAR antagonist. Studies
of hydrogen peroxide (H2O2)-induced AEC injury revealed
lower AEC apoptosis rates with A2BAR activation, with the
mechanism of action via suppression of p38 and ERK1/2-
mediated mitochondrial apoptosis pathway (98). Furthermore, a
study by Koscso et al. demonstrated that the activation of A2BAR
conferred lung protection in trauma-hemorrhagic shock-induced
lung injury (99). Indeed, treatment of A2BARagonist BAY 60-
6583 resulted in attenuated lung injury marked by reduced
lung permeability and creatine kinase levels in the plasma. In
summary, adenosine facilitates lung protection during murine
models of acute pulmonary inflammation through A2BAR.

Adenosine signaling is also crucial in endothelial barrier
function during acute lung inflammation. Lu et al. showed that
adenosine confers a dose-dependent improvement in endothelial
barrier function, an effect that was partially abolished with
antagonism by either an adenosine transporter inhibitor (NBTI)
or a combination of A2AAR and A2BAR antagonists (DPMX
and MRS1754) (100). RNA silencing of both A2AAR and
A2BAR also resulted in a partial reversal of the effect on
barrier function, while NECA administration, which activates
both A2AAR and A2BAR, improved barrier function. Treatment
with both adenosine transporter inhibitor and A2AAR/A2BAR
antagonists completely abolished adenosine’s effect on barrier
function, suggesting both are required for adenosine to exert
a maximum effect on barrier function. Adenosine enhances
barrier function via increased Rac1 GTPase activity. Treatment
with Pentostatin, to inhibit adenosine deaminase and increase
adenosine levels, led to the enhancement of barrier function,
via increased activity of Rac1 GTPase leading to elevated
focal adhesion complexes and adherens junctions. Using a
non-inflammatory alpha-naphthylthiourea-induced model of
acute lung inflammation, the authors showed treatment with
Pentostatin increased pulmonary adenosine level leading to
both a reduction in edema development and partial reversal
of edema. Furthermore, the important role of A2BAR on
macrophages has been identified during vascular stress. Indeed,
macrophages upregulated A2BAR in mice with arterial injury
and the expression of A2BAR dampens the TNF-α production
(101). These studies indicate the important role of adenosine
signaling in vascular injury and inflammation during acute
pulmonary inflammation.

Besides A2AAR and A2BAR, the activation of other adenosine
receptors has been shown to modulate pulmonary inflammation
following ischemia-reperfusion (IR) injury as well as influenza
infection. For instance, the A3AR is present in pulmonary
tissue and inflammatory cells. Activation of A3AR with a
selective agonist diminishes pulmonary inflammation and
edema, cytokine levels and neutrophil chemotaxis and activation.
This effect is not seen in A3AR−/− mice (102). While the
receptors A2AAR, A2BAR, and A3AR mediate lung protective
effects in acute injury, signaling through A1AR is detrimental.
Adenosine production is increased in acute lung inflammation
following influenza infection (103). Adenosine activation of the
A1AR promotes pulmonary recruitment of innate immune cells
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and progression of pulmonary injury. Antagonism of A1AR
attenuates pulmonary injury in influenza-infected mice. Follow
up study pinpointed the important role of ATP catabolism
by tissue-nonspecific alkaline phosphatase (TNAP) on the
generation of adenosine during influenza infection. TNAP
increases following influenza infection and treatment of TNAP
inhibitor significantly attenuated pulmonary injury in influenza-
induced ARDS (104).

Adenosine Signaling Termination in Acute
Pulmonary Inflammation
Adenosine signaling termination occurs via regulation of
adenosine levels by equilibrative nucleoside transporters (ENTs),
adenosine kinase (AK), and adenosine deaminase (ADA).
Using high-pressure mechanical ventilation to induce lung
inflammation, Eckle et al. reported ENT1 and ENT2 repression in
the injured lung. Treatment with the ENT inhibitor dipyridamole
significantly prolonged survival. Studies in genetically deficient
mice demonstrated a phenotype in ENT2−/− mice that includes
elevated adenosine associated with diminished pulmonary edema
and improved gas exchange. ENT-dependent lung protection
was mediated by A2BAR activation in alveolar epithelial cells
(105). Repression of ENT1 and ENT2 (with NF-κB being a key
regulator), is associated with increased extracellular adenosine
due to decreased uptake. Pharmacologic blockade of ENT1
and ENT2 in LPS-induced murine model of lung inflammation
attenuated pulmonary inflammation and enhanced barrier
function (106).

