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Abstract: Secondary lymphoid tissues, such as the spleen and lymph nodes (LNs), contribute to breast
cancer development and metastasis in both anti- and pro-tumoral directions. Although secondary
lymphoid tissues have been extensively studied, very little is known about the immune conversion
in mesenteric LNs (mLNs) during breast cancer development. Here, we demonstrate inflammatory
immune conversion of mLNs in a metastatic 4T1 breast cancer model. Splenic T cells were significantly
decreased and continuously suppressed IFN-γ production during tumor development, while myeloid-
derived suppressor cells (MDSCs) were dramatically enriched. However, T cell numbers in the mLN
did not decrease, and the MDSCs only moderately increased. T cells in the mLN exhibited conversion
from a pro-inflammatory state with high IFN-γ expression to an anti-inflammatory state with high
expression of IL-4 and IL-10 in early- to late-stages of breast cancer development. Interestingly,
increased migration of CD103+CD11b+ dendritic cells (DCs) into the mLN, along with increased
(1→3)-β-D-glucan levels in serum, was observed even in late-stage breast cancer. This suggests that
CD103+CD11b+ DCs could prime cancer-reactive T cells. Together, the data indicate that the mLN is
an important lymphoid tissue contributing to breast cancer development.

Keywords: breast cancer cells; dendritic cells; mesenteric lymph node; myeloid-derived suppres-
sor cells

1. Introduction

Transformed cells with mutations in cancer-related genes are associated with uncon-
trolled cell division and are deficient in the repair of gene replication errors. During cancer
initiation and development, abnormal expression of various genes also leads to the secre-
tion of cytokines and growth factors inappropriate for the cellular environment causing
decay of the surroundings. This facilitates the development of a tumor microenvironment
with many stromal cells such as myofibroblasts, vascular endothelial cells, pericytes, and
immune cells [1–3]. Immune cells such as dendritic cells, macrophages, and CD4+ and
CD8+ T cells can potentially play a role in antitumor immunity in the tumor milieu [4].
However, antitumor immunity is attenuated by factors such as increases in myeloid-derived
suppressor cells (MDSCs) and CD4+ regulatory T cells (Tregs), as well as the reduction in
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cytotoxic T lymphocyte function responsible for directly killing cancer cells [3,5–12]. Fur-
thermore, the increase in MDSCs reduces the number of CD4+ and CD8+ T cells and further
modulates the expression of cytokines such as IFN-γ, IL-4, and IL-10 in the spleen [5,6].
Thus, tumor proliferation has a major impact on the immune cells located in the tumor
microenvironment, as well as on systemic immunity.

The intestinal tract hosts the highest number of immune cells in the body, maintaining
a fine-tuned balance between inflammatory responses to potential pathogens and tolerance
to commensal bacteria or food antigens [13]. The intestine consists of several functionally
specialized cells in the epithelia and lamina propria, and regulates its immunological
homeostasis independently of systemic immunity [14]. However, recent findings suggest
that mucosal tissue could interact with other organs via immune cells. For example, CD4+

T cells activated in the lungs due to an influenza infection migrate into intestinal tract
and cause T helper (Th)-17-mediated intestinal inflammation, which is accompanied by
a change in commensal bacteria population [15,16]. In addition, activation of toll-like
receptor (TLR)-5-dependent signaling induced by intestinal bacteria contributes to tumor
malignancy in mouse models [17]. However, whether the disturbance caused in systemic
immune cells by tumor progression at sites other than the intestine influences the intestinal
immune homeostasis is not yet known.

Breast cancer is the most common malignant disease in women and often metastasizes
to the lymph nodes, lungs, and bones [18]. Similarly to human breast cancer cells, the
BALB/c-derived breast cancer cell line 4T1 cells have the ability to actively metastasize
to the lungs, liver, bone, and spleen, and occasionally metastasize to tumor-draining
lymph nodes, the brain, intestine, kidney, and adrenals [19,20]. Murine subcutaneous
tumor models with normal immune function have been reported to show the highest
accumulation of splenic MDSCs due to tumor progression compared to other syngeneic
tumor-bearing mice [21]. However, whether intestinal immune cells are influenced by
breast cancer progression is currently unknown.

