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Abstract.—Bayesian analysis of macroevolutionary mixtures (BAMM) is a statistical framework that uses reversible jump
Markov chain Monte Carlo to infer complex macroevolutionary dynamics of diversification and phenotypic evolution
on phylogenetic trees. A recent article by Moore et al. (MEA) reported a number of theoretical and practical concerns
with BAMM. Major claims from MEA are that (i) BAMM’s likelihood function is incorrect, because it does not account
for unobserved rate shifts; (ii) the posterior distribution on the number of rate shifts is overly sensitive to the prior; and
(iii) diversification rate estimates from BAMM are unreliable. Here, we show that these and other conclusions from MEA
are generally incorrect or unjustified. We first demonstrate that MEA’s numerical assessment of the BAMM likelihood is
compromised by their use of an invalid likelihood function. We then show that “unobserved rate shifts” appear to be
irrelevant for biologically plausible parameterizations of the diversification process. We find that the purportedly extreme
prior sensitivity reported by MEA cannot be replicated with standard usage of BAMM v2.5, or with any other version when
conventional Bayesian model selection is performed. Finally, we demonstrate that BAMM performs very well at estimating
diversification rate variation across the ∼20% of simulated trees in MEA’s data set for which it is theoretically possible to infer
rate shifts with confidence. Due to ascertainment bias, the remaining 80% of their purportedly variable-rate phylogenies
are statistically indistinguishable from those produced by a constant-rate birth–death process and were thus poorly suited
for the summary statistics used in their performance assessment. We demonstrate that inferences about diversification rates
have been accurate and consistent across all major previous releases of the BAMM software. We recognize an acute need to
address the theoretical foundations of rate-shift models for phylogenetic trees, and we expect BAMM and other modeling
frameworks to improve in response to mathematical and computational innovations. However, we remain optimistic that
that the imperfect tools currently available to comparative biologists have provided and will continue to provide important
insights into the diversification of life on Earth. [BAMM; diversification; macroevolution; phylogeny; speciation.]

Rates of lineage diversification—speciation and
extinction—vary widely across the Tree of Life, and
this variation underlies many large-scale patterns of
biological diversity. Variation in evolutionary rates
contributes to striking disparities in species richness
among groups of organisms, to the waxing and waning
of clades in deep time, and to latitudinal and other
spatial diversity gradients. Consequently, there has
been widespread interest in methods for inferring the
dynamics of speciation and extinction from molecular
phylogenies of extant taxa. Dated phylogenies of extant
species contain an imperfect record of the history of
speciation through time, even if the phylogeny itself has
been estimated without error (Nee et al. 1994; Mooers
and Heard 1997; Barraclough and Vogler 2002). The
record is imperfect because a speciation event cannot
be observed in a reconstructed phylogenetic tree unless
one or more descendants of both progeny lineages have
survived to the present. Many statistical tools have been
developed to extract information about speciation and
extinction rates from molecular phylogenies (Ricklefs
2007; Stadler 2013; Morlon 2014), including the extent
to which those rates have varied through time (Pybus
and Harvey 2000; Morlon et al. 2010; Silvestro et al. 2011;
Stadler 2011) and among lineages (Alfaro et al. 2009;
Morlon et al. 2011; Etienne and Haegeman 2012; Lewitus
and Morlon 2016).

Bayesian Analysis of Macroevolutionary Mixtures
(BAMM) is a computer program for inferring the

dynamics of speciation, extinction, and phenotypic
evolution on phylogenetic trees (Rabosky 2013, 2014a;
Rabosky 2014). The diversification models implemented
in BAMM are based on a simple birth–death process,
a feature shared with most other methods for studying
diversification rates on phylogenies (O’Meara 2012).
BAMM uses reversible jump Markov chain Monte
Carlo (rjMCMC) to infer complex mixtures of distinct
evolutionary rate dynamics across the branches of
phylogenies. In the BAMM framework, a “rate shift”
is a transition to a new set of evolutionary parameters
along a branch in a reconstructed phylogenetic tree,
and a “shift configuration” is a particular mapping
of evolutionary rate parameters across the phylogeny
as a whole (Rabosky 2014b). A set of rate shifts
and associated parameter values mapped to a set of
branches on a phylogeny, thus defines a particular
shift configuration. Using rjMCMC, BAMM simulates a
posterior distribution of shift configurations conditioned
on an observed phylogenetic data set. The resulting
distribution reflects uncertainty in evolutionary rates
across the phylogeny and can be parsed to extract a
range of summary attributes, including tip-, branch-,
and clade-specific rates of speciation and extinction.
The method also provides statistical evidence for the
number and location of rate shifts across phylogenies.

BAMM belongs to a more general set of diversification
methods that relax the assumption of rate homogeneity
across the branches of a phylogenetic tree. Some
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TABLE 1. Key claims by Moore et al. (2016) concerning the BAMM method for macroevolutionary dynamics

MEA claim How tested by MEA Assessment in present study

1. BAMM likelihood function
contains “serious error” as it
ignores rate shifts on extinct
lineages

Likelihoods computed by BAMM
compared to those from MEA’s
independent BAMM likelihood
calculator that includes Monte Carlo
simulation of extinction probabilities

Test whether MEA likelihood satisfies axioms of
probability. Test whether MEA correctly
implemented BAMM likelihood function

2. Likelihoods for rate-shift
models are invalid if they fail to
account for rate shifts on
extinct/unobserved lineages

Biological relevance asserted, but not
tested

Test whether unobserved rate shifts bias extinction
probabilities for biologically relevant
parameterizations of the diversification process.
Test whether MEA Monte Carlo extinction
estimates differ from constant-rate birth-death
(CRBD) process process approximation

3. CPP prior model for
diversification rate shifts in
BAMM is problematic

Theoretical demonstration that prior
distribution of rate shifts across tree is
nonuniform under BAMM’s CPP prior
model

Assess BAMM’s performance on empirical and
simulated data sets

4. Posterior on number of shifts
extremely sensitive to prior

Analyzed empirical and simulated data
sets with BAMM v2.5 after activating an
experimental (non-default) program
setting; results not compared to default
program performance. Compared
model posterior probabilities but did
not use Bayes factors to account for
model prior

Reanalyze MEA data sets with BAMM v2.5 default
settings; compare to MEA results. Use Bayes
factors for model selection, as recommended by
BAMM developers

5. Diversification-rate estimates
using BAMM are unreliable

Simulated phylogenies with rate shifts;
analyzed each with BAMM. Assessed
accuracy of branch-specific
diversification estimates

Assess ascertainment bias in MEA simulation
study. Test whether MEA “rate variable”
phylogenies have sufficient statistical power to
infer rate heterogeneity. Determine whether
MEA results reflect biased inference with
BAMM or low power to infer rate variation

methods, including those that allow rates of speciation
(�) and/or extinction (�) to vary through time (Nee
et al. 1994; Rabosky and Lovette 2008; Morlon et al.
2010; Stadler 2011; Etienne et al. 2012) assume that
all contemporaneous lineages have precisely the same
rates of speciation and extinction. All lineages in these
homogeneous models are said to be of the same “type”
and have the property that any two lineages i and
j have the same evolutionary rates at a given point
in time from the root node, for example, �i(t)=�j(t),
and �i(t)=�j(t). This homogeneous class of models
can be contrasted with multi-type branching process
models that allow mixtures of different types of
lineages across the branches of a phylogeny, such that
lineages potentially differ in their rates of speciation
and extinction. The calculations in BAMM are based
on the multi-type branching process, as are many other
methods (Maddison et al. 2007; Alfaro et al. 2009; Morlon
et al. 2011; Beaulieu and O’Meara 2016). As discussed
below, BAMM utilizes a subclass of multi-type branching
processes that we will refer to as “rate-shift” models.
These models enable the calculation of the likelihood of
a specific configuration of diversification rate regimes on
a phylogenetic tree.

A recent article by Moore et al. (2016) assessed the
theoretical foundations of the inference model in BAMM
and its Bayesian implementation. Moore et al. (hereafter,
MEA) state that the likelihood function in BAMM is
incorrect and that the prior model for rate shifts is
theoretically unsound. MEA explored the performance

of BAMM in practice and reported statistical pathologies
that render inferences with BAMM unreliable. The
authors conclude, through analysis of simulated and
empirical data sets, that (i) posterior estimates of the
number of rate shifts are extremely sensitive to the
assumed prior; and (ii) diversification rate parameters
are uncorrelated with the true values in the simulation
model. On the basis of these concerns, the authors
concluded that BAMM is flawed and should not be used.

Here, we assess the validity of major claims from MEA
and conclude that their results are either incorrect or
inconclusive. A summary of these claims, how they were
tested by MEA, and how we assess their validity in the
current study, is provided in Table 1; claim numbers
are cross-referenced in major section headings. Our
treatment in this article generally follows Table 1: we first
address theoretical issues associated with BAMM and
MEA likelihoods, then consider BAMM’s performance
in practice (including earlier versions of the software).
We welcome critical analysis of BAMM and believe that
progress in our field requires continued attention to
the assumptions that underlie this and other inference
tools. However, we believe that MEA have provided
an inaccurate assessment of BAMM and its limitations.
It is important to evaluate these issues fairly because
several concerns raised by MEA pertain to all rate-shift
models. We conclude that BAMM is an imperfect tool
that has a clear path for theoretical improvement, but
which nonetheless performs and has performed well in
practice. Furthermore, we believe that the critical future



2017 RABOSKY ET AL.—RATE-SHIFT MODELS IN MACROEVOLUTION 479

directions for rate-shift models involve issues that are
either neglected or incorrectly emphasized by MEA.

Scope of the present article.—Here we focus primarily
on the validity of MEA’s claims regarding BAMM
v2.5, which was used to obtain all results in their
article. This version is the most recent major release
of BAMM and has been available longer than any
other single release of the program as of January
2017. Nonetheless, we have included a comprehensive
performance assessment of all major previous releases
of BAMM to determine the reliability of the program as
used in earlier research. We also describe the theoretical
and implementational differences between these major
releases of the software in the Supplementary Material
that accompanies this article (available on Dryad at
http://dx.doi.org/10.5061/dryad.36g21). We note that
our conclusions are restricted to diversification models,
as MEA did not critique the phenotypic evolutionary
models implemented in BAMM.

Reanalysis of MEA input files.—The Dryad submission
to accompany MEA’s article does not include their
complete BAMM output, but does include all input
files required to replicate their analyses. We repeated
all BAMM analyses exactly as performed by MEA
using their input (control) files using BAMM v2.5. As
described below, MEA included a nonstandard option
(“combineExtinctionAtNodes = random”), not visible to
end users, that altered a default value in their analyses;
we therefore performed a second set of analyses where
we restored this undocumented feature to its default
value in order to obtain BAMM results that are consistent
with those that would be obtained by a typical user of the
program. Throughout our article, we reference MEA’s
results but acknowledge that these were obtained by
repeating their analyses using their analysis files exactly
as they were provided on Dryad. Given the stochastic
nature of MCMC, we expect to observe minor numerical
discrepancies between our results and theirs.

