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Abstract

Voltage-gated Ca2+ channels are critical for the development and mature function of the ner-

vous system. Variants in the CACNA2D4 gene encoding the α2δ-4 auxiliary subunit of these

channels are associated with neuropsychiatric and neurodevelopmental disorders. α2δ-4 is

prominently expressed in the retina and is crucial for vision, but extra-retinal functions of

α2δ-4 have not been investigated. Here, we sought to fill this gap by analyzing the behavioral

phenotypes of α2δ-4 knockout (KO) mice. α2δ-4 KO mice (both males and females) exhib-

ited significant impairments in prepulse inhibition that were unlikely to result from the mod-

estly elevated auditory brainstem response thresholds. Whereas α2δ-4 KO mice of both

sexes were hyperactive in various assays, only females showed impaired motor coordina-

tion in the rotarod assay. α2δ-4 KO mice exhibited anxiolytic and anti-depressive behaviors

in the elevated plus maze and tail suspension tests, respectively. Our results reveal an

unexpected role for α2δ-4 in sensorimotor gating and motor function and identify α2δ-4 KO

mice as a novel model for studying the pathophysiology associated with CACNA2D4

variants.

Introduction

Voltage-gated Ca2+ channels mediate Ca2+ signals that initiate a vast array of signaling events

including gene transcription, protein phosphorylation, and neurotransmitter release. The
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main properties of these channels are determined by a pore-forming α1 subunit, while auxil-

iary β and α2δ subunits regulate the trafficking and some functional aspects of these channels

[1]. These subunits are encoded by four genes each [2], with additional functional diversity

conferred by extensive alternative splicing [3]. The physiological importance of Cav channels

is reflected in the numerous diseases that are linked to mutations in the genes encoding the

Cav subunits which include migraine, ataxia, and disorders of vision and hearing [4, 5].

In recent years, variants in Cav encoding genes have been consistently identified in

genome-wide association studies of neuropsychiatric disorders. One of the most prominent of

such studies analyzed single-nucleotide polymorphisms (SNPs) in ~60,000 individuals and

uncovered CACNA1C, the gene encoding Cav1.2, as a major risk gene for schizophrenia, bipo-

lar disorder, major depressive disorder, autism spectrum disorder, and attention deficit hyper-

activity disorder (ADHD) [6]. In this study, pathway analysis further revealed an association of

other Cav-encoding genes with these disorders, including CACNA2D4 that encodes the α2δ-4

subunit. This result was rather unexpected given that α2δ-4 was thought to be expressed pri-

marily in the retina, where it associates with the Cav1.4 channel and regulates the structure

and function of photoreceptor synapses [7–9].

α2δ is an extracellular protein that regulates the cell-surface trafficking of Cav channels [10],

but may have additional roles. For example, α2δ-1 binding to thromobospondins promotes

synapse formation in a manner that is inhibited by the analgesic and anti-convulsant drug,

gabapentin [11]. In cultures of hippocampal neurons, α2δ-1, α2δ-2, and α2δ-3 play essential

and redundant roles in regulating the formation and organization of glutamatergic synapses

[12]. At the Drosophila neuromuscular junction, α2δ-3 is required for proper synapse morpho-

genesis—a process that does not involve its association with the Cav2.1 channel [13]. In the ret-

ina, the formation of photoreceptor synapses involves the role of α2δ-4 as a Cav1.4 subunit and

as a mediator of trans-synaptic interactions of the cell adhesion molecule, ELFN-1, with post-

synaptic glutamate receptors [9].

Despite the association of α2δ-4 with neuropsychiatric diseases, whether α2δ-4 contributes

to behaviors linked to these disorders is unknown. To address this question, we examined the

behavioral phenotypes of α2δ-4 knockout (KO) mice [8].