In the present study, we utilized a syngeneic mouse breast cancer model, and inves-
tigated the changes in immune cells in the mesenteric lymph node (mLN) and spleen in
a late stage of breast cancer to explore the association between intestinal immune cells
and cancer.

2. Materials and Methods
2.1. Reagents and Monoclonal Antibodies (mAbs)

Anti-CD3ε (145-2C11), CD11b (M1/70), and CD103 (M290) mAbs were purchased
from BD Biosciences (San Jose, CA, USA). Anti-CD25 (PC61.5), Gr-1 (RB6-8C5), and
CD16/CD32 (93) mAbs were purchased from eBioscience (San Diego, CA, USA). Anti-CD4
(RM4–5), CD8α (53–6.7), CD11c (N148), and MHC-class II (M5/114.15.2) were purchased
from Tonbo Biosciences (San Diego, CA, USA).

2.2. Animals

Female BALB/c mice (age: 5 weeks; weight: 17–19 g) were obtained from Charles
River Inc. (Kanagawa, Japan) and maintained under specific pathogen-free conditions at
the Tsushima-kita Branch, Department of Animal Resources, Advanced Research Center,
Okayama University. The animals were kept at 22–26 ◦C and under 50% humidity with a
12-h light/dark cycle and were fed a standardized diet with ad libitum access to autoclaved
tap water.

2.3. Tumor Cell Cultures

The mammary carcinoma cell line 4T1-Luc (JCRB1447, the Japanese Cancer Research
Resources Bank, Ibaraki, Japan) was cultured in Roswell Park Memorial Institute (RPMI)
1640 medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% (v/v) heat-
inactivated fetal bovine serum (FBS) (SAFC Biosciences, Lenexa, KS, USA) and 1% (v/v)
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antibiotic-antimycotic solution (10,000 U/mL penicillin, 10,000 µg/mL streptomycin, and
25 µg/mL amphotericin B; Life Technologies, Gaithersburg, MD, USA).

2.4. Tumor Cell Implantations

The 4T1 cells (5 × 105 cells/200 µL/mouse) were implanted subcutaneously into the
right flank of a 6-week-old mouse. A sham mouse injected with saline only served as
a control. The mice were euthanized at days 14 and 21, and the tissue samplings were
conducted accordingly.

2.5. Splenocyte and mLN Cultures and the Assays for Cytokine Levels

Splenocytes and mLN mononuclear cells were isolated and cultured as previously de-
scribed [5–7,22,23]. Briefly, the immune cells from the spleen and mLN (4 × 105 cells/well)
were cultured for 48 h on flat-bottomed 96-well plates (Corning Costar, Cambridge, MA,
USA) coated with 5 µg/mL anti-CD3εmAb in 200-µL RPMI 1640 medium (Sigma-Aldrich)
containing 50 µM 2-mercaptoethanol (Nacalai Tesque Inc., Kyoto, Japan) and supplemented
with 10% (v/v) heat-inactivated FBS (SAFC Biosciences, Gaithersburg, MD, USA) and 1%
(v/v) antibiotic-antimycotic solution (10,000 U/mL penicillin, 10,000 µg/mL streptomycin,
and 25 µg/mL amphotericin B; Life Technologies). The cultures were incubated in a hu-
midified atmosphere of 5% CO2 at 37 ◦C. After 48 h, the IFN-γ, IL-4, and IL-10 levels in the
culture supernatants were evaluated using cytokine-specific enzyme-linked immunosor-
bent assays (ELISAs) that are commercially available from BD Biosciences [5,6].