CLAIM 1. ARE THE BAMM AND MEA LIKELIHOODS

COMPARABLE?

The fundamental operation in the analysis of rate-shift
models involves the calculation of the likelihood of a
phylogenetic tree under a given set of evolutionary rate
parameters and mapping of transition points (rate shifts)
between parameter sets on the tree. MEA claim that the
BAMM likelihood is incorrect because it fails to account
for rate shifts that may have occurred on unobserved
lineages. To assess the consequences of unobserved
rate shifts for BAMM, MEA provided an independent
implementation of the BAMM likelihood function where
the extinction probabilities are estimated under a
computationally intensive Monte Carlo approximation
that simulates the effects of unobserved rate shifts.
They compared extinction probabilities and likelihoods

computed by BAMM to those of their independent
implementation with Monte Carlo extinction estimates
(MEA Figs. 2 and 3). All analyses from MEA assume
that their likelihood function is correct, an assumption
that was only tested for the constant-rate (no shift)
birth–death process. MEA’s results further assume
that the only difference between BAMM and their
implementation involves the effects of unobserved rate
shifts on extinction probabilities. MEA found that
their likelihoods differed from those computed by
BAMM, which they attributed exclusively to the effects
of unobserved rate shifts. However, if MEA did not
correctly implement the BAMM likelihood function
and/or if their own likelihood function is invalid, then
they have not demonstrated an effect of unobserved rate
shifts on the likelihoods computed by BAMM, because
any discrepancies between their implementation and
BAMM could reflect other differences in the algorithms
used to compute the likelihood. In this section, we focus
solely on whether MEA have demonstrated an effect
of unobserved rate shifts on the BAMM likelihood; the
next major section (Claim 2) addresses the biological
relevance of these unknown quantities.

Likelihoods of Rate-Shift Models
As MEA explain, computing the likelihood of a

phylogeny where rate shifts have been placed on the tree
can be considered a form of data augmentation; we retain
this terminology for comparison with their article but
note that many other researchers would simply consider
the shifts to be part of the model (e.g., they are not data).
The “augmentation,” in this case, is the specific mapping
of rate regimes across a phylogeny (and their associated
parameters) that is used during the calculation of the
likelihood. We can contrast the likelihood of a phylogeny
under a diversification process with a data-augmented
history (as in BAMM) with the corresponding likelihood
under the complete process, without data augmentation.
A likelihood calculation with BiSSE (binary-state
speciation and extinction: Maddison et al. 2007; FitzJohn
et al. 2009), for example, does not involve any data
augmentation: although the model assumes that there
are two classes of diversification rates across the tree,
the likelihood is computed without placing the rate shifts
(e.g., character state changes) on the branches of the tree.
A likelihood calculation with BiSSE involves integrating
over all possible histories of diversification rate changes
that could yield the observed tree and its associated
character state data.

Data augmentation is essential for likelihood
calculations under rate-shift models for two reasons.
First, the number of possible diversification processes is
infinite, rendering the BiSSE-type calculations infeasible;
this point is discussed clearly by MEA. Perhaps
more importantly, we are not generally interested
in the likelihood of a phylogeny after integrating
over all possible rate shifts that could produce the
observed data. Most researchers are interested in the
likelihoods of alternative data-augmented histories

http://dx.doi.org/10.5061/dryad.36g21
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TABLE 2. Diversification models and software implementations that allow speciation and extinction rates to vary among lineages (“rate
shift” models)

Model/reference Extinction probability E(t) includes
unobserved rate shifts?

E(t) accounts for data augmentation?

MEDUSA (Alfaro et al. 2009) No No
Split-BiSSE and all split-class SSE models

(FitzJohn et al. 2009, 2012)
No No

Split-clade models (Morlon et al. 2011) No Conditions on survival of all subclades that have
undergone rate shifts

DDD with subclade shifts (Etienne and
Haegeman 2012)

No Conditions on survival of the crown clade, given
that one of the descendant lineages undergoes a
rate shift

BAMM (Rabosky 2014) No Implicitly conditions on existence of subtrees
leading to rate shifts

Moore et al. (2016)
Simulates expected effects of unobserved

rate shifts on E(t) under prior
assumptions

No

(e.g., configurations of rate shifts). A question such as:
how does the likelihood of a given phylogeny with no
rate shifts compare to the corresponding likelihood
of the same tree with one rate shift is a question
about the relative probability of two data-augmented
histories. Hence, the data-augmented histories and their
associated likelihoods are the objects of interest for most
empirical researchers.

Rate-shift models with data augmentation have been
widely used to model diversification heterogeneity
across phylogenies (Alfaro et al. 2009; Morlon et al. 2011;
Etienne and Haegeman 2012; Rabosky 2014). Moreover,
state-dependent models with “split” parameter sets
(FitzJohn 2010, 2012) also fall into this category, as
they assume discrete shifts in parameter sets at specific
locations on the tree with no formal stochastic process for
transitioning between parameter sets on each partition.
In split-BiSSE, for example (FitzJohn 2010, 2012), we
assume that there are two or more rate partitions across
a phylogeny, each of which has a set of parameters
associated with it. Within partitions, we may be
integrating over possible diversification histories, but
the assumption of distinct parameter partitions and
associated shift locations is data augmentation, at least
under MEA’s terminology. In fact, if we constrain a
split-BiSSE model to the special case where there is
no state-dependence of diversification rates, we have
specified a mapping of diversification parameters and
rate-shift locations across a phylogeny, precisely as in
MEDUSA and BAMM.

The likelihood of a particular rate-shift configuration
is based on a set of differential equations that describe
transition probabilities for a stochastic birth–death
process. These equations are solved backward in time
along individual branches of the tree, from the tips to the
root. The differential equations for the likelihood involve
two probabilities. The first, Di(t), is the probability that a
lineage in the i-th rate regime at some point in time (i.e., a
location on an observed branch of a phylogeny) gives rise
to all observed lineages descended from that particular

point on the tree. The second equation, Ei(t), describes
the probability that a lineage in the i-th rate regime has
gone extinct before the present. Letting �i and �i denote
the corresponding speciation and extinction rates for the
regime, we have

dDi
dt

=−(
�i +�i +�

)
Di

(
t
)+2�iDi

(
t
)
Ei

(
t
)

(1)

and
dEi
dt

=�i −
(
�i +�i +�

)
Ei

(
t
)+�iEi

(
t
)2 +��

(
t,�

)
(2)

The parameter � corresponds to the rate at which a
lineage shifts to a new rate regime, similar to the �
term in Rabosky (2014). The ��(t, �) term describes
the probability that a lineage at time t undergoes a
rate shift to new rate regime, drawn from the set
of all possible shift parameters, and is subsequently
unobserved; MEA describe this term as pertaining to
extinct rate shifts, but it applies more generally to rate
shifts that occur on branches that are unobserved for
any reason. For consistency with MEA, we will generally
interpret this term as the chance of extinction due to rate
shifts on unobserved branches of a phylogeny; MEA’s
incorporation of this term into the formal mechanics of
rate-shift models is an advance that has largely been
overlooked by prior work on this topic. Note that BiSSE
and related models allow rate shifts (e.g., state changes)
on unobserved lineages, but accommodating these is
straightforward, as the model specifies a finite number
of lineage types: there are only two possible types of
lineages in BiSSE, corresponding to the two character
states. The state-space in BAMM and related models is
infinite, such that there is no solution to ��(t, �).

With the exception of MEA, all published rate-shift
models at the time of this writing have implicitly
assumed �=0 (Table 2). The likelihood functions
in all such models, including BAMM, condition the
likelihood on the nonoccurrence of rate shifts on extinct
side branches of the observed phylogeny (see MEA
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FIGURE 1. Probabilities of hypothetical lineage histories under MEA and BAMM-type algorithms for computing likelihoods. Top row, a–c:
probability of a single lineage history, where a lineage begins at time t with parameters (�0, �0) and shifts to new parameters (�1, �1) at time ts.
The probability of the lineage history is shown as a function of the speciation rate � (b) and extinction rate (c), with all other parameters fixed
to the values indicated in the figure. In (b) and (c), MEA1 and MEA2 refer to independent implementations of the MEA probability; MEA1
uses the likelihood calculator distributed with MEA, and MEA2 is an independent implementation of the same equations using a different
numerical integration method. Bottom row, d–f: probability of a four-taxon tree with two independent rate shifts to identical parameter values.
MEA probability (dashed line) is the likelihood obtained with MEA’s Monte Carlo likelihood calculator after conditioning the likelihood on
the observed speciation events. In all cases, high extinction probabilities at the beginning of the process lead to invalid and potentially infinite
probabilities under MEA’s incorrect conditioning scheme for E(t).

Fig. 1). We disagree with MEA’s terminology that this
conditioning constitutes a theoretical error—all models
involve simplifying assumptions—but we agree that it
is important to assess whether or not a simplifying
assumption has a negative impact on inference.

Likelihood of Rate Shifts under MEA
MEA provide an innovative solution to approximating

the value of ��(t, �) through computationally intensive
Monte Carlo simulation of the extinction probability at
each point in time given prior assumptions about the
underlying distributions of � and �. The � parameter
is heavily influenced by the data augmentation (e.g.,
the number of shifts placed on the observed portion
of the tree), but the �(t, �) term is influenced both by
the inferred shift rate and prior assumptions about the
underlying distributions of � and �.

At the root of the tree, the likelihood of the data is
conditioned on the probability of observing a phylogeny,

as is commonly done for phylogenies of extant taxa (Nee
et al. 1994). Thus, the likelihood of the tree � is divided
by the probability that the process at the root of the tree
(�R) leaves two surviving crown lineages. The likelihood
of the data-augmented history is

L
(
�|�R,�1,�2....�n;PS =1

)= L
(
�|�R,�1,�2....�n

)
(
1−ER

(
t0

))2 (3)

where Ps denotes the probability of crown-clade
survival, t0 is the time of the root node in the tree, and
�1,�2, ... . �n denotes the set of n non-root rate regimes
that have been placed on the tree. The ER(t0) term is the
probability of extinction for a single lineage originating
at the root with parameters �R.

The likelihood described above suffers from a deep
theoretical problem that has largely gone unrecognized
by the field, even when we ignore the potential effects of
unobserved rate shifts (�= 0). Specifically, the extinction
probability at the root of the tree, ER(t0), must account
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for the fact that we are computing the likelihood of a tree
with data-augmented histories that can make the process
more or less likely to survive than would be expected
based on the parameters at the root of the tree. In other
words, the extinction probability of a lineage must be
conditioned on the data augmentation, or the set of rate
shifts that are assumed to have occurred.