Materials and methods

Animals

All procedures using animals were approved by the University of Iowa Institutional Animal

Care and Use Committee (IACUC protocol #0111262 and #1071502). The α2δ-4 KO mouse

line was bred on a C57BL/6 background for at least 20 generations and characterized previ-

ously [8]. Experimental animals were bred from homozygous (-/-) α2δ-4 KO mice and age-

and sex- matched wild-type (WT) C57BL/6 mice were used as controls. The same cohorts of

males (15–25 week old, n = 10 WT, n = 11 KO) and females (11–22 week old, n = 11 WT,

n = 11 KO) were used for all behavioral tasks. A separate group of mice (4 week old, n = 4 WT

males, n = 4 KO males, n = 4 WT females, n = 4 KO females) were tested for auditory brain-

stem responses. Before beginning handling and testing, mice were ear punched for identifica-

tion. All mice were housed in groups of 2–3 animals per cage for the duration of the handling

and testing periods with food and water ad libitum. The room in which the mice were housed

was maintained on a consistent light cycle with lights on at 09:00 and lights off at 21:00 and

testing took place between 08:00 to 13:00. Males and females were tested in separate cohorts at

different time points to prevent pheromones on the testing apparatus from impacting results.

Mice were generally acclimatized for 30 min in the room in which the assay was conducted

prior to initiating the test. A full week was taken between every test to reduce the impact of
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stress from previous tests on the next result. The order of testing was designed to minimize the

impact of preceding assays by performing those with the least stressful tasks first and in the fol-

lowing order: (1) elevated plus maze, (2) light dark box, (3) open field test, (4) prepulse inhibi-

tion, (5) rotarod, (6) tail suspension test, and (7) forced swim test.

Prepulse inhibition

The testing apparatus consisted of a startle response box (SR-LAB from San Diego Instru-

ments). A restraint chamber consisted of a clear plastic tube from which the tremble response

of the animal could be measured via an accelerometer underneath the chamber. Animals were

placed in the restraint chamber and allowed to acclimate to the chamber for 10 min with a con-

sistent background white noise level of 65 dB which was present for the entire experiment. The

25-min testing period was divided into 3 blocks each consisting of 6 or 60 trials. All trials were

presented with a randomly spaced intertrial interval ranging from 7 to 15 seconds. The first

block consisted of 6 pulse trials at 120 dB. The second block contained 12 of each of the follow-

ing trial types: standard pulse at 120 dB, no stimulation, prepulse of +4 dB above background,

prepulse of +8 dB, and prepulse of +16 dB. The third block consisted of 6 pulse trials at 120 dB.

Startle response amplitudes (in mV) were measured in SR-LAB software and %PPI measured

as (startle response for pulse alone—startle response for pulse with pre-pulse) / startle response

for pulse alone) X 100.

Auditory brainstem responses

Auditory brainstem responses (ABRs) were performed as described previously [14]. Mice were

anesthetized with intraperitoneal injection of ketamine (100 mg/kg) and xylazine (10 mg/kg).

Recordings were conducted on both ears of all animals on a heating pad using electrodes

placed subcutaneously in the vertex and underneath the left or right ear. Clicks were square

pulses 100 ms in duration, and tone bursts were 3 ms in length at distinct 8-, 16-, and 32 kHz

frequencies. ABRs were measured using BioSigRZ software (Tucker-Davis Technologies), with

stimulus levels adjusted in 5-dB increments between 25 and 100 dB SPLs in both ears. Electri-

cal signals were averaged over 512 repetitions and ABR threshold was defined as the lowest

sound level at which a reproducible waveform was measured.

Elevated plus maze

The testing apparatus consisted of a plus-shaped maze elevated 40 cm above the floor. Two

opposing closed and open arms extended from a central zone. Open arms had no walls

whereas closed arms were surrounded by gray walls. The floor of the maze was made of gray

plastic material. Illumination intensity in the central square was approximately 500 lux. Mice

were moved from the home cage to the central square of the maze, always facing the same

closed arm. The animals were allowed to explore the maze for 10 min. In the event of a fall, the

animal was placed in the central square facing the same closed arm and recording resumed.

Time spent in the open and closed arms was evaluated using video recording and Anymaze

software.