2.6. Flow Cytometry

Splenocytes and mLNs (2 × 106) were incubated with anti-CD16/CD32 mAb for
20 min on an ice bath. Then, MDSCs were stained with anti-Gr-1 and CD11b mAbs, and the
migratory DC were stained with MHC-class II, CD11b, CD11c, and CD103 mAbs. T cells
were stained with anti-CD4, CD25, and CD8 mAbs for 30 min on an ice bath, fixed with
FACS Lysing Solution (BD Biosciences) for 10 min at room temperature (RT), permeabilized
with FACS Permeabilizing Solution 2 (BD Biosciences) for 10 min at RT, and then stained
with anti-Foxp3 mAb for 30 min. The stained cells were analyzed using the Accuri™ Flow
Cytometer (BD Biosciences) and the FlowJo Software version 9 (Treestar, Inc., San Carlos,
CA, USA).

2.7. Gut Permeability Test

To establish the gut bacterial leakage model, the mice were administered with 1.5%
(wt/vol) dextran sulfate (DSS; MW36,000–50,000; ICN Biochemicals, Costa Mesa, CA,
USA) via drinking water at 14 days post-4T1 inoculation. After seven days of treatment,
colon tissue and blood sampling were performed [24]. Hematoxylin and eosin (H&E)
staining was performed on the section of paraffin-embedded colon tissue as previously
described [25]. The serum (1→3)-β-D-glucan level was evaluated using the Fungitec
G Test MKII “Nissui” (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan), according to the
manufacturer’s instructions [26].

2.8. Statistical Analyses

Statistical analyses were performed using the Mann–Whitney U test. All analyses
were performed using the GraphPad Prism Software Version 6 (GraphPad Software Inc,
San Diego, CA, USA). A p value < 0.05 was considered statistically significant.

3. Results
3.1. Intestinal Immunity Is Affected by Subcutaneous Inoculation in 4T1 Tumor

To explore the impact of subcutaneous tumors on systemic immunity and intestinal
immunity, we created a murine breast tumor model that spontaneously produces a highly
metastatic tumor. Tumor volume changes are shown in Supplementary Figure S1. After
subcutaneous inoculation of the 4T1 tumor, macro-metastasis was visually observed at day
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21 in the spleen, but was not observed in the intestine and mLNs, as is consistent with other
studies [19,27]. We initially investigated the cytokine expression of T cells in the spleen and
mLNs of these mice ex vivo. IFN-γ, IL-4, and IL-10 production in splenic T cells significantly
decreased at day 14, while at day 21, IFN-γ production was suppressed, but IL-4 and IL-10
production significantly increased as compared to control mice (Figure 1). We also analyzed
the cytokine expression of T cells in the mLNs. Interestingly, IFN-γ expression significantly
increased in 4T1-inoculated mice at day 14, and the expression was equivalent to control
mice even at day 21. Increased levels of IL-10 at day 14 was also observed in the mLNs
of 4T1-inoculated mice. Furthermore, IL-4 and IL-10 production in 4T1-inoculated mice
dramatically increased compared to control mice at day 21. These results indicate that
the intestinal immune balance between anti- and pro-inflammatory states changed during
tumor development. Since the late stage of breast cancer development generated systemic
immune suppression, we further addressed the immune state at day 21 from 4T1 cell
inoculation.
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Figure 1. Cytokine production by splenocytes and mLN cells in 4T1 tumor mice. At day 21 of 
transplantation into the right flank transplantation, the splenocytes and mLNs from control (Sham) 
or tumor (4T1)-bearing mice were isolated and stimulated with plate-bound anti-CD3ε mAb for 48 
h. IFN-γ, IL-4, and IL-10 cytokines in the culture supernatant were detected by ELISA. Data are 
shown from a representative experiment from four independent experiments. All data are presented 
as mean ± SEM and assessed with the Mann–Whitney U test. * p < 0.05; ** p < 0.01; *** p < 0.001; **** 
p < 0.0001. 
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splenic CD4+ T cells were unchanged (Figure 2A–C). Moreover, the total number of CD4+ 
CD25+ T cells and CD4+ CD25+ Foxp3+ Tregs in 4T1 mice was reduced (Figure 2D). In 
contrast, these cell numbers in 4T1 tumor-bearing mice did not change in the mLN 
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and their cell numbers in mLNs were independent of the decrease in systemic immune 
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Figure 1. Cytokine production by splenocytes and mLN cells in 4T1 tumor mice. At day 21 of
transplantation into the right flank transplantation, the splenocytes and mLNs from control (Sham)
or tumor (4T1)-bearing mice were isolated and stimulated with plate-bound anti-CD3εmAb for 48
h. IFN-γ, IL-4, and IL-10 cytokines in the culture supernatant were detected by ELISA. Data are
shown from a representative experiment from four independent experiments. All data are presented
as mean ± SEM and assessed with the Mann–Whitney U test. * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001.