Under MEA’s likelihood, all calculations for E(t),
including those used for conditioning at the root of
the tree, are performed only with the current values of
speciation and extinction (e.g., �i(t), �i(t)). The extinction
probability of the entire process is a simple function
of the age of the tree and the rates at the root (�R)
and ignores all information regarding rate shifts that
have been placed on the tree. It is straightforward to
demonstrate that this conditioning scheme, which is
used by several modeling frameworks (Table 2), can
lead to nonsensical probabilities and incorrect inference.
To be clear, this problem is not consistently resolved
in the literature: three methods that implement some
form of E(t) conditioning (Morlon et al. 2011; Etienne
and Haegeman 2012; Rabosky 2014) entail different
assumptions (Table 2), suggesting an acute need for a
comprehensive theoretical treatment of this topic.

To demonstrate that the MEA likelihood is not valid,
we will first convert the likelihood expression into a
formal probability. We will then demonstrate that the
method of computation can yield probabilities that are
not bounded on the interval (0, 1). A formal proof
of this property is provided in the Appendix, but
here we consider two empirical scenarios with data
augmentation. In the first scenario, we have a single
observed lineage segment where some initial set of
parameters (�0, �0) shifts to a new set of parameters
(�1, �1) at some time ts (Fig. 1a). In the second scenario,
a phylogeny of four taxa undergoes independent rate
shifts on each of the lineages descended from the crown
node (Fig. 1d). This four-taxon tree scenario enables us
to compute the probability a phylogenetic tree using the
likelihood calculator distributed with MEA’s Dryad files,
which ensures that the properties we describe here are
not strictly a function of our implementation of the MEA
likelihood expression.

The unconditioned likelihood of the data-augmented
history shown in Figure 1a, with distinct sets of rate
parameters on intervals x1 and x2, is

P
(
x0|�0,�0,x1

)
P

(
x1|�1,�1

)
� (4)

where P(x|�,�) denotes the probability of the corres-
ponding segment as computed using Equations 1
and 2. This expression is a probability density (see
Maddison et al. 2007 for discussion of this point), due
to the presence of the � term. By conditioning on the
observation of a shift at ts and on the nonextinction
of the process, we convert the expression into a formal
probability, or

P
(
x0|�0,�0,x1

)
P

(
x1|�1,�1

)
/
[
1−E0

(
t0

)]
(5)

where E0(t0) is the probability that a single lineage with
parameters (�0, �0) at the start of the process goes
extinct before the present. We can perform a similar
conditioning for the four-taxon tree, except that we also
condition on the existence of two non-root speciation
events, the root node, and the survival of the crown clade.

The behavior of the MEA probability as a function
of the speciation and extinction rates on the root
segment (x0) is shown in Figure 1b,c. When the chance
of extinction of the root process (�0, �0) is high,
the probability of the data can increase arbitrarily
to infinity (Appendix). A similar effect is noted for
the probability of the four-taxon tree using the MEA
likelihood calculator (Fig. 1e,f). The root conditioning
in MEA’s code for likelihood calculations is described
in our Supplementary Material (sections S2.1–S2.2,
available on Dryad); we also demonstrate that the MEA
likelihood can tend to infinity for the cetacean data set
(Supplementary Fig. S1, available on Dryad).

The failure of the MEA likelihood to remain
bounded between 0 and 1 is a simple consequence
of incomplete data augmentation. The data-augmented
process contains a rate shift (or two rate shifts,
in the four-taxon tree). This rate shift, under these
parameterizations, renders the extinction of the overall
process unlikely (in this example, the shift parameters
involve a rate regime with a very small chance of
extinction). Hence, if the process survives to time ts,
a rate shift will occur that dramatically changes the
overall probability of extinction of the process. The
MEA equation does not account for this: because the
extinction probability is a strict function of the age of
the process and the parameters at the root, the chance
of extinction can asymptotically approach unity, even
if the data-augmented history implies that the true
chance of extinction is low. Specifically, the denominator
in Equation (5) can approach zero, even when the
numerator is unity (Appendix). Hence, the equation
is unbalanced, and the unconditioned probability in
Equation (4) (which can take any value between 0 and 1)
is divided by probability of survival that, in the limit, can
approach zero. In contrast, the corresponding BAMM
probability is conditioned on the data augmentation and
is bounded on the correct interval.

BAMM and Other Likelihoods with E(t) Augmentation
The BAMM likelihood differs from the MEA

likelihood, and simply because of the assumption that
�=0 (Table 2). Specifically, BAMM attempts to obtain a
consistent definition of E(t) at the root of the phylogeny
that can be used to condition survival of the process
by recursively passing down previously computed E(t)
values from the tips to the root (Fig. 2). Hence, E(t)
at any point in time is the extinction probability of
a lineage at time t given the complete downstream
(tipward) shift history. At internal nodes that differ
in shift histories of their descendants (e.g., node nAB
in Fig. 2, but not node nCD), the probabilities are
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FIGURE 2. Likelihood calculations under BAMM v2.5, illustrated on a hypothetical phylogeny with a single rate shift (on branch A). Due to
rate shift, branch segment EA1 has rate parameters that are distinct from the rest of the tree. Likelihoods are computed from the tips to the root
by passing previously computed extinction probabilities E(t) down the tree. Thus, the E(t) component of the likelihood calculation on branch
segment EA2 is initialized with the value previously computed on EA1. When a node is reached, the extinction probabilities E(t) are multiplied
together if the nodes differ in their downstream shift histories (node nAB). Hence, the initial value for the EAB segment is the product of extinction
probabilities on EA2 and EB. This multiplication does not occur at node nCD, because the lineages have identical shift histories. This algorithm
for computing the likelihood entails two assumptions (b, c). The likelihood of the tree as a whole is effectively conditioned on the existence of a
subtree leading to the mapped rate shifts (bold branches in (b)). Second, any extinct lineages that branched off before the rate shift but after the
most recent surviving node (nAB), are also assumed to have undergone a rate shift (e.g., extinct lineage X in (c)). These unusual assumptions were
incorporated into BAMM v2.5 pending the development of a theoretically coherent method for computing E(t) with data-augmented histories
(Table 2) and avoid the infinite likelihood trap of several other approaches (Appendix; Fig. 1).

multiplied together and used as initial E(t) inputs for
the next (rootward) branch segment. The advantage to
this algorithm is that the extinction probability ER(t) at
the root of the tree is conditioned on the observed shift
history: the two E(t) values that one obtains at the root
(one each for right and left descendant branches) after
computing the likelihood can immediately be used to
condition D(t) at the root on the probability that the
process survives (Equation (3)). However, this approach
entails several unusual assumptions and is best viewed
as an approximation to the true likelihood, which is
currently unknown. First, these calculations lead to
strong topological conditioning of E(t): the likelihood
is essentially conditioned on the existence of a subtree
leading to the set of shifts that have been placed on
the tree (Fig. 2b). Second, the model assumes that any
extinct lineages that branched off of a focal branch prior
to the rate shift (e.g., lineage X in Fig. 2c) have also
undergone a rate shift at the same time. A comprehensive
theoretical treatment of the assumptions that underlie
these calculations is provided in the Supplementary
Material (sections S2.4–S2.5).

We acknowledge that these calculations are
approximate and were motivated by our observation
that MEA-type calculations (as in split-BiSSE), with
incomplete data augmentation, could incorrectly lead
to infinite likelihoods; we demonstrate this point in
the Appendix. Several other approaches use data
augmentation to compute E(t), which avoids the
more significant pathologies associated with the
unconditioned likelihood expression. Morlon et al.
(2011) compute the likelihood of a phylogeny with
subclade shifts, conditioning on the survival of each
subclade that has undergone a rate shift. Etienne and
Haegeman (2012) compute the likelihood of a branching
process where a single lineage shifts to a new diversity-
dependent regime at some time ts. Their solution is
to treat the E(t) calculations at the root of the tree as

distinct from the E(t) terms used to solve the differential
equations (Equations (1–2)) along individual branches.
Once the (unconditioned) likelihood of the data has been
computed, the probability that both crown lineages have
survived is computed, given that one of the subclade
lineages will undergo a rate shift at time ts if the process
as a whole survives to time ts. It is this extinction
probability that is used to condition the probability of
the tree. However, the Etienne and Haegeman (2012)
approach cannot easily be applied to scenarios where
two or more rate shifts have been placed on the tree, and
the proper approach to conditioning likelihoods under
rate-shift models is currently an unresolved theoretical
problem.

In contrast to the BAMM likelihood, the MEA
implementation computes E(t) as a strict function of
the parameters of the process at time t. In Figure 2, for
example, the MEA extinction probability on segment
EA2 would be independent of the extinction probability
used to compute the likelihood of segment EA1. Hence,
MEA did not correctly implement the BAMM likelihood
function for the comparisons that underlie their
Figures 2 and 3: their function differs from the BAMM
likelihood in numerous respects, including the incorrect
data augmentation scheme referenced above (Appendix;
Supplementary Material section S2.4, available on
Dryad). The MEA and BAMM likelihoods should thus
be expected to differ numerically for many reasons,
but MEA attributed these differences exclusively to the
effects of unobserved rate shifts.

Summary: Likelihoods of Rate-Shift Models
We agree with MEA that many outstanding theoretical

issues remain to be resolved with rate-shift models;
we also agree that MEA have correctly identified an
issue with most rate-shift models in that they ignore
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FIGURE 3. The chance of lineage extinction as a function of relative time from the root node for four empirical data sets analyzed by
MEA (columns) and under three different relative extinction rates (rows). When rate shifts are rare relative to speciation events, the effect of
unobserved rate shifts on the extinction probability is negligible. Red (solid) lines shows cumulative chance of extinction estimated using MEA’s
Monte Carlo simulator and parameterized with empirical estimates of the rate shift frequency (transition rate) �. Black (dashed) line shows the
corresponding extinction probability under a simple constant-rate birth-death process. Blue line (dotted) shows the change in the extinction
probability under the minimum nonzero rate-shift frequency illustrated by MEA (Supplementary Fig. S5, available on Dryad). MEA are correct
that unobserved rate shifts can influence the extinction probability, but the parameter space over which the effect becomes important involves
rate shift frequencies that are approximately 100–1000× greater than for the empirical data sets considered in their paper.

rate shifts on unobserved lineages (Table 2). If concerns
about unobserved rate shifts are of practical significance,
then the likelihood calculations implemented in many
software programs will be similarly affected, including
MEDUSA (Alfaro et al. 2009), diversitree (FitzJohn
2012), DDD (Etienne et al. 2012), and RPANDA (Morlon
et al. 2016). However, the MEA likelihood function
itself contains an important error—an error that is
shared with several other software implementations of
rate-shift models. Specifically, the MEA likelihood is
compromised by incorrect data augmentation (Table 2)
that leads to invalid probabilities and potentially
infinite likelihoods. The MEA likelihood expression is
fundamentally different from the BAMM expression;
differences include the nature of conditioning at the
root and the handling of extinction probabilities at shift
points and internal nodes (Fig. 2). Thus, differences in
the likelihood and E(t) terms for these implementations
(e.g., Figs. 2 and 3 from MEA) do not demonstrate
pathologies with BAMM that can be conclusively

attributed to the effects of unobserved rate shifts on
extinct lineages, as claimed by MEA.