Light dark box

The testing apparatus consisted of a chamber divided into a light and dark compartment

equipped with infrared beam tracking (Med Associates). The apparatus was divided into 2

chambers with a gap in the wall between them. Mice were tested using a very bright light in the

light chamber (27,000 lux). Mice were moved from the home cage to the light side of the
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apparatus facing away from the dark chamber. The animals were allowed to freely explore and

move between the chambers for 30 min and the animals’ movements were documented in

sequential 5 min intervals via infra-red tracking. Time spent in either compartment was ana-

lyzed by Activity Monitor software.

Open field test

The testing apparatus consisted of an open square chamber with walls of 40 cm height and

width. Illumination intensity in the central square was approximately 500 lux. Mice were

moved from the home cage to the center of the open chamber. The animals were allowed to

freely explore the chamber for 10 minutes. Animal behavior was evaluated using video record-

ing and Anymaze software. Relative time spent in the inner and outer portion of the box were

taken as a measure of the animals’ anxiety-like behavior. Total distance traveled over the 10

minutes was taken as a measure of the animals’ basal activity level.

Forced swim test

The testing apparatus consisted of a 2-liter beaker filled with 1200 ml of water at room temper-

ature. Mice were placed in the water and monitored for 6 min, then were dried and placed in a

recovery cage with a cage warmer. Time spent immobile was recorded, with immobility

defined as lack of motion in the hind legs except necessary movement to balance and keep the

head above the water.

Tail suspension test

The testing apparatus consisted of a metal bar suspended 30–40 cm above the table. Tails of

the mice were wrapped in adhesive tape within the last 1 cm of the tail. A clear plastic tube was

placed around the animal’s tail to prevent climbing up the tail and onto the bar. Time spent

immobile was recorded, with immobility defined as lack of attempting to move their limbs as

described previously [15].

Rotarod test

The testing apparatus consisted of a rotating spindle 3.0 cm in diameter that will increase in

speed over the course of the trial (Rotamex 5). Mice were trained for 2 consecutive days with 3

testing trials per mouse each day separated by at least 30 min. For the testing trial, the speed of

rotation was increased by 1.2 rpm every 20 s to a maximum of 40 rpm and the latency to fall

was recorded. The 6 testing trials were averaged for each mouse.

Statistics

Statistical analysis was done with GraphPad Prism software 8.0 and RStudio. An alpha level of

0.05 was used for all statistical tests. For datasets without repeated measures, data were first

tested for normality by the Shapiro–Wilk test and homogeneity by Levene’s test. For paramet-

ric data, ANOVA with post hoc Holm-Sidak’s multiple comparisons test was performed. For

non-parametric data, Kruskal Wallis tests were used with post hoc Dunn’s multiple compari-

sons. For data sets with repeated measures, a repeated measures linear mixed model was used

with post hoc estimated marginal means. The main effects were reported if there was no signif-

icant interaction, and post hoc analysis was performed on the main effects that had more than

two levels. Otherwise, post hoc tests were performed and simple main effects were reported

using adjusted p value for multiple comparisons. Data were graphically represented as mean
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±standard error of the mean (SEM) for each group. Results were considered significant when

p< 0.05 (denoted in all graphs as follows: �p< 0.05; ��p< 0.01; ���p< 0.001).

Results and discussion

α2δ-4 KO mice were born at normal Mendelian ratios and did not exhibit any overt behavioral

phenotypes other than hyperactivity. The control wild-type (WT) strain corresponded to

C57BL/6 strain on which the α2δ-4 KO mice were bred for at least 10 generations. Cohorts of

male and female mice were analyzed separately, and there were no differences in body weight

of the WT and α2δ-4 KO mice used in this study (Table 1).