3.2. Breast Cancer Formation Does Not Affect T Cell Number in mLN

We next investigated the number of T cells in 4T1 tumor inoculated mice at day 21.
Splenocytes and mLN cells were isolated and stained with T cell markers. Both CD4+ and
CD8+ T cells per 105 splenocytes decreased in 4T1 tumor-bearing mice, whereas total splenic
CD4+ T cells were unchanged (Figure 2A–C). Moreover, the total number of CD4+ CD25+ T
cells and CD4+ CD25+ Foxp3+ Tregs in 4T1 mice was reduced (Figure 2D). In contrast, these
cell numbers in 4T1 tumor-bearing mice did not change in the mLN compared with that in
sham treatment mice. These results suggest that T cell populations and their cell numbers
in mLNs were independent of the decrease in systemic immune cells due to tumor growth.
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Figure 2. Splenic and mLN T cell subsets in subcutaneously transplanted 4T1 tumor mice. At day 21
after subcutaneous transplantation into the right flank transplantation, the splenocytes and mLN
cells from control (Sham) or tumor (4T1)-bearing mice were isolated. (A) Representative pseudocolor
dot plot of CD4+, CD8+, CD4+CD25+, and CD4+CD25+Foxp3+ in the spleen and mLN. Numbers in
plots indicate the percentage. (B) Total cell number of CD4+ and CD8+ T cells in the tissues. (C) Cell
number of CD4+ and CD8+ T cells per 105 cells. (D) Total cell number of CD4+CD25+ cells and
CD4+CD25+FoxP3+ Treg cells in the tissue. Data are presented as mean ± SEM and were assessed by
Mann–Whitney U test. Data are shown from a representative experiment from three independent
experiments. ** p < 0.01; *** p < 0.005; **** p < 0.001.
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3.3. MDSCs Increased in Spleen but Not in mLN after Tumor Inoculation

To investigate the mechanism by which T cell cytokine responses were altered in the
mLN by 4T1 tumor development while T cell numbers were not, we evaluated myeloid cell
subsets that influence T cell phenotype and activation at 21 days after inoculation. MDSCs
consist of a heterogenous cell population that have the capacity to suppress immunity [28,29].
Thus, we checked the number of MDSCs in the spleen and mLNs of 4T1-inoculated mice.
MDSCs were identified as two populations which were marked as Gr-1dim CD11b+ and
Gr-1hi CD11b+ [5,6,30]. The splenic population of MDSCs dramatically increased after
4T1 inoculation (Figure 3). In contrast, the cell number of MDSCs in the mLNs was 50-
fold lower than that in the spleen, and this number increased in 4T1-inoculated mice as
compared to that in the control (Figure 3). These results suggest that the main cause of
splenic T cell reduction was enrichment of MDSCs, but such a reduction of T cells was not
predominant in the mLNs after 4T1 inoculation mice owing to the low amount of MDSCs.
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Figure 3. Splenic and mLN MDSC subsets in 4T1 tumor mice. At day 21 of transplantation, the
spleen and mLNs from control (Sham) or tumor (4T1)-bearing mice were isolated. (A) Representative
pseudocolor dot plots and (B) cell numbers of Gr-1hiCD11b+ and Gr-1dimCD11b+ MDSC subsets.
Numbers in plots indicate the percentage. Data are presented as mean ± SEM and were assessed by a
Mann–Whitney U test. Data are from one experiment representative of four independent experiments.
*** p < 0.005; **** p < 0.001.