CLAIM 2. RATE SHIFTS ON UNOBSERVED LINEAGES: ARE THEY

IMPORTANT?
The MEA likelihood is an important theoretical

contribution for its clear discussion of rate shifts on
unobserved lineages and their potential consequences
for inference. However, as noted above, the likelihoods
computed by BAMM and using MEA’s independent
implementation are not comparable and provide no
information about the effects of unobserved rate shifts
on the likelihood. It is unclear whether the
computationally intensive procedure suggested by
MEA significantly enhances our ability to accurately
model phylogenetic data, especially as the MEA
likelihood calculations are many orders of magnitude
slower than BAMM’s calculations. In this section, we
ask a simple question: does the Monte Carlo extinction
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simulator used by MEA yield extinction probabilities
that are appreciably different from those computed
under a constant-rate birth–death (CRBD) process that
ignores rate shifts on extinct lineages?

As justification for the importance of considering
unobserved rate shifts, MEA provide a Supplementary
Figure S5 from MEA (available on Dryad) that
illustrates substantial effects of unobserved rate shifts
on the extinction probability. However, the MEA
parameterizations involve rate-shift frequencies that are
much higher than the values obtained for their empirical
analyses. MEA illustrate the effects of unobserved
rate shifts for processes where rate shifts occur at
rates from one-half to eight times the rate at which
speciation events occur (e.g., minimum �=0.5�). For
example, under MEA’s illustrative parameterizations,
a phylogeny of 100 extant tips would potentially have
been generated under a process that included 50 or
more rate shifts on the observed (extant) portion of
the tree; their most extreme parameterizations would
have such trees generated under processes that include
many hundreds of rate shifts. We suspect that, when
contemplating the effects of rate shifts or key innovations
on phylogenetic diversification patterns, most empirical
researchers are not conceptualizing a process where rate
shifts outnumber the branches on which to place them.

The parameterizations considered by MEA far exceed
values of � estimated in MEA’s empirical analyses
(Supplementary Figs. S9–S11, available on Dryad). For
example, across all empirical data sets they consider,
the estimated ratio of � to � is approximately 0.01
(and sometimes much lower), indicating that speciation
events are 100 times more likely—on average—than
rate-shift events. This result is intuitively appealing: rate
shifts are rare, and BAMM in general does not infer
many of them, at least under the most commonly used
prior expectation of 1.0 shift per tree. If the rate shift
frequency � approaches or exceeds the speciation rate
�, we would, in general have low power to infer shifts,
because inferential power is a function of the number of
taxa in the shift regime. With �>�, the mean number
of taxa per shift regime becomes too small to infer shift
regimes with confidence.

We assessed the extent to which the MEA rate-shift
parameterizations matched the rate-shift frequencies
from their empirical analyses, and we considered
whether rate shifts on unobserved/extinct branches
significantly affected the overall extinction probability
of the clade. For each empirical data set in MEA, we
estimated rates of speciation and extinction under a
CRBD process under three relative extinction rates:
�/�=0.1, 0.5, and 0.9. We then estimated the transition
rate � from the rate-shift frequency (“event rate”)
sampled using rjMCMC with BAMM. As pointed out
by MEA, estimates of � from the observed portion
of a phylogeny may be biased relative to the true
value of �; however, we found that, under MEA’s
parameterizations, estimates of � across the observed
portion of the tree are highly correlated with the
value that would be estimated if we knew the

complete tree with extinct lineages and unobserved
shifts (Supplementary Fig. S8, available on Dryad).

We used MEA’s Monte Carlo extinction simulator
to generate estimates of the extinction probabilities
through time for each of the empirical data sets they
considered. The Monte Carlo simulator estimates the
extinction probability of an independent lineage where
rate shifts to new parameters are permitted to occur
with rate �. When a rate shift occurs, the simulator
samples new parameters from prior distributions (e.g.,
these results are dependent on the prior assumptions
about speciation and extinction rate distributions). We
parameterized the priors on speciation and extinction
rate distributions to have a mean equal to the inferred
speciation rate for the tree, as in MEA’s likelihood
calculations. We parameterized estimates of � by
selecting the 95th percentile of the distribution of
estimates for each empirical tree; this is conservative,
as using any lower quantile of this distribution (e.g.,
the median) would decrease the frequency of rate shifts
relative to speciation. By deliberately overestimating
the empirical shift rate �, we are maximizing the
effects of any unobserved rate shifts on parameter
estimates.

We then used MEA’s simulator to generate the
corresponding extinction-through-time curve using �=
0.5�, the minimum nonzero ratio of transition-to-
speciation events considered in MEA Supplementary
Figure S5 (available on Dryad). Finally, we computed
the corresponding extinction-through-time probabilities
for each clade under the assumption of a simple CRBD
process. This latter probability is analytical (Kendall
1948; Bailey 1964; Raup 1985) and depends only on the
age of the process and the diversification rates, as it
assumes no rate shifts (�=0).

Across all relative extinction rates, we find only
a marginal contribution of unobserved/extinct rate
shifts to the total extinction probability of the clade
(Fig. 3; Supplementary Figs. S11–S12, available on
Dryad). The extinction trajectories using the empirically
parameterized Monte Carlo simulator are nearly
identical to the analytical expectation assuming �=0
(red vs. black lines). Under the smallest nonzero �
parameterization considered by MEA (�=0.5�), there is
a substantial effect with respect to the total extinction
probability (Fig. 3; blue dotted lines). Supplementary
Figures S11–S12 (available on Dryad) illustrate the
lack of effect that unobserved rate shifts have on the
extinction probability across all empirical data sets
from MEA’s study. The equivalence of analytical and
empirical extinction curves indicates that rate-shift
models parameterized with biologically relevant values
of � are unlikely to experience a significant contribution
of this term to the chance of extinction. However, as
MEA show, rate-shift frequencies that are 100–1000 times
greater than empirical estimates have the potential to
compromise likelihood calculations unless accounted for
through simulation.

We then looked in detail at the extinction probabilities
computed by MEA for the cetacean data set, which
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FIGURE 4. Rate shifts on unobserved lineages have a marginal effect on likelihood calculations when the transition rate � is low relative to
speciation. (a) Estimates of the extinction probability E(t) at the root of the cetacean phylogeny estimated using MEA’s Monte Carlo simulator
and compared to the corresponding analytical E(t) probabilities from simple CRBD process. Each point represents the extinction probability
for a set of root parameters sampled from the posterior simulated with BAMM, exactly as for MEA Figure 2. (b) Ratios of transition rates (�) to
speciation rates for the cetacean data set and compared to the five illustrative parameterizations considered by MEA (Supplementary Fig. S5,
available on Dryad); note logarithmic scale for rates. (c) The extinction probability at the root of the cetacean phylogeny for a constant-rate
diversification process under three relative extinction scenarios (ε), as a function of the transition-to-speciation rate ratio. When transition rates
are low relative to speciation, as for the cetaceans, the extinction probabilities are similar to the corresponding constant-rate estimates (open
circles), which assume �=0. The strongest effects are observed when rate shifts are approximately as frequent or more frequent than speciation
events; we expect that rate shifts in such scenarios are difficult to detect.

figures prominently in their assessment of BAMM’s
performance. This test is important, because MEA
Figure 2 purports to show proportional error in
extinction probabilities computed by BAMM relative
to those estimated with their Monte Carlo simulator
for this data set. The authors attribute the difference
in extinction probabilities to the effects of unobserved
rate shifts. We compared the extinction probabilities
computed at the root of the cetacean phylogeny exactly
as computed by MEA, to the corresponding analytical
probabilities under CRBD process with no rate shifts
(�=0). The resulting probabilities are very highly
correlated (Fig. 4a; r2 >0.99) and suggest minimal
contribution of unobserved shifts to the overall
extinction probability. This result further suggests that
the demonstrable numerical discrepancies between
likelihoods computed by BAMM and MEA (MEA
Figs. 2 and 3) primarily reflect the combined influence
of error in their likelihood equation (Appendix)
as well as algorithmic differences between the two
implementations (Supplementary Material section S2.4,
available on Dryad). We also plotted the empirical
transition rates for the cetaceans to illustrate the
discrepancy in scale between these empirical rates and
those used in MEA’s illustrative curves (Fig. 4b). Finally,
we estimated the root extinction probabilities for the
cetacean data set as a function of the transition-to-
speciation rate ratio (�/�), under three relative extinction
rates (Fig. 4c). These latter results indicate that the
overall extinction probability is largely invariant across
empirically relevant parameterizations, but changes
dramatically for the rate ratios considered by MEA.

Summary: Unobserved Rate Shifts
MEA claim that the likelihood function in BAMM

(and other models; Table 2) is invalid because it ignores
the effects of unobserved rate shifts. However, we find
a marginal contribution of extinct rate shifts to the
total extinction probability under biologically plausible
(empirically parameterized) values of the shift rate �.
Our results indicate that the primary difference between
extinction probabilities and likelihoods in BAMM versus
MEA has little to do with the contribution of unobserved
rate shifts (Fig. 4a), and much to do with fundamental
differences in the way the likelihoods are computed
(Fig. 2; Table 2). MEA likelihoods should differ from
those computed by BAMM even if MEA likelihoods
assume �= 0, due to MEA’s incorrect implementation
of the BAMM likelihood and theoretically invalid
root conditioning. Finally, if unobserved rate shifts
are sufficiently frequent as to impact inference with
formal rate shift models, then they would also affect
inference with all other diversification models that
ignore rate shifts on unobserved lineages. In the unlikely
possibility that true clade extinction probabilities are
strongly influenced by unobserved rate shifts to high-
extinction regimes, one cannot simply make the problem
go away by using theoretically coherent models (e.g.,
BiSSE; constant-rate birth-death process) that assume
an absence of such shifts. The effects of unobserved
shifts would still be present in the data, and the
use of simpler models that ignore their effects cannot
remove the footprint of unobserved shifts from the data
itself.
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FIGURE 5. The posterior distribution of the number of rate shifts is much more sensitive to the prior when the “random” option activated
by MEA is used for analysis, relative to BAMM v2.5 default values. (a) Means of the marginal posterior distributions on the number of shifts
across all data sets and priors considered by MEA as analyzed with BAMM defaults (x-axis) and as used by MEA (y-axis). The mean number of
shifts is biased upward with MEA’s analysis configuration. (b) The variance in mean number of shifts for 14 empirical data sets across 5 prior
parameterizations considered by MEA, estimated under BAMM v2.5 default settings (open circles) and as used by MEA (solid circles). Data sets
are abbreviated by first three letters in names used by MEA.