Inhibition of ENTs and adenosine kinase elevates extracellular
adenosine levels and increase adenosine signaling. In a
murine model of LPS-induced lung injury, adenosine kinase
was repressed by pro-inflammatory cytokines and nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB)
influenced regulation of adenosine kinase promoter. Mice with
repressed adenosine kinase (AK±), when subjected to LPS
exposure, exhibited attenuated pulmonary inflammation and
decreased vascular permeability as evidenced by a reduction
in the transmigration of neutrophils into alveolar space
and decreased total protein, myeloperoxidase, and cytokine
levels in BALF. Additionally, pharmacologic inhibition of
AK, with a subsequent increase in extracellular adenosine
levels, produced similar results (107). Adenosine deaminase
inhibition also increases extracellular adenosine. Ehrentraut et al.
reported the administration of peg-ADA to reduce extracellular
adenosine levels in an LPS-induced mouse model of lung
injury compromised resolution of pulmonary inflammation
(20). Thus, ENTs, AK, and ADA modulate adenosine levels
and terminate adenosine signaling, resulting in exaggerated
pulmonary inflammation.

PURINERGIC SIGNALING IN CHRONIC
PULMONARY INFLAMMATION

ATP, adenosine, CD73, and CD39 have also been implicated in
the pathogenesis of chronic lung inflammation (Figure 4). We
will examine their roles below.

Nucleotides in Chronic Pulmonary
Inflammation
Extracellular ATP is elevated in chronic lung diseases, like
asthma, COPD and IPF, and contributes to disease development
and progression. Allergen challenge in both asthmatic human
patients and experimental mouse asthma models causes acute
accumulation of ATP in the airways. Eosinophilic inflammation,
Th2 cytokine production, and airway reactivity were abrogated
when ATP was depleted using apyrase or the P2 receptor was
blocked in mice (35). Smokers with COPD were found to have
a strong and persistent up-regulation of ATP in airway space
through BAL fluid analysis (108). When compared to healthy
subjects, smokers, and COPD patients also have increased
sensitivity to ATP, experiencing more dyspnea, cough and throat
irritation in response to inhaled ATP and AMP (109). In cigarette
smoke mouse models of emphysema, ATP was increased in
the BAL of exposed mice, which resulted in the activation of
neutrophils and release of CXCL8 and elastase (110).

Extracellular ATP levels were elevated in the lungs of
patients with IPF in mice with bleomycin-induced pulmonary
fibrosis, in association with upregulation of P2Y2 receptor
expression (111, 112). Pulmonary epithelial cells secrete ATP in
response to bleomycin injury, a process partially dependent on
P2X(7) receptor and pannexin-1 (112). Effects of extracellular
ATP on inflammation and fibrosis are mediated through
P2X(7) receptor/pannexin-1 as P2X(7) receptor deficiency
resulted in attenuation of pulmonary inflammation and fibrosis
after bleomycin exposure (112). Pulmonary fibrosis was
attenuated in P2Y2-deficient mice via a reduction in neutrophil
recruitment, migration, and proliferation of fibroblasts and
interleukin 6 (IL-6) production (111). Pharmacologic reduction
of ATP levels (using apyrase, an ATP-degrading enzyme)
significantly attenuated pulmonary inflammation, decreased
various mediators, including interleukin 1 beta (IL-1-β), and
tissue inhibitor of metalloproteinase 1 (TIMP-1) production.
Conversely, the artificial elevation of ATP levels (via an ATP
derivative, ATP- γS) worsened pulmonary inflammation in
response to bleomycin (112). Thus, increased ATP is detrimental
in chronic lung diseases/inflammation.