3.4. Both LN-Resident and Migratory DC Subsets Increase in mLNs of 4T1
Tumor-Inoculated Mice

DCs in the mLN prime and polarize naive CD4+ T cells into appropriate effector
T helper (Th) subsets, each of which secrete characteristic cytokines [31,32]. There are
two main DC populations in the mLN. One is migratory DCs, which are located on the
lamina propria in a steady state and can prime effector T cells in mLNs. The other is
LN-resident DCs, which are replenished from blood, but their contribution in the priming
of naive T cells is still unclear [31,32]. Since the cytokine expression profiles from T cells
in the mLNs of 4T1-inoculated mice were altered (Figure 1), we next evaluated these
DC populations in the mLNs. LN-resident DCs and migratory DCs are identified by
their surface expression of either CD11c+ MHC-class II (MHCII)intermediate (int) or CD11c+

(MHCII)high (Figure 4A) [33,34]. The cell number of both LN-resident and migratory DC
subsets significantly increased in the mLNs of 4T1 tumor-inoculated mice compared to
that in the sham control (Figure 4B). We also observed an upregulation of CD80 on DCs in
4T1 tumor-inoculated mice, indicating that DCs in mLNs were activated (Supplementary
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Figure S2). These results indicate that migratory DCs may contribute to the polarization of
IFN-γ-expressing T cells during 4T1 tumor development.
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3.5. CD103+CD11b+ Migratory DCs Increase in mLNs of 4T1 Tumor-Inoculated Mice

CD11c+MHCIIhigh migratory DCs can be divided based on the expression of surface
integrins CD103 and CD11b. Thus, four subsets of these cells, namely CD103+CD11b−,
CD103+CD11b+, CD103−CD11b+, and CD103−CD11b− (Figure 5), could be defined. These
differ in terms of their ability to prime and polarize different Th cells. Thus, we character-
ized populations of CD11c+MHCIIhigh migratory DCs in the mLNs by evaluating CD103
and CD11b expression [31,34–36]. The number of CD103+CD11b+ DCs was high in 4T1-
inoculated mice (Figure 5B). Although the number of CD103+CD11b− and CD103−CD11b−

cells increased significantly in 4T1-inoculated mice compared to sham controls, the increase
was lower than that of CD103+CD11b+ cells (Figure 5B). Intestinal CD103+ DCs regulate
CD4+ T cell fate, including the differentiation into Th1, Th2, and Th17 cells and the devel-
opment of Foxp3+ Tregs [31,37]. These results suggest that intestinal immune homeostasis
is disturbed in 4T1-inoculated mice.
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Figure 5. MLN CD103+CD11b+ DCs were increased in 4T1 tumor mice. At day 21 of transplantation
into the right flank transplantation, mLNs from control (Sham) or tumor (4T1)-bearing mice were
isolated. (A) Representative flow cytometry plots and (B) the total number of CD103+CD11b−,
CD103+CD11b+, CD103−CD11b−, and CD103−CD11b+ in CD11c+ MHCIIhigh migratory DC subsets.
Numbers in plots indicate the percentage. Data are shown from a representative experiment from four
independent experiments. The mean ± SEM and assessed with a Mann–Whitney U test. * p < 0.05;
** p < 0.01; *** p < 0.005.