CLAIM 3. IS THE COMPOUND POISSON PROCESS PRIOR

MODEL IN BAMM INCOHERENT?
We largely agree with MEA that the prior model in

BAMM deserves further exploration. MEA demonstrate
that the compound Poisson process (CPP) model used in
BAMM induces nonuniform probabilities for rate shifts
on single branches, and that the model induces non-
Poisson behavior in the posterior distribution of rate
shifts (MEA Fig. 5). MEA claim that these theoretical
concerns lead to statistical pathologies in practice,
including prior sensitivity and unreliable diversification
estimates. However, as we demonstrate in the following
three sections, MEA did not provide valid evidence that
BAMM performs poorly. Nonuniform, poorly specified,
and/or arbitrary priors are used widely in ecology
and evolution, including phylogenetics and divergence
time estimation (Pickett and Randle 2005; Alfaro and
Holder 2006; Brown et al. 2009; Heled and Drummond
2012; Heath and Moore 2014). We contend that concerns
about the shapes of the underlying prior distributions in
BAMM, and other methods, are largely irrelevant unless
they result in demonstrable pathologies in the shape of
the posterior.

CLAIM 4. IS PRIOR SENSITIVITY PROBLEMATIC FOR

BAMM?
MEA claim that the posterior distribution on the

number of shifts obtained with BAMM shows extreme
prior sensitivity, reflecting fundamental pathologies
with the underlying CPP model. All Bayesian methods
are characterized by some prior sensitivity, as the
posterior is a function of both the likelihood and the
prior. Even if the posterior on the number of shifts
is prior-sensitive, we do not consider this result to
be inherently problematic: if the data are sufficiently
informative, the likelihood will shift the posterior away

from the prior. Furthermore, prior sensitivity is not
necessarily problematic if Bayes factors are used to
assess the evidence in favor of rate variation, or if
a conservative prior is used for analysis. Rabosky
(2014) clearly demonstrated that use of liberal priors
influenced the marginal posterior distribution of shifts,
with minimal effect on rate estimates, for early versions
of the BAMM software (see Figs. 3 and 10 from
Rabosky 2014). MEA presented only the raw posterior
distributions simulated with BAMM but did not use
Bayes factors to assess whether the resulting inferences
were dominated by the prior. MEA do not demonstrate
that spurious inferences result from the purported prior
sensitivity in BAMM; they merely re-document the prior
sensitivity previously described by Rabosky (2014) in
an early software release. Most published studies to
date have used a conservative prior (
=1) that, even
accepting MEA’s results at face value, would not have
resulted in the inference of spurious rate shifts.

However, results in MEA cannot be replicated
with standard usage of BAMM v2.5. As detailed
in Supplementary Material section S2.3 (available on
Dryad), MEA added an undocumented option to
their BAMM control files that induces unpredictable
behavior in the likelihood calculations (Supplementary
Figs. S2 and S3, available on Dryad); this setting is
not visible to end users and MEA do not justify why
this option was used in their article. Unfortunately, the
setting used by MEA (referred to here as “random”)
does not replicate behaviors from previous releases of
the program and has not been tested by us. Indeed,
the likelihood calculations in BAMM v2.3 (released
8 March 2015) and v2.4 (13 June 2015) are nearly
identical to the MEA likelihood (but with �=0) and used
a similarly incorrect data augmentation scheme (see
Supplementary Material sections S2.4–S2.5, available on
Dryad); it is BAMM v2.5 that introduced the subtree
conditioning shown in Figure 2. In BAMM v2.3 and v2.4,
E(t) is always computed using the current parameter
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FIGURE 6. Model selection with Bayes factors is generally robust to choice of model prior, regardless of how BAMM v2.5 is used. a) Type I
error rates for the MEA constant-rate phylogenies are low regardless of whether BAMM is used with v2.5 defaults (open circles) or MEA settings
(filled circles). Type I error rate is the proportion of simulated trees where Bayes factor comparisons led to rejection of the true (zero shift) model.
(b) Best model for 14 empirical data sets considered by MEA with 
=1 (expected number of shifts); (c) Best model for empirical data sets with

=10. Regardless of the posterior on the number of shifts, Bayes factors generally favor models with zero or one shift for this set of phylogenies.
A single data set was found to have large numbers of shifts (Ericaceae; 7/18 for BAMM v2.5/MEA settings), but this was also the largest data
set and includes 4500 species (450 sampled in the phylogeny).

values at time t, as in MEA. It is unclear why the
“random” setting was used in MEA, as this choice
deviates from the default setting for BAMM v2.5 and,
to our knowledge, no other publications have used
this setting. The only BAMM versions that would have
enabled MEA to draw conclusions about the effects
of unobserved rate shifts on the likelihood, given the
implementation they used in their own their likelihood
calculator, are BAMM v2.3 and v2.4; all other versions
involve fundamentally different data augmentation with
respect to E(t), as illustrated in Figure 2. Given this
unusual usage of BAMM v2.5, we assessed whether
the recommended (and commonly used) version of
the program demonstrates the same prior sensitivity
reported by MEA.

We repeated all BAMM analyses using input files
from MEA, both with the default and MEA (“random”)
settings. All BAMM runs were performed across prior
expectations of 
=0.1, 0.5, 1, 2, and 10 expected shifts
across the phylogeny, as in MEA. We then computed
several statistics to describe BAMM’s sensitivity to the
prior on the number of rate shifts (
). For the 14 empirical
data sets considered by MEA (Supplementary Figs S19–
S32 from their article), we simply plotted the mean of
the marginal posterior distribution on the number of
shifts for BAMM v2.5 with default settings versus BAMM
with the MEA “random” option. We then computed, for
each data set, the variance in the posterior shift means
across the five prior scenarios. If, for a given data set, the
posterior mean is relatively insensitive to the prior, we
expect the variance to be small.

BAMM with the MEA “random” option shows much
greater prior sensitivity than standard BAMM v2.5
(Fig. 5). The mean of the marginal posterior distribution
on the number of shifts is consistently higher with the

MEA setting. Likewise, the variance in posterior means
(across 
= 0.1, 0.5, 1, 2, and 10) is much lower with
standard usage of BAMM v2.5 (Fig. 5b).

Despite the differences observed between “random”
and standard BAMM v2.5 (Fig. 5), we do not
consider prior sensitivity inherently problematic, unless
it consistently leads to incorrect inference. We have
previously advocated the use of Bayes factors for model
selection with BAMM (Rabosky 2014b; Mitchell and
Rabosky 2016), which permits robust model selection
that is less sensitive to the prior. MEA found that, with
the “random” setting, the posterior is highly sensitive
to the prior for constant-rate trees that lack rate shifts,
suggesting that BAMM may be associated with a high
Type I error rate if nondefault priors are used (
>>1).
We performed stepwise model selection for constant-
rate and empirical phylogenies using Bayes factors.
Starting with the least complex model (e.g., fewest
shifts), we tested whether a model with one additional
shift fit the data significantly better. If so, we rejected
the lower complexity model in favor of the model with
the additional shift. The process is repeated until an
incremental increase in model complexity does not yield
a significant improvement in model fit. We considered
Bayes factor evidence of 20 in favor of one model over
another to be “significant”, as in Rabosky et al. (2014b)
and May et al. (2016).

When Bayes factors are used for model selection,
there is virtually no tendency toward model overfitting
regardless of whether standard BAMM or the MEA
“random” option is used for analysis (Fig. 6a). Type I
error rates for all prior parameterizations were less than
0.05, indicating that—after appropriately controlling for
the prior on the number of shifts—BAMM does not tend
to overfit the data. Similar results were observed for the
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empirical data sets. In general, the “random” setting
leads to support for greater model complexity relative
to standard BAMM (Fig. 6b), but the effect is weak to
moderate.

Summary: Prior Sensitivity in BAMM
With standard usage of BAMM v2.5, we cannot

replicate MEA’s finding of extreme prior sensitivity with
respect to the number of rate shifts. Moreover, when
BAMM is used with nonstandard settings (“random”)
from MEA, proper model selection with Bayes factors
does not lead to spurious inference of rate shifts.
Most importantly, even if the posterior on the number
of shifts is prior-sensitive, we see no reason why
this should preclude usage of the program, provided
that researchers choose a conservative prior on the
number of shifts. Most published results obtained with
BAMM have used a prior of 
=1; even under MEA’s
analytical protocol, results obtained with this prior are
conservative. This value has always been the default
setting in BAMM and specifies that a model with zero
shifts is twice as likely (under the prior) as the most
probable model that includes rate shifts.

CLAIM 5. DOES BAMM PROVIDE RELIABLE DIVERSIFICATION

RATE ESTIMATES?
MEA report that BAMM performs poorly at estimat-

ing diversification rates across phylogenies simulated
with rate shifts. They used a Poisson process model of
rate variation to simulate trees, which is very similar to
the true process modeled by BAMM. Extinction rates
estimated with BAMM and other methods are generally
poor (Davis et al. 2013, Rabosky 2015; but see Beaulieu
and O’Meara 2015), but MEA’s results for speciation are
surprising given the reasonable performance reported
by Rabosky (2014). In particular, Rabosky (2014) found
good performance of BAMM even when the inference
model did not match the generating model.

Do MEA’s Analyses Have Sufficient Power to Justify their
Conclusions?

MEA’s variable-rate trees are characterized by small
total size and small tip-to-shift ratios (Fig. 7), suggesting
that the trees may contain low information content
with respect to rate heterogeneity. MEA’s variable rate
trees are restricted to sizes of 50–150 tips, and the
median size of a shift regime is just a single tip. Fully
58% of MEA’s trees did not include a shift regime
with more than five tips (Fig. 7), and we believe most
researchers would not expect any software program to
reliably detect rate regimes that include five or fewer
tips.