Prepulse inhibition is impaired in α2δ-4 KO mice

Sensorimotor gating is a form of pre-attentive processing that is commonly studied in humans

and animals using prepulse inhibition (PPI). In this test, a response to a strong acoustic stimu-

lus is generally diminished when it is preceded by a subthreshold stimulus [16]. Reductions in

PPI are thought to reflect impairments in working memory in individuals diagnosed with

schizophrenia, bipolar disorder, and post-traumatic stress disorder and in animal models of

these conditions [17, 18]. Because of the association of Cav-encoding genes with these disor-

ders [6], we tested whether α2δ-4 KO mice exhibit deficits in PPI. WT and α2δ-4 KO were

tested for startle responses to a 120 dB acoustic stimulus that was administered alone or after a

prepulse stimulus of 4, 8, or 16 dB, and PPI was expressed as the % change in the response

amplitude due to the prepulse (%PPI, Fig 1A and 1B). In this assay, there was a significant

main effect of both sex (F1, 39 = 7.876, p< 0.01) and genotype (F1, 39 = 10.26, p< 0.01), but no

interaction between these variables (F1,39 = 0.0028, p = 0.958; Fig 1B). PPI was significantly

lower for α2δ-4 KO than for WT mice in the cohort of females (p< 0.05 for both 8 and 16 dB

prepulse) and males (p< 0.05 for 8 dB, p< 0.01 for 16 dB prepulse). In some mouse strains,

relatively low levels of PPI correlate with low basal startle amplitudes [18]. However, basal star-

tle amplitudes were significantly higher in α2δ-4 KO mice than in WT mice (F1,39 = 55.50,

p< 0.001; Fig 1C). Some studies have shown that patients with schizophrenia have an

impaired habituation to the startle pulse [19], which would manifest as a difference in startle

response to the 120 dB-stimulus administered without the prepulse (blocks 1–3, Fig 1A).

There was no effect of genotype on this parameter (F2, 78 = 1.580, p = 0.213). Collectively, these

results show that α2δ-4 KO mice exhibit impaired PPI without alterations in habituation.

In the retina and cochlea, α2δ proteins support the activity of Cav1.4 and Cav1.3 channels

that mediate glutamate release at the specialized ribbon synapse of photoreceptors and inner

hair cells, respectively [20]. To determine whether hearing impairment could contribute to

weakened PPI in α2δ-4 KO mice, we measured auditory brain stem responses (ABRs). In this

assay, elevated ABR thresholds correlate with hearing deficits. In response to click stimuli,

α2δ-4 KO males had significantly higher thresholds than WT males (p< 0.05). For pure tone

Table 1. Body weights (g) of animal subjects in this study.

Cohort: WT F WT M KO F KO M

Mean 21.636 29.550 22.518 29.282

SEM 0.521 1.03 0.790 0.679

Animals (n = 43, 15–25 weeks) were weighed once and prior to initiating the battery of behavioral tests in this study.

There was no significant effect of genotype on body weight (F1, 39 = 0.418, p = 0.521) but males were significantly

larger than females (F1, 39 = 91.5, p< 0.001) by 2-way ANOVA.

https://doi.org/10.1371/journal.pone.0263197.t001
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stimuli from 8 kHz to 32 kHz, there was no overall effect of genotype or sex (F1, 60 = 1.0140,

p = 0.318 & F1, 60 = 2.3092, p = 0.134), but an interaction between genotype and sex (F1, 60 =

8.0533, p< 0.01) indicated lower thresholds in α2δ-4 KO females than in WT females

(p< 0.01, Fig 2). Importantly, all α2δ-4 KO mice displayed functional hearing above 60 dB,

the range used in the PPI assays, which argues against the possibility that the reduced PPI of

the αα2δ-4 KO mice resulted from hearing loss.

α2δ-4 KO mice exhibit anxiolytic and antidepressant phenotypes

Anxiety and depression are common features of a variety of neuropsychiatric disorders,

including those associated with CACNA1C variants [21] and have a high rate of comorbidity

with schizophrenia [22, 23], ADHD [24], ASD [25], bipolar disorder [23, 26], and major

depressive disorder [23, 27]. Therefore, we tested the performance of α2δ-4 KO mice in behav-

ioral assays designed to assess anxiety (open field test, OFT; elevated plus maze, EPM; and

light dark box, LD) and depression (forced swim test, FST; and tail suspension test, TST). In

the OFT, the animals are placed in the center of an open chamber and the time spent avoiding

the center is used as a metric for anxiety-like behavior (i.e., thigmotaxis). In the EPM, the ani-

mals are placed in the center of a raised platform with open and closed arms and the time

spent avoiding the open arms is taken as an indicator of anxiety-like behavior. While α2δ-4
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https://doi.org/10.1371/journal.pone.0263197.g001
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KO and WT mice did not differ in thigmotaxis in the OFT (p = 0.99, Fig 3A and 3B), α2δ-4