3.6. Gastrointestinal (GI) Permeability Barrier Defect Increase in 4T1 Tumor-Inoculated Mice

Finally, we assessed whether the change in the intestinal environment due to 4T1
tumor progression induced bacterial translocation from the intestinal lumen to the cir-
culation. (1→3)-β-D-glucan (BG) is a component specifically present in the cell wall of
fungi and bacteria which activates antigen-presenting cells including DCs, and alters
intestinal immune cells from steady state to anti- or pro-inflammatory state [26,38]. Sponta-
neous elevation in serum BG levels represents the disruption of the gut epithelial barrier.
Therefore, we evaluated the intestinal epithelial cell condition and serum BG level in 4T1
tumor-inoculated mice. To artificially disrupt the gut epithelial barrier, mice were treated
with DSS via drinking water for 7 days. DSS treatment did not affect primary 4T1 tumor
growth during the experimental period (Supplementary Figure S3). The colon length of
sham and 4T1-inoculated mice was equivalent in the untreated control. DSS treatment
did generate shorter colon lengths compared to untreated groups as expected, but the
sham and 4T1-inoculated mice in the DSS treated groups were not significantly different
(Figure 6A,B). Interestingly, H&E histology of the colons revealed that 4T1-inoculated mice
exhibited abnormal intestinal epithelial organization, but this was much less dramatic
in DSS-treated groups (Figure 6C). Therefore, during 4T1 tumor development, the gut
epithelial barrier of the mice was mildly disrupted. As expected from these results, the
serum levels of BG in 4T1 tumor inoculated mice were significantly higher than those in the
control (Figure 6D). Even in the mouse DSS model, 4T1 tumor inoculated mice maintained
higher levels of serum BG than those in the sham group (Figure 6D). These results suggest
that a leaky intestinal barrier was generated by 4T1 tumor development, allowing the
leakage of bacteria-derived BG into circulation.
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Figure 6. Gastrointestinal permeability barrier defects in 4T1 tumor mice as determined by serum
(1→3)-β-D-glucan. 4T1 cells were transplanted subcutaneously into the right flank of a 6-week-old
female mouse. (A) The picture of colon of the mice at day 21 and (B) the bar graph show the colon
length. (C) H&E histology of the colon tissue sections. (D) The serum (1→3)-β-D-glucan levels were
detected by ELISA. Data are from one experiment representative of three independent experiments.
All data are presented as mean± SEM and assessed with a Mann–Whitney U test. * p < 0.05; ** p < 0.01;
*** p < 0.005; ns = not significant.

4. Discussion

In this study, we investigated immune cell dynamics in the spleen and mLN in a
subcutaneously transplanted metastatic 4T1 tumor mouse model to elucidate the systemic
immune response during breast cancer development.
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The cytokine production profile of T cells in the spleen and mLN was evaluated. At
day 14, IFN-γ, IL-4, and IL-10 production of splenic T cells was remarkably suppressed,
which was consistent with the findings of our previous study in nonmetastatic CT26
inoculated mice [5,6]. In contrast to splenic T cells, T cells in the mLN at day 14 showed
significant upregulation of IFN-γ. This early phase elevation was sustained in the late phase,
indicating that a pro-inflammatory environment in intestinal tissue was generated. The
cytokine expression dramatically changed with increased IL-4 and IL-10 expression in both
the spleen and mLN at day 21, when metastasis was observed in the spleen (Supplementary
Figure S4). Of note, IFN-γ expression by T cells in 4T1-inoculated mice was suppressed
in the spleen as compared with the sham control, but was equivalent to that in the mLN.
Although the effects of IL-4 and IL-10 in breast cancer development are inconclusive toward
anti- and pro-tumor effects, late-stage breast cancer patients exhibited high levels of these
cytokines in their sera [39–41]. Therefore, the high level of IL-4 and IL-10 expressing T cells
in the spleen, as well as mLN at day 21, indicates systemic immune suppression at the late
stage of breast cancer.