Ectonucleotidase in Chronic Pulmonary
Inflammation
CD39 and CD73 serve to decrease extracellular ATP levels but
increase extracellular adenosine levels, thus shifting the balance
from ATP signaling to adenosine signaling. There are conflicting
reports of the effects of CD39 and CD73 in chronic lung
diseases. CD39 converts ATP and ADP to AMP. Correlating
with increased ATP levels in the airways of COPD smokers,
there was a significant decrease in CD39 gene and protein
expression and ATPase activity in lung tissue acquired from
COPD patients when compared with non-obstructive smokers
and never-smokers (113). CD39 is decreased on T-cells in acute
exacerbation of COPD (AECOPD) patients when compared to
stable COPD. Higher CD39 was correlated with increased plasma
soluble Tumor necrosis factor alpha (TNF-α) receptor, resulting
in impaired T-cell responses (114). CD39 deficiency in mice
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FIGURE 4 | Purinergic signaling in chronic pulmonary inflammation. In chronic lung injury, elevated extracellular ATP activates P2 receptors on neutrophils to release

CXCL3/elastase and fibroblasts to release IL-6. Elevated extracellular adenosine signals through the A2BAR and A3AR on various pulmonary cell types to induce

aberrant cell differentiation and production of pro-inflammatory, pro-fibrotic mediators, including IL-4, IL-6, IL-8, fibronectin, and TGF-beta. A2BAR engagement on

mast cells induces production of IL-4, IL-8, IL-13, and VEGF. A2BAR activation promotes fibroblast and myofibroblast proliferation and differentiation. Signaling

through A2BAR led to the production of IL-6 and osteopontin from macrophages, MCP-1, and IL-6 from bronchial smooth muscle cells, IL-6 release from fibroblasts,

fibronectin expression in type 2 airway epithelial cells (AECs), and hyaluronan synthetases from macrophages and vascular smooth muscle cells. A2BAR signaling is

responsible for the maintenance of vascular barrier integrity in endothelial cells.

leads to enhanced emphysema in cigarette smoke mouse models
(115). CD73 metabolizes AMP to adenosine. COPD and IPF
patients exhibit increased CD73 activity (116) along with elevated
adenosine levels (117, 118). CD39 and CD73 levels correlated
with pulmonary hypertension severity in explanted lungs from
patients with IPF (119). CD73 potentiates radiation-induced lung
fibrosis (120).

Adenosine in Chronic Pulmonary
Inflammation
As opposed to its beneficial anti-inflammatory role in acute
disease states, elevated adenosine levels in the chronic setting
promotes detrimental tissue injury and fibrosis. In humans
and mouse models, adenosine has been implicated in the
development and progression of chronic lung disorders,
including asthma, COPD, and IPF (11). Elevated adenosine levels
were initially reported in bronchoalveolar lavage fluid and then
later confirmed in exhaled breath condensate from asthmatics
(121, 122). Levels of adenosine are increased after allergen
exposure in asthmatics (123). Adenosine was shown to induce
airway hyper-responsiveness, causing bronchoconstriction, in
patients with asthma (124) and COPD (125). Adenosine levels
are also elevated in BALF and exhaled breath condensate of
patients with COPD (116, 126) and are negatively correlated with
pulmonary function.

Extracellular adenosine levels have been difficult to measure
in patients with interstitial lung disease and IPF, likely due to
its lability. However, adenosine is elevated in mouse models

of interstitial lung disease and pulmonary fibrosis (127–
129). In the bleomycin-induced mouse models of pulmonary
fibrosis, extracellular adenosine levels are elevated in association
with increasing pulmonary fibrosis and levels decrease with
the resolution of disease. Administration of dipyridamole, a
nucleoside transporter inhibitor, to potentiate elevated adenosine
levels resulted in the failure of pulmonary fibrosis to resolve and
in fact exacerbates fibrosis (130). Elevated adenosine levels were
seen in association with elevated IL-6 and interleukin 17 (IL-
17) levels, which have been shown to be crucial inflammatory,
pro-fibrotic mediators in pulmonary fibrosis (130–132).