KO mice spent more time in the open arms of the EPM than WT mice (Open η2 = 0.141,

p< 0.01 by Kruskal-Wallis; Closed F1, 34 = 14.206, p< 0.001 by linear mixed model; Fig 3C

and 3D). It is unlikely that visual impairment of the α2δ-4 KO mice influenced their abilities to

respond to the aversive stimuli of the OFT and EPM since these mice have normal vision in

daylight but not dim light conditions [8]. As a further test, we performed the light dark

box assay in which avoidance of a chamber with a bright light stimulus is taken as a measure of

anxiety-like behavior. The α2δ-4 KO mice spent more time in the lighted chamber than WT

mice (η2 = 0.100, p< 0.05 by Kruskal-Wallis) and female mice spent more time in the light

chamber than males (η2 = 0.163, p< 0.01 by Kruskal-Wallis) (Fig 3E and 3F). The light inten-

sity used in the lighted chamber was 27,000 lux, which is well above the visual threshold for

α2δ-4 KO mice [8]. Taken together, results from the EPM and LD assays support an anxiolytic

phenotype in α2δ-4 KO mice.

In the TST and FST, depressive phenotypes are measured as the duration of immobility fol-

lowing suspension of the animal by its tail, or placement of the animal in a beaker of water,

respectively. While there were no differences between genotypes in the FST, α2δ-4 KO mice

spent significantly less time immobile than WT mice in the TST (F3, 252 = 15.04, p< 0.001; Fig

4A–4F). These results indicate a task-specific antidepressant- like phenotype in the α2δ-4 KO

mice.

α2δ-4 KO mice exhibit abnormal motor behavior

Abnormal motor behaviors are a common feature of neurodevelopmental disorders including

ASD and ADHD [28–30]. Thereofre, we tested motor function of α2δ-4 KO mice in the
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rotarod assay. In this assay, the mice are placed on a rotating cylinder that is gradually acceler-

ated and the length of time the animal can stay on the cylinder is taken as a measure of balance,

coordination, and motor planning [31]. The latency to fall was shorter for α2δ-4 KO than for

WT mice (F1, 39 = 6.457, p< 0.05; Fig 5A). To further assess motor phenotypes in the α2δ-4

KO mice, we analyzed data in the OFT, EPM, and LD assays for aberrant locomotion. In each

case, the total distance traveled by α2δ-4 KO (both males and females) mice was significantly

greater than for WT mice (OFT η2 = 0.266, p< 0.001; EPM: F1, 34 = 16.09, p< 0.001; LD: η2 =

0.490, p< 0.001; Fig 5B–5D). These results show that α2δ-4 KO mice exhibit signs of hyperac-

tivity and impairment in motor coordination.

Our results show that α2δ-4 KO mice exhibit a pattern of affective and motor behaviors that

resemble those in neuropsychiatric disorders that are linked to variants in Cav-encoding genes

[6]. Because α2δ proteins enhance the cell-surface trafficking of Cav channels [5], the pheno-

types of α2δ-4 KO mice could result from loss-of function of Cav channels in key brain regions.