The number of T cells was significantly reduced in the spleen but not in the mLNs.
MDSCs express arginase 1 and inducible nitric oxide synthetase, leading to the suppression
of T cell proliferation and function [42]. In fact, the MDSCs in the spleen of 4T1-inoculated
mice accumulated more than those of control mice. Although MDSCs in the mLNs of 4T1-
inoculated mice were higher than that in control mice as well, the T cell number remained
unchanged in the mLNs, as the increase in the number of MDSCs was negligible. This
could be a reason why the T cell number was not significantly reduced in the mLNs of
4T1-inoculated mice.

Considering that DCs control T cell polarization, we assessed the number of DCs and
their subsets in mLNs. We found significant enrichment of both resident and migratory
DCs in mLNs. DCs migrate infiltrating tumor antigens into the lymph node, and both
resident as well as migratory DCs can stimulate cancer-reactive T cells [43]. Thus, cancer-
reactive T cells might expand in the mLNs. The phenotype of migratory DCs was mainly
CD103+CD11b+. These DCs in the mLN prime naive T cells into effector CD8+ T cells, Th
cells, and Treg cells [31]. Although how CD103+ CD11b+ DCs balance Th and Treg cell
differentiation is not yet clear, the number of Treg cells did not increase after 4T1 inoculation
even at day 21.

To address how DCs generated IFN-γ-expressing T cells, we evaluated the intesti-
nal environment. The H&E histology showed mildly disrupted gut epithelial cells in
4T1-inoculated mice. Although exactly how the organization of gut epithelial cells was
disrupted during 4T1 tumor development is unknown, the leaky intestinal barrier in-
creased the serum BG level in the mice. β-glucan activates DCs by interacting with its
receptors, CR3 (CD11b/CD18) and dectin-1, promoting IFN-γ+ Th17 and CD8+ T cell
priming and differentiation [44–46]. In addition, oral administration of β-glucan has been
shown to enhance antitumor immunity in a mouse tumor model [47]. Consistent with
other studies, the DCs of mLNs in 4T1-inoculated mice upregulated the expression of a
costimulatory molecule, CD80, suggesting that DCs in the mLNs were activated to pro-
mote IFN-γ-expressing T cell priming. Therefore, the CD103+CD11b+ DCs in the mLNs
of 4T1-inoculated mice stimulated by BG might induce IFN-γ-expressing CD4+ or CD8+

effector T cells, leading to equivalent IFN-γ expression compared to control mice even in
the late stage of breast cancer development.

The depletion of commensal bacteria impacts antitumor immunity. For example,
treatment with antibiotics increases the risk of incidence and fatality of breast cancer due to
suppressed immune function. It also negatively influences immune checkpoint blockade
treatment in cancer patients [48,49]. The depletion of commensal bacteria could have caused
a decrease in BG level in such subjects, leading to suppressed immunity. Treatment with
antibiotics could contribute to tumor incidence and progression. Therefore, the intestinal
immune system with commensal bacteria is important for the optimal functioning of
antitumor T cells. Since we found that T cells in the mLN in the early stage of 4T1 tumor



Int. J. Mol. Sci. 2022, 23, 11035 11 of 13

development showed pro-inflammatory cytokine profiles, those T cells could protect against
breast cancer incidence and development. Furthermore, the T cell cytokine profile in mLNs
showed a dramatic conversion from a pro-inflammatory state to an anti-inflammatory state
during 4T1 tumor development. Hence, immunotherapy to invigorate cancer-reactive T
cells in mLNs in the early stage of breast cancer might result in better chances of success in
the treatment.

5. Conclusions

In summary, our study demonstrated the dramatic conversion of T cell polarization
in the mLN during metastatic breast cancer development. Although systemic immune
suppression was observed in the late stage of 4T1 tumor development, the intestinal
immune system exhibited several pro-inflammatory characteristics, including accumulation
of CD103+CD11b+ DCs in mLNs, a leaky intestinal barrier, and increased blood BG levels.
These results suggest that the intestinal immune system has a considerable effect on the
functioning of antitumor immunity during metastatic breast cancer development, which
can be further explored to potentially improve cancer treatment by using checkpoint
blockade immunotherapy.
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