The prevalence of these small shift regimes (Fig. 7b)
is due to a substantial ascertainment bias in MEA’s
simulation design that selected for trees with small
numbers of rate shifts and/or rate shifts of small
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FIGURE 7. a) Phylogeny illustrating three rate regimes: r1 (bold
lines), r2, and the root regime (rR). Regimes rR and r1 have three extant
tips, and r2 includes a single tip. b) Numbers of tips in the largest and
second-largest rate regimes for each tree in MEA’s variable-rate dataset.
In general, trees are dominated by a single rate regime (usually the
root regime); the second-largest regime included fewer than 20 tips
in 80% of trees (<5 tips in 58% of trees). BAMM and other methods
would be unlikely to detect rate variation in phylogenies where most
rate shifts lead to very small subclades, as in this data set. c) MEA’s
variable rate simulations are comprised by ascertainment bias, as they
discarded all simulations that did not meet highly restrictive size
criteria (gray polygon). A comparable data set of 100 phylogenies
simulated using their code and parameter values without imposing
this arbitrary criterion demonstrates that tree sizes are on average
much larger and contain far more shifts, with higher information
content, than the trees in their data set (true mean: 342 tips; MEA data
set mean: 89 tips). Panel illustrates the relationship between tree size
(extant tips) and the number of shifts in each tree; all trees identified
with filled circles would have been rejected under MEA’s acceptance
criteria. This sampling bias generates phylogenies that are dominated
by excessively small rate regimes (panel b) relative to the Poisson
generating process described in their paper.
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effect. Using MEA’s simulation code with identical input
parameters, we generated an equivalent data set of 100
phylogenies but retained all trees with 2000 or fewer
extant tips. It is clear that trees selected by MEA represent
a small fraction of the simulation outcomes produced
under their parameterization: the mean tree size in the
data set they analyzed contained merely 89 extant tips,
but the mean we obtained from simulations under their
parameters (without restrictions) was 342 (Fig. 7c). The
consequences of this ascertainment bias are clear when
we plot the number of tips as a function of the number
of shifts present in each simulated tree (Fig. 7c): MEA
selected for a set of trees that are unusual, relative to
the Poisson process expectation, in that (i) they contain
a small number of tips overall, (ii) they contain fewer
shifts, and (iii) rate shifts tend to be of small effect,
such that they lead to clades with small numbers of
extant tips (Fig. 7b). Rate shifts of large effect, no matter
how common under the MEA parameterization, tend to
generate trees that exceed the 150 taxon upper bound
that they imposed on their simulations and would
have generally been excluded from their analyses (e.g.,
Fig. 7c: filled circles). Section 5.1 in the Supplementary
Material (available on Dryad) that accompanies this
article describes these and other ascertainment biases
in detail.

If BAMM requires reasonable numbers of tips in
a rate regime in order to detect a shift (e.g., n>10),
the method would have been unable to infer rate
heterogeneity for most of their simulated trees. We
tested the information content associated with each
rate shift in the MEA data set to determine whether
it would have been possible, in principle, to infer rate
shifts from these data. For each rate regime in the
MEA variable-rates tree set, we computed the exact
likelihood of the rate regime under the true parameters
in MEA’s generating model. We compared this likelihood
to the corresponding likelihood of the same rate regime
under the parameter values we would estimate for the
whole tree under a constant-rate birth-death process.
Thus, for each of the 100 variable-rates phylogenies in
MEA, we estimated � and � under a CRBD process.
Let �S,i denote the subtree from tree � containing all
branch segments and nodes to which the i-th rate
regime has been mapped, as illustrated in Figure 7a. The
information content �LogLi associated with this rate
regime is

�LogLi = logL
(
�S,i|�TRUE

)−logL
(
�S,i|�CRBD

)

where L(�S,i|�TRUE ) is the likelihood of the
corresponding subtree under the true parameters
in the generating model and �CRBD denotes the
corresponding speciation and extinction rates obtained
for the entire tree under a two-parameter, CRBD process.
This statistic tells us how much information a given
shift regime has relative to the information we would
obtain from simply computing the likelihood of the shift
regime under the whole-tree estimates for speciation
and extinction (e.g., assuming no rate variation across

the tree). The likelihood is a summary of the information
in the data. Consequently, if a given rate regime has any
information with which it can be inferred, �LogL must
be greater than zero. If �LogL <0, the rate regime is
more probable under a simple whole-tree estimate of
diversification rates. Such negative values are possible
because we are not optimizing parameters for each shift
regime; for comparison, we perform such optimization
in the Supplementary Material and show that it yields
virtually identical results but with all �LogL >0.

It is not sufficient for �LogL to be greater than zero,
because the parameters and location of the shift (�TRUE )
are fixed exactly to their true values in the calculation
above (e.g., �LogL is a difference in likelihoods
between two nested models with different numbers of
parameters). Hence, �LogL must be somewhat greater
than zero in order to conclude that rate variation is
present, a fact that becomes obvious when we consider
this analysis in an Akaike information criterion (AIC)
framework. The expression for AIC in terms of the
difference in likelihoods (�LogL) and the number of
parameters k required to fit a shift can be rearranged
to give �LogL =S/2 +k, where S is the �AIC score
that we would require to accept the more complex
model (e.g., a model with an additional shift). If we
interpret �AIC evidence greater than or equal to zero
as supporting the more complex model, the minimum
possible �LogL score that will enable us to infer the rate
shift is 3.0 with k = 3; k = 3 corresponds to the number
of parameters associated with each shift in MEA’s
generating process (parameters: shift location, �, �). Any
stricter AIC threshold, including the generally accepted
value of 2.0 as well as all AICc-type modifications, can
only increase the requisite �LogL criterion above this
minimal estimate.

We computed �LogL for all 435 rate shifts present
in the 100 trees included in the MEA variable rates
data set. We computed likelihoods following MEA’s
approach of accounting for unobserved rate shifts, using
their Monte Carlo simulator with the exact parameters
that were used in the generating model (� prior mean =
0.15; � prior mean = 0.05; �=0.006). For comparison,
we also computed the likelihood of each rate shift
under the analytical birth–death process (�=0; no
Monte Carlo simulation of extinction probabilities). If
�LogL values with the fast analytical approximation
are approximately identical to those computed while
accounting for unobserved rate shifts, there is little
reason in practice to adopt the more computationally
intensive inference scheme.

We find that there is virtually no information content
associated with the vast majority of rate shifts in the
MEA variable rates data set. Of 435 rate shifts across
100 phylogenies, 411 have �LogL <3 (Fig. 8a). We
find it difficult to imagine that BAMM—or any other
method—would be able to infer rate shifts in any
scenario where �LogL <3. Indeed, given that BAMM
is sampling from prior distributions on all parameters,
we predict that �LogL would need to be considerably
higher in order to detect a rate shift. Only 14 shifts,
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FIGURE 8. Information content for all rate shifts in the MEA variable-rates data set. �LogL denotes the difference in likelihoods for each
rate shift under the true parameter values relative to the likelihood for the rate shift assuming that the entire tree has a single invariant rate of
speciation and extinction. In an AIC framework, a rate shift is unlikely to be detectable unless �LogL is somewhat greater than 3. a) Frequency
distribution of �LogL for all 435 rate shifts in the MEA data set, where all likelihoods were computed with MEA’s Monte Carlo simulator to
account for unobserved rate shifts. The vast majority (95%) of all rate shifts in the MEA data set contain virtually no information and probably
cannot be inferred by any method. b) �LogL values computed using MEA’s Monte Carlo simulator are virtually identical to �LogL values
computed analytically assuming �=0; integrating over prior distributions on unobserved rate shifts thus contributes little to our ability to model
the data. c) �LogL values for the best (most information-rich; most “inferrable”) shift in each of the 100 trees in the MEA data set. The vast
majority of trees have effectively no information with which to infer rate heterogeneity (gray zone). Given the contribution of the prior and
the stochasticity inherent in MCMC, it is likely that �LogL = 3 is a conservative estimate of information required to infer a shift in the BAMM
framework. For the Monte Carlo likelihood estimates, transition rates and speciation/extinction priors were set to the exact values used by MEA
in the generating model.

across the entire MEA set of 100 trees, have �LogL
>5. Importantly, we find that likelihoods computed
with MEA’s computationally intensive Monte Carlo
simulator are nearly identical to those computed under
the fast analytical approximation (Fig. 8b), consistent
with results presented in a previous section (Figs. 3
and 4). We performed a second analysis where we
optimized rate parameters for every shift regime, thus
substituting the maximum likelihood estimates of � for
�TRUE. Optimizing parameters in this fashion is a simple
check that enables us to ensure that there were no errors
in the recording of parameter values in MEA’s data
files and also accounts for ascertainment biases and
other factors that could shift the ML parameter estimates
for each rate regime away from their true values. This
procedure had minimal effect on the distribution of
�LogL, and only 17 shifts had �LogL >5 with this
approach (Supplementary Material Fig. S14).

These results demonstrate that MEA’s “variable rates”
phylogenies contain, with few exceptions, the same
amount of information as trees produced by a CRBD
process. If BAMM performs well, we should expect that
(i) the program should generally not recover evidence
for rate variation for most phylogenies in this data set;
(ii) that BAMM estimates of rates for low-power trees
should converge on the tree-wide average rate; and (iii)
that BAMM should be able to recover branch-specific
variation in diversification rates for the few trees where
the information content is sufficient for the method to
infer rate heterogeneity. The simple power calculations
performed here suggest that MEA’s simulated data sets
should not be used to study within-tree patterns of
diversification rate variation: across the majority of their
trees, there is minimal information that can be used to
infer rate heterogeneity.

Assessment of BAMM Rate Reliability
We repeated all BAMM analyses of MEA’s variable

rates trees but we constrained BAMM to be identical
to the generating model (e.g., within-regime rates
assumed to be constant through time). This constraint
also serves to minimize the impact of well-known
ascertainment biases that compromise temporal
analyses of diversification when trees are selected
nonrandomly with respect to total size (Phillimore
and Price 2008); note again that MEA’s tree set
contains substantial size-related ascertainment bias
(Fig. 7c; Supplementary Material section S5.1, available
on Dryad). We summarized BAMM estimates of
evolutionary rates by branch and by rate regime. In
the former analysis, as in MEA, we tested whether
branch-specific estimates of diversification rates were
correlated with the true values. We also tested whether
mean BAMM rates for rate regimes were correlated
with the true values across the full data set. We
present all analyses with respect to the theoretical
information content �LogL associated with each rate
shift. Corresponding results for BAMM with time-
varying rate regimes are very similar and are provided
in the Supplementary Figures S15–S18 (available on
Dryad).