For example, α2δ-4 could support the activity of Cav1.2 channels in the medial prefrontal cor-

tex (mPFC)—an area involved in sensorimotor gating [32]. In mice lacking the

Fig 3. α2δ-4 KO mice exhibit diminished anxiety-like behaviors. For WT and α2δ-4 KO mice, graphs show the % total time spent in the inner and outer

regions of the chamber in the open field test (OFT) (A,B), open and closed arms of the elevated plus maze (EPM) (C,D), and light and dark chambers in the

light-dark assay (LD) (E,F). �p< 0.05; ��p< 0.01; ���p< 0.001 by Kruskal-Wallis and linear mixed model.

https://doi.org/10.1371/journal.pone.0263197.g003
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Cav1.2-interacting protein, densin-180 (densin-KO), Cav1.2 is downregulated in the mPFC

[33] and there are deficiencies in PPI and a hyperactivity phenotype [34] similar to α2δ-4 KO

mice (Figs 1 and 5B–5D). Moreover, deletion of Cav1.2 in the PFC causes anti-depressant

Fig 4. α2δ-4 KO mice exhibit diminished depression-like behavior in the tail suspension test. For WT and α2δ-4 KO

mice, the duration spent immobile in the tail suspension test (TST) (A-C) and forced swim test (FST, (D-F) was plotted

against time (in 1-min bins) during the assay. A and D represent results for males and females combined while B,C,E,F

show data disaggregated by sex. Smooth line represents exponential fits of the results. �p< 0.05; ��p< 0.01; ���p< 0.001

by nonlinear regression.

https://doi.org/10.1371/journal.pone.0263197.g004

Fig 5. α2δ-4 KO mice exhibit alterations in motor behavior. For WT and α2δ-4 KO mice, graphs show the latency to

fall in the rotarod assay (A) and total distance traveled in the OFT (B), EPM (C), and LD (D) assays. Rotarod: Genotype

F1, 39 = 6.457, p< 0.05; Sex F1, 39 = 22.543, p< 0.001; Genotype:Sex F1, 39 = 1.806, p = 0.1867 by one-way ANOVA.
�p< 0.05; ��p< 0.01; ���p< 0.001 by Kruskal-Wallis and one-way ANOVA.

https://doi.org/10.1371/journal.pone.0263197.g005
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behavior in the TST [35], also similar to α2δ-4 KO mice (Fig 4A–4C). However, PFC-specific

deletion of Cav1.2 causes increased anxiety-like behavior [36] whereas α2δ-4 KO mice present

with an anxiolytic phenotype in the EPM and LD assays (Fig 3C–3F). Thus, the roles of α2δ-4

in regulating PPI, motor behavior, and anxiety may involve distinct signaling pathways that

may or may not be characterized by Cav channels.

In this context, it is somewhat paradoxical that α2δ-4 is nearly undetectable in most brain

regions by quantitative PCR of the corresponding tissue lysates [37]. α2δ-4 could escape detec-

tion by this method if it were expressed differentially across development or in a small subset

of neurons implicated in the behaviors that are altered in α2δ-4 KO mice [37, 38]. Notably,

α2δ-4 has been detected at low levels by single cell PCR in the sound-amplifying outer hair

cells in the cochlea of immature mice [39]. It is unclear how loss of α2δ-4 could lead to

improved hearing (i.e., lower ABR thresholds) in α2δ-4 KO females (Fig 2). Possibly, the

absence of α2δ-4 could cause homeostatic alterations in other proteins that improve cochlear

sound amplification. By the same token, although it is expressed at generally low levels in the

brain, α2δ-4 could undergo pathological upregulation in some disease states. For example,

α2δ-4 expression is increased in hippocampus of humans and mice following epileptic seizures

[40]. Given that α2δ proteins regulate synapse formation in part through trans-synaptic inter-

actions with proteins other than Cav channels [9, 11, 13, 41], aberrant expression of α2δ-4

could cause defects in neuronal connectivity in individuals harboring pathological variants in

CACNA2D4.

Although blind under dim-light conditions, α2δ-4 KO mice are expected to have normal

vision under the lighting conditions used in our study [8, 9]. To date, alterations in cognitive

and/or affective function in individuals diagnosed with CACNA2D4-related vision impairment

have not been reported. However, the etiology of most neuropsychiatric disorders is complex

and likely involves hundreds to thousands of risk alleles distributed across the genome [42].

Our findings that α2δ-4 KO mice exhibit defects in PPI, motor coordination, and anxiety/

depression-related behaviors validate the importance of CACNA2D4 as one such risk allele

and that studies of the extra-retinal functions of α2δ-4 warrant further study.
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