Studies of chronic lung diseases using animal models

suggested antagonism of A1AR, A3AR, A2BAR, and perhaps

even A2AAR, may be beneficial in the treatment of asthma

and COPD (133). Recent publications have reported, though,
that it is the activation of the A2B receptor by adenosine
that mediates production of pro-inflammatory, pro-fibrotic
molecules, like interleukin-6, leading to chronic lung diseases,
particularly pulmonary fibrosis (11, 118, 132, 134, 135). The
A2BAR is elevated in COPD and IPF (118). A2BAR is increased
in remodeled airway epithelial cells in a rapidly progressing
variant of IPF (136). Genetic removal of A2BAR in a mouse
model of asthma diminished allergen-induced chronic lung
inflammation and airway remodeling. In response to allergen
provocation, A2BAR−/− mice experienced a reduction in
eosinophilic recruitment and infiltration and attenuation of
interleukin 4 (IL-4) and TGF-beta release, which translated to
reduced airway smooth muscle and goblet cell hypertrophy and
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hyperplasia (137). Genetic deficiency of A2BAR in myeloid cells
attenuated pulmonary fibrosis, improved respiratory function
and prevented the development of pulmonary hypertension
in response to bleomycin exposure. Specifically, there was a
reduction in alternatively activated macrophages, IL-6, and
hyaluronan, all of which have been implicated in pulmonary
fibrosis and pulmonary hypertension. The study suggests that
activation of the A2BAR on alternatively activated macrophages
is essential in the development of pulmonary fibrosis and
pulmonary hypertension (138). In addition, A2BAR activation
on pulmonary artery smooth muscle cells (PASMCs) results in
increased IL-6 and hyaluronan, and deletion of A2BAR in these
cells leads to reduced severity of pulmonary hypertension (139).
Moreover, hypoxia is present in pulmonary fibrosis and its role
in modulating alveolar macrophage phenotype was examined
by Philip et al. Using the mouse bleomycin-induced model
of pulmonary fibrosis and IPF lung samples, they determined
that inhibition of HIF1α resulted in a reduction in pulmonary
fibrosis, along with the diminished expression of A2BAR in
alternatively activated macrophages (AAMs). HIF1α inhibition
in combination with A2BAR deletion prohibited differentiation
of AAM and subsequent IL-6 production and release fromAAMs
(140). Thus, hypoxia regulates A2BAR expression on AAMs,
differentiation of macrophages into AAMs and production of
pro-fibrotic mediators like IL-6. Zhong et al. went on to show
there is a synergism between hypoxia and A2BAR in that hypoxia
upregulates A2BAR and amplifies adenosine’s effect on IL-6
release and differentiation of fibroblasts to myofibroblasts, which
are essential in development and progression of lung fibrosis
(141). In summary, chronic adenosine signaling promotes
pulmonary inflammation and fibrosis.

Adenosine Signaling Termination in
Chronic Pulmonary Inflammation
Adenosine deaminase converts adenosine to inosine. COPD and
IPF patients exhibit the reduced activity of ADA along with
elevated adenosine levels (117, 118). ADA expression correlated
inversely with pulmonary hypertension severity in explanted
lungs from patients with IPF (119). Genetic deficiency of ADA
in mice led to the spontaneous and progressive development
of pulmonary fibrosis due to an accumulation of extracellular
adenosine. Examination of the pulmonary phenotype seen in
ADA-deficient mice suggests that elevated adenosine activates
signaling pathways that lead to and worsen chronic lung
diseases (142). Using ADA-deficient mice, Sun et al. reported
that selective pharmacologic antagonism of the A2BAR led
to attenuation of pulmonary inflammation, emphysema, and
fibrosis. A2BAR blockade decreased levels of proinflammatory,
profibrotic mediators. The same findings were seen with
selective antagonism of A2BAR in the bleomycin-induced mouse

model of pulmonary fibrosis (143). Thus, the termination of

adenosine signaling via ADA activity is protective in chronic
lung inflammation.

DISCUSSION AND PERSPECTIVES

Purinergic signaling serves an essential regulatory role in a
number of inflammatory conditions. Many of the studies
presented in this review support targeting purinergic signaling
as a therapeutic approach to the treatment of acute lung
diseases like ARDS and chronic lung diseases like asthma,
COPD, and IPF. However, certain gaps in knowledge remain
and need to be addressed. For example, the role of ATP in
acute pulmonary injury and inflammation is controversial and
needs to be addressed with further studies. A role for ENTs has
been reported in acute injury but not in chronic lung diseases.
Further research into this area may prove beneficial as ENTs
regulate the metabolism of adenosine and hence affect adenosine
signaling in the lungs. A better understanding of when and
where purinergic signaling serves protective roles and when and
where it is detrimental, as well as translation of findings from
mice to humans, is vital to developing therapies to combat acute
and chronic pulmonary diseases in patients. In the meanwhile,
targeting purinergic/adenosinergic pathway is feasible (53, 144)
and could be of great therapeutic potential to prevent and treat
acute and chronic lung inflammation.
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