Figure 9 (top row) illustrates the correlation between
true speciation rates and the corresponding branch-
specific estimates from BAMM, as a function of
maximum �LogL (information content) associated with
the tree. Each data point in Figure 9 is the correlation for
a single tree in MEA’s data set; the max �LogL for each
tree is the largest �LogL value observed across all shifts
in a given tree (e.g., max �LogL = 2 implies that all shifts
in the tree have �LogL � 2). It is critical to note that if
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FIGURE 9. Summary attributes of BAMM analysis of all trees in MEA “variable rates” data set analyzed under three priors (columns),
plotted by the information content in each tree. Information content for each tree is the maximum � LogL value across all shifts occurring in
the tree. Each tree is represented by a single point in each plot. Row 1 (from top): Pearson correlations between branch-specific BAMM estimates
of speciation rates and the true rates. Speciation rates were estimated as the mean of the marginal posterior distribution for the branch, as
in MEA. BAMM-estimated rates are highly correlated with the true rates for most trees with sufficient information to infer rate shifts (max
�LogL >3). Row 2: correlations between branch-specific BAMM estimates of speciation rates and true rates, using the “random” setting for
combineExtinctionAtNodes (as in MEA). Results are virtually identical to those obtained with BAMM defaults (top row). Row 3: correlations
between branch-specific extinction rate estimates and true values; extinction estimates are generally poor across this data set, potentially reflecting
the low information content of small rate regimes for this parameter. Row 4: Bayes factor evidence for rate heterogeneity as a function of the
maximum �LogL for each phylogeny. Bayes factors were computed as the evidence favoring a one-shift model (M1) relative to a zero-shift model
(M0); dotted line indicates “significant” Bayes factor evidence for rate heterogeneity (BF = 20). For trees with maximum �LogL <3 (77 of 100
trees), there is generally no evidence for rate heterogeneity, regardless of the prior. Inferences are highly concordant across 100-fold differences
in the mean of the prior on the expected number of rate shifts (columns).
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FIGURE 10. Low statistical power confounds MEA’s assessment of BAMM speciation rate reliability. a) Regression analysis of branch-specific
speciation rate estimates as a function of the true rates for the first tree in MEA’s variable-rates data set, which is characterized by low information
content (�LogL max = 0.55; only 1 or 2 tips per rate shift). Slope of fitted regression line is zero (dotted line). However, BAMM accurately estimates
the speciation rate shared by the vast majority of branches: across 160 of 166 branches in the root rate regime, we observe �TRUE =0.09 versus
mean �BAMM =0.10. Points have been jittered to reduce overplotting. For phylogenies that lack detectable rate variation, the slopes from such
regression analyses are expected to equal zero, even when the overall tree-wide rate is estimated with high accuracy b) Comparable analysis for
a tree with high information content (tree 26). Slope of fitted regression line is 0.88 and r2 =0.934. c) Relationship between within-tree correlation
in branch-specific speciation rates as a function of the Bayes factor evidence for rate heterogeneity in the tree. Bayes factors were computed as
the evidence favoring a one-shift model (M1) relative to a zero-shift model (M0); dotted line indicates “significant” Bayes factor evidence for rate
heterogeneity (BF = 20).

BAMM infers no rate shifts, branch-specific correlations
and regression slopes will be zero (Fig. 10a), regardless
of the accuracy of the BAMM estimates. Across all trees
and 
 priors, the mean Pearson correlation between
branch-specific BAMM speciation estimates and true
rates was 0.255. However, this value is largely driven by
lack of power associated with low �LogL trees. When
we drop the 77% of all MEA trees where the most-
inferable shift had �LogL <3 and consider only the
remaining 23 informative trees, we find that the mean
correlation rises to 0.75. If we restrict this even further to
the 14 trees with maximum �LogL >5, we find a mean
correlation of 0.92. These results are virtually identical
when the “random” option is used, as in MEA (2nd
row from top). With “random” the mean correlations
across all trees with �LogL >3 and �LogL >5 are
0.75 and 0.93, respectively. Interestingly, speciation rate
correlations are both consistent and robust across all
prior parameterizations on 
 (columns in Fig. 9). For
the 14 trees with a maximum �LogL >5, the branch-
by-branch correlation in speciation rates was effectively
independent of the prior: for the “random” option used
by MEA, the five prior scenarios (
=0.1, 0.5, 1.0, 2,
10) had mean correlations of 0.88, 0.93, 0.93, 0.93, and
0.93, respectively. Corresponding values with BAMM
v2.5 defaults were 0.93, 0.91, 0.93, 0.93, and 0.93. For
low-power trees with �LogL <3, within-tree speciation
correlations are close to zero (mean correlation across all
priors and analysis options = 0.111) as expected when
BAMM fails to infer rate variation (Fig. 10a). Extinction
rates are poorly estimated with trees of this size (Fig. 9,
row 3).

The Bayes factor evidence for rate heterogeneity in
each of MEA’s trees is a function of the information
content (Fig. 9, row 4). Regardless of the prior on the
number of shifts, only a single tree with max �LogL <8
was observed to show significant rate variation using
Bayes factors. For the nine trees with max �LogL >8,
seven had significant Bayes factor evidence for rate
variation and this result was consistent across all priors.
These results are identical regardless of whether BAMM
v2.5 defaults or the MEA “random” settings are used.

Figure 10 illustrates the consequences of MEA’s low-
power design for the regression analyses presented
in their paper. For most of MEA’s variable rates
phylogenies, there is almost no information with which
to infer rate shifts, leading to regression slopes that
are approximately zero even when the overall tree-wide
rates are estimated accurately (Fig. 10a). However, for
trees with sufficient information to infer shifts, BAMM
is able to infer branch-specific rates with considerable
accuracy (Fig. 10b,c). Indeed, for all phylogenies with
significant Bayes factor evidence for rate heterogeneity,
the correlation between true and BAMM-estimated
branch rates is very high (Fig. 10c).

For each tree in the MEA variable rates data set, we
computed the mean proportional accuracy in branch-
specific speciation estimates as well as the corresponding
regression slopes for branch rates (as in Fig. 10b). We
found mean rate accuracy—the ratio of inferred-to-
true speciation rates—was close to unity, especially for
the eight phylogenies where BAMM detected strong
evidence for rate heterogeneity (Fig. 11a). MEA conclude
that the average slope for branch-specific estimates of
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FIGURE 11. Branch-specific estimates of speciation rates obtained with BAMM are more accurate when trees contain evidence for rate variation
a) Proportional accuracy of branch-specific speciation rate estimates as a function of the Bayes factor evidence for rate heterogeneity in the tree;
each point is the tree-wide mean value. Filled circles denote trees with strong evidence (BF >20) for rate shifts. b) Within-tree regression slopes
for branch-specific speciation rates; mean slope for trees where significant heterogeneity was detected (filled circles) is 1.19. c) For trees lacking
a strong signal of rate heterogeneity, BAMM estimates of speciation rates are highly correlated with the overall tree-wide rate that would be
estimated under a CRBD process. Bayes factors in (a) and (b) were computed as the evidence favoring a one-shift model (M1) relative to a
zero-shift model (M0); dotted line indicates “significant” Bayes factor evidence for rate heterogeneity (BF = 20). Analyses shown here performed
with a prior of 
=1 and default BAMM v2.5 settings, but virtually identical results are obtained with other priors and with the “random” setting
activated by MEA (Supplementary Figs. S19–S23, available on Dryad).

rates (Fig. 10b) is zero and that estimated rates are
uncorrelated with their true values. This result is strictly
the result of assessing branch-specific rate accuracy
across their set of low-power trees, using regression
statistics that would perform poorly if BAMM failed to
identify rate shifts (Fig. 10). The mean branch-specific
slope was 0.05 for the 92 trees where BAMM did not find
strong evidence for rate variation (BF <20), but BAMM
performed well at estimating branch-specific rates across
the remaining 8 trees (Fig. 11b), where the mean branch
slope was 1.19. For the 92 trees where BAMM failed to
detect strong evidence for rate variation, the BAMM-
estimated mean rates across the entire tree are very
highly correlated with values estimated under a simple
CRBD process (Fig. 11c, open circles; regression slope =
0.89, r2 =0.987). A clear picture thus emerges across the
MEA “variable rates” data set: when BAMM has little
power to infer rate variation, speciation rate estimates
are similar to those that would be obtained from a CRBD
process (Fig. 11c, open circles). If BAMM has power to
detect rate variation, branch-specific variation in rates is
inferred with reasonable accuracy (Figs. 9–11).

A similar picture of speciation rate accuracy emerges
from considering mean estimates of rates for each shift
regime relative to their true values (Fig. 12). Across
all rate regimes, the overall correlation between true
and BAMM-estimated rates is positive but relatively
poor (Fig. 12a). However, when we include only root
regimes and shift regimes with �LogL >3, we find that
BAMM estimates are reasonably correlated with the true
values. Across all 4374 branches from the 23 phylogenies
with maximum �LogL >3, we find a strong correlation
between true and BAMM-estimated rates (Fig. 12c).
Finally, although branch-specific variation in extinction

rates is poorly estimated (Fig. 9), the whole-tree estimates
recovered by BAMM are at least as accurate as one would
obtain from a simple CRBD process (Supplementary
Figs. S23–S24, available on Dryad).

Summary: Diversification Rate Estimates with BAMM
The overwhelming majority of variable rates

phylogenies from MEA are approximately identical
to trees generated from a constant-rate birth-death
process. There is minimal information available with
which BAMM, or any other method, could infer rate
heterogeneity (Fig. 8), due to the small number of tips
in each rate regime (Fig. 7) and the proportionally small
changes in rates for rate shifts. MEA’s results are thus
a simple consequence of low statistical power: when
BAMM does not detect rate variation, the summary
statistics used in MEA’s assessment are expected to
imply poor performance, even when the tree-wide rate
is estimated with high accuracy (Fig. 10). Despite the
limitations of MEA’s simulation design, we find that
BAMM does quite well at inferring diversification rates
for those regimes that are—in principle—inferable
(Figs. 9–12). For sufficiently informative data sets, we
find virtually identical results across a broad range
of prior parameterizations (Fig. 9, columns) as well
as for different analysis modes (e.g., BAMM defaults
vs. “random”; time-varying vs. time-constant regimes:
Fig. 9; Supplementary Figs. S15 - S24 available on Dryad).

HOW RELIABLE ARE PREVIOUS VERSIONS OF BAMM?

Several aspects of the BAMM calculations differ
between BAMM v2.5 and earlier releases of the program
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FIGURE 12. a) Relationship between true speciation rates and BAMM-estimated rates across all 535 rate regimes in the MEA variable-rates
data set, estimated under three different prior parameterizations (colors; 
=0.1, 1, and 10). Dashed line is fitted regression line. Blue line denotes
theoretical 1:1 expectation. b) Same as (a), but where all rate regimes with low information content (�LogL <3) are excluded. Slope of fitted
regression line is 0.85. c) Plot of all branch-specific estimates of speciation against the true values for all trees where at least one shift had
non-trivial information content (�LogL >3) from analyses with 
=1 (23 trees; 4374 branches total). Slope of fitted regression line is 0.931; results
for other prior parameterizations are virtually identical to those shown in (c). Results obtained using MEA “random” setting; comparable results
for BAMM v2.5 default settings shown in Supplementary Figure S19 (available on Dryad).
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FIGURE 13. BAMM rate estimates are reliable and consistent across all major releases of the software. a) Pearson correlation between true
and estimated speciation rates across rate regimes. Results are plotted as a function of minimum regime size; colors denote BAMM version.
For example, x= 10 corresponds to the correlation computed for the set of regimes with 10 or more tips. The four major releases of BAMM
yield virtually identical results. b) Slopes of the linear relationship between true and BAMM-estimated speciation rates across all rate regimes
c) Correlations between true and estimated extinction rates across rate regimes. Analyses are based on 200 phylogenies simulated under MEA’s
general procedure, but minimizing ascertainment biases (Fig. 7c). The primary difference is that our simulations generated greater variation
in tree size relative to MEA: although median tree sizes are similar (median size = 129.5 tips vs. 84 tips in MEA), the means are very different
(446 tips here vs. 89 tips in MEA). Despite differences in the underlying algorithms used to compute the likelihood, we observe no appreciable
differences in performance across these four BAMM versions (see also Supplementary Figs. S25–S30, available on Dryad). Results shown here are
based on the most commonly used prior on the number of shifts (
=1). A complete description of these simulations and associated summaries
are found in Supplementary Material section S6, available on Dryad.

(Supplementary Material section S2.5, available on
Dryad). The initial release of BAMM (Rabosky 2014)
was accompanied by extensive performance assessment,
but there is yet no published analysis of the extent
to which inferences vary across previously released
versions of the software. We tested the reliability of
inferences about evolutionary rates and the number of
rate shifts across four BAMM versions (v1.0, v2.0, v2.3.1,

and v2.5) that capture the most significant changes to
the software. Given that MEA’s simulated rate-variable
phylogenies contain minimal information with which to
infer among-lineage rate variation, we simulated a new
set of phylogenies under a forward-time Poisson process
with rate shifts. We did not impose strong constraints on
tree size, to avoid ascertainment biases characteristic of
MEA’s variable-rates data set (Supplementary Material
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section S5.1, available on Dryad). We simulated 200
phylogenies under each of two shift frequencies (�=
0.01; �=0.001) and analyzed each data set with three
model priors and four BAMM versions, for 4800 total
BAMM analyses. A complete description of these
simulations and associated analyses is provided in the
Supplementary Material section S6 (available on Dryad).

For the most widely used prior parameterization (
=
1), we found virtually no differences in performance
across all four BAMM versions (Fig. 13; Supplementary
Figs. S25–S30, available on Dryad), despite significant
differences in the underlying likelihood calculations.
Across all simulation and analysis conditions, speciation
rates estimated with BAMM are highly correlated
with the true rates (Fig. 13; Supplementary Figs. S25–
S28 available on Dryad). Extinction rate estimates are
reasonably correlated with the true values under realistic
simulation conditions, but as expected, these estimates
are much less accurate than those for speciation
(Fig. 13c) and extinction estimates are less accurate
when rate shifts are common (Supplementary Figs. S25–
S28, available on Dryad). We find no evidence that
the inferred number of shifts differs appreciably across
BAMM versions, at least for the most commonly-used
prior parameterizations (Supplementary Figs. S29–S30,
available on Dryad). In all metrics we have considered,
BAMM v2.5 yields rate estimates that are more accurate
than previous versions of BAMM, including a version
(v2.3.1) where the likelihood was computed using the
same algorithm used by MEA (albeit with �=0). These
results demonstrate that, in general, results obtained
with earlier versions of BAMM are expected to be
similar across all major releases of the software, despite
numerous differences between these versions. Moreover,
this assessment conclusively rejects MEA’s claim that
BAMM estimates of diversification rate parameters are
unreliable. Such a conclusion is only possible when
a select set of performance metrics is applied to
phylogenies for which it is not theoretically possible to
infer rate variation.

CONCLUSIONS

Moore et al. (2016) concluded that BAMM cannot
correctly estimate diversification rates, and that the
posterior distribution of rate shifts shows extreme prior
sensitivity. They attribute these statistical pathologies to
an incorrect likelihood function and to a problematic
CPP prior model on the number of rate shift events.
Our reassessment of the theory and results that underlie
their article demonstrate that these conclusions are
not justified. First, MEA claim that BAMM’s likelihood
function is incorrect on theoretical grounds, as it
ignores the effects of unobserved rate shifts. We
have shown that their assessment was compromised
by their use of an invalid likelihood function that,
by allowing probabilities to exceed unity, violates
the key axiom of probability theory. In addition,
numerical discrepancies between BAMM and MEA

likelihoods (MEA Figs. 2 and 3) are a function of
multiple algorithmic differences that are not related to
unobserved rate shifts (Supplementary Material section
S2.4, available on Dryad). Second, we have demonstrated
that unobserved rate shifts are unlikely to have relevance
in biologically plausible regions of parameter space.
Third, we found no evidence that the prior model
in BAMM leads to inference problems, regardless of
BAMM version or usage mode. BAMM is generally
conservative, especially under the most widely used
prior parameterizations and/or when proper Bayesian
model selection is performed. Fourth, BAMM performs
well across all regions of parameter space we have
explored thus far. MEA’s conclusion that BAMM rate
estimates are unreliable is based on a set of low-power
analyses for which it would not have been possible for
BAMM, or any other method, to infer diversification
rate variation. Finally, our assessment of a much richer
set of simulated data sets reveals that BAMM infers
diversification rates—particularly speciation rates—
with high accuracy. We demonstrate that BAMM’s
performance has been remarkably consistent across all
major releases of the software.

We appreciate MEA’s clear theoretical discussion
of rate shifts on extinct/unobserved lineages, but
we question the relevance and practicality of
accommodating these fundamentally unknown
quantities into empirical inferences. The
computationally intensive approach used by MEA
is influenced by prior assumptions regarding the rate
distributions for unobserved rate shifts, a quantity that—
by definition—is not observed. The MEA approach is
thus integrating over unknown unknowns and at great
computational cost. Moreover, if the marginal effects
of unobserved rate shifts on extinction probabilities
(Figs. 3 and 4a) lead to biased inference, then surely the
arbitrary assumptions about the distributions of rates
from which unobserved shift regimes are drawn must
also matter.

Leaving these theoretical concerns aside, we find
no evidence that accommodating rate shifts on extinct
lineages actually contributes to our ability to model
phylogenetic data with rate-shift models (Figs. 3 and 4).
Under the exact parameters used in MEA’s variable-rate
simulations, we find that the Monte Carlo likelihoods
for rate-shift regimes are virtually identical to those
obtained from the orders-of-magnitude faster analytical
approximation that ignores unobserved shifts (Fig. 8b).
By focusing on largely irrelevant quantities that cannot
be accommodated by any modeling framework, we
are concerned that MEA’s forceful prohibitions serve
as a distraction from many important methodological
issues in macroevolutionary inference. These include the
development of methods for the analysis of combined
paleontological and molecular phylogenetic data sets
(Didier et al. 2012), for accommodating protracted or
ephemeral speciation processes (Etienne and Rosindell
2012; Rosenblum et al. 2012; Dynesius and Jansson
2014), and for teasing apart the relative importance of
diversity-dependent and diversity-independent factors
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that regulate clade dynamics (Etienne and Haegeman
2012; Rabosky 2013; Manceau et al. 2015; Silvestro et al.
2015).

Macroevolutionary modeling is a dynamic discipline
with a rapidly growing data landscape involving
phylogenies, fossils, phenotypes, and ecologies. We
believe that there is tremendous scope for improvements
to existing methods and also that the field offers great
opportunities for developing new methods with which
to address novel conceptual challenges. Innovating
at the frontiers of science has frequently involved
building upon valid insights from imperfect tools. We
remain optimistic that the imperfect and approximate
inference tools currently at our disposal have revealed
and will continue to reveal fundamental insights into
the processes that generate and maintain biological
diversity.
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APPENDIX

Formal Analysis of Incomplete Augmentation in MEA
Here, we demonstrate that the data augmentation

strategy used by MEA can yield probabilities that exceed
unity. Consider the single lineage history illustrated
in Fig. 1a, which has a probability that we denote by
P(x0, x1|nT >0). This lineage history begins at time t0
with rates (�0, �0), undergoes a rate shift at time ts, and
survives to the present with parameters (�1, �1). No
other lineages are observed, although the process may
have produced daughter lineages that failed to survive
to time T. Given that the initial probability of the data is
unity, let �1 =0 and �1 =0. Thus, the probability of the
segment (ts, T) = P(x1|�1 =0, �1 =0) = 1, as no events can
occur that can change the probability of the data. Letting
�=0, we will condition the probability expression in
Equation (5) on zero unobserved rate shifts to obtain

P(x0|�0,�0,x1)[1−E0(t0)]−1�−1 (A.1)

where � is the probability that there are no unobserved
(extinct) rate shifts in the process that gives rise to the
lineage history in Figure 2a.

To show that this expression is invalid, we will
demonstrate that, as the time interval �t= ts −t0
becomes very small, the probability P(x0|�0,�0,x1) can
become arbitrarily close to 1, given that the probability
P(x1|�1, �1) is necessarily 1. However, the probability
of extinction E(t) is independent of the duration of �t
and depends only on the parameters at the root of the
tree and the total age of the process (T). Hence, the
survival probability (1−E0(t0)) can approach 0, leading
to probabilities for the complete process that exceed 1.

The analytical probability of the data at the rootwards
end of the segment x0 is taken from the CRBD process
with arbitrary starting conditions and is given by the
following expression

P
(
x0

)= e
(
�0−�0

)(
ts−t0

)
P

(
x1

)(
�0 −�0

)2

[
�0 −�0E0

(
ts

)+e
(
�0−�0

)(
ts−t0

)(
�0E0

(
ts

)−�0
)]2

(A.2)
which is equivalent to Rabosky (2014) under the
substitutions �t = ts −t0 and D0 = P(x1), and which
is also identical to FitzJohn et al. (2009) under the
substitution f = 1−E0. Letting P(x1)=1 and taking the
limit as ts approaches t0, we have

lim
ts→t0

P
(
x0

)=
(
�0 −�0

)2

[
�0 −�0E0

(
t0

)+�0E0
(
t0

)−�0
]2 =1 (A.3)

Thus, as the time interval ts −t0 shrinks to zero, we
obtain P(x0)=1, which is intuitively obvious: the initial
probability P(x1) is 1, and the time interval becomes
sufficiently short that it is unlikely that any events will
occur to change this probability appreciably.

Note that we can make the term � arbitrarily close to
1 by simply assuming that either the generating process
has a very low �, or alternatively, that the prior mean
on the extinction probability is very low. If rate shifts
occur and the new extinction rate is near zero, the shifts
will generally survive to the present to be observed,
regardless of �. Hence, we have

P
(
x0,x1|nT >0

)≈[
1−E0

(
t0

)]−1 (A.4)

and E0(t0) depends only on the initial parameters (�0,
�0) and the total age of the process, T−t0. This is true
even when the process undergoes an immediate shift to
a new rate regime (e.g., ts is close to t0; �t close to 0).
Hence, E0(t) can approach unity and the corresponding
probability P(x0, x1|nT >0) is unbounded at 1 and can
become infinite.
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