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A B S T R A C T

Human respiratory syncytial virus (HRSV) is a leading cause of acute respiratory illness in young children
worldwide. Reliable detection and identification of HRSV subgroup A and B infections are essential for accurate
disease burden estimates in anticipation of licensure of novel HRSV vaccines and immunotherapies. To ensure
continued reliability, molecular assays must remain current with evolving virus strains. We have developed a
HRSV subgroup-specific real-time RT-PCR (rRT-PCR) assay for detection and subgroup identification using
primers and subgroup-specific probes targeting a conserved region of the nucleoprotein gene combined in a
single duplex reaction using all genome sequence data currently available in GenBank. The assay was validated
for analytical sensitivity, specificity, reproducibility, and clinical performance with a geographically diverse
collection of viral isolates and respiratory specimens in direct comparison with an established pan-HRSV rRT-
PCR reference test. The assay was sensitive, reproducibly detecting as few as 5–10 copies/reaction of target RNA.
The assay was specific, showing no amplification with a panel of 16 other common respiratory pathogens or
predicted by in silico primer/probe analysis. The duplex rRT-PCR assay based on the most current available
genome sequence data permits rapid, sensitive and specific detection and subgroup identification of HRSV.

1. Introduction

HRSV is a major cause of severe acute respiratory illness in infants
and young children worldwide (Nair et al., 2010). Two HRSV sub-
groups, A and B, and multiple genotypes within each subgroup have
been described (Mufson et al., 1985; Peret et al., 2000). In natural
human infections, protection between homologous subgroup viruses is
more pronounced than between heterologous subgroups (Mufson et al.,
1987), a finding confirmed in animal challenge studies (Johnson et al.,
1987). Some studies have suggested that infection with HRSV subgroup
A viruses yield more severe infections than subgroup B (Hall et al.,
1990; Laham et al., 2017; Walsh et al., 1997), although other studies
have reported no significant differences (Devincenzo, 2004; Fodha
et al., 2007). Molecular assays that discriminate between HRSV sub-
groups would facilitate studying the prevalence of subgroups, potential

differences in clinical presentations, and immune responses to subgroup
which may eventually help better inform the development of HRSV
vaccines and immunotherapies (Vandini et al., 2017).

Reliable methods for detection of HRSV may be useful for clinical
management and accurate disease burden estimates. Whereas antigen-
based HRSV assays have proven useful in the clinical setting for testing
infants and young children, molecular diagnostic methods are more
sensitive generally and particularly with older children and adults that
more often present with low viral loads and later into their illnesses
(Mahony, 2008). Given their inherent design advantages and wide
general use, real-time RT-PCR (rRT-PCR) assays for HRSV that both
detect and discriminate between the two HRSV subgroups are available
(Kuypers et al., 2004; Liu et al., 2016; Perkins et al., 2005; van Elden
et al., 2003). However, a weakness inherent to all molecular assays is
their susceptibility to pathogen strain variation that evolve overtime
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leading to primer/probe mismatches and potential false negative results
(Suss et al., 2009; Whiley and Sloots, 2005, 2006). To remain viable,
molecular assays must “evolve” with the pathogen. Instructive of this,
Kamau et al. (2017) recently described their failure to detect HRSV
among some immunofluorescence assay (IFA) positive specimens using
a widely used multiplex respiratory pathogen rRT-PCR assay (Gunson
et al., 2005) that acquired HRSV primer/probe sequences from an assay
reported in 2003 by van Elden et al. (2003). The investigation revealed
that the IFA-positive-rRT-PCR-negative samples collected during 2014/
15 and 2015/16 HRSV epidemic seasons in Kilifi, Kenya, contained a
new HRSV B strain with polymorphisms in the rRT-PCR probe region
that hindered annealing. The authors noted that failure to detect these
strains could have adversely affected studies that used this assay
(Anderson et al., 2013; Choudhary et al., 2013; Gimferrer et al., 2015).
To address this, we have developed and validated a novel duplex rRT-
PCR assay using the most current HRSV genome sequence data avail-
able in GenBank. This assay will allow sensitive and specific detection
and subgroup identification of HRSV, including possible dual infections.

2. Methods

2.1. Clinical specimens and virus isolates

Three-hundred and thirty-four HRSV positive respiratory samples
were available for assay development. Specimens were originally sub-
mitted to CDC to support public health surveillance or outbreak re-
sponse and had been previously tested for multiple respiratory patho-
gens. Specimens continuously stored at −70 °C included i) 41 mixed
respiratory specimens from children and adults with acute respiratory
infections in the U.S. from 2017 to 2018; ii) 190 nasopharingeal aspi-
rates from young children (< 24 months) hospitalized with severe
acute respiratory infections in Brazil from 2008 to 2010; iii) 58 com-
bined nasopharyngeal and oropharyngeal swab specimens in viral
transport media obtained from mostly children presenting at health
clinics with acute respiratory illness in Kenya (2006 to 2008) (Kim
et al., 2012); and iv) 21 and 24 respiratory swab specimens collected in
Guatemala (2015–2016) and Tiblisi, Georgia (2015–2017), respec-
tively. All specimens were previously tested for human RNase P to
monitor for extract integrity and absence of rRT-PCR inhibitors. Nine-
teen genetically diverse HRSV isolates were also available for testing.

2.2. Primer/probe design and synthesis

A total of 959 HRSV whole genome sequences available on GenBank
through February 2016 (730 HRSV A and 229 HRSV B) were down-
loaded and aligned using MAFFT implemented in Geneious 10.0.9
(https://www.geneious.com/). Primers/probe sets were selected using
Primer Express v2.0 software (Thermo Fisher Scientific, Waltham, MA

USA) and by visual inspection following real-time hydrolysis probe
assay design guidelines (Rodriguez et al., 2015). Potential interference
from sequence secondary structure was assessed in the target region
using the Mfold web server (Zuker, 2003). Primer/probes targeting
conserved regions in the HRSV nucleoprotein (N) gene were designed to
discriminate between HRSV subgroups A and B and be compatible in a
duplex reaction. Primer/probes were synthesized by the CDC Bio-
technology Core Facility and probes were HPLC-purified. To minimize
overlap in dye emission spectra, the HRSV A probe was labeled at the
5′-end with 6-carboxyfluorescein (FAM) and the HRSV B probe was
labeled at the 5′-end with CAL Fluor Red 610. Probes were internally
quenched with Black Hole Quencher 1 or 2 and 3′-phosphate end-la-
beled to prevent probe extension by Taq polymerase. Primer and probe
sequences are listed in Table 1.

2.3. RNA extraction and real-time RT-PCR assays

Total nucleic acid was extracted from 200 μl of each clinical spe-
cimen using NucliSens® easyMAG® or 100 μl of virus isolate using
miniMAG® extraction systems following manufacturer’s instructions
(bioMerieux, Inc., Durham, NC). Extracts were stored at −70 °C until
use. The duplex rRT-PCR assay for subgrouping HRSV was developed
following amplification conditions previously described for the CDC
reference rRT-PCR pan-HRSV assay that does not distinguish between
HRSV subgroups (Fry et al., 2010). Briefly, the assay was performed in
25 μl reactions containing 0.2 μM forward and reverse primers, 0.05 μM
HRSV A probe, 0.05 μM HRSV B probe, and 5 μl of extracted RNA on an
Applied Biosystems 7500 Fast Dx real-time PCR instrument (Thermo
Fisher Scientific) using the AgPath-ID™ One-Step RT-PCR Kit (Applied
Biosystems/Life Technologies). Thermocycling conditions consisted of
10min at 45 °C for reverse transcription, 10min at 95 °C for activation
of the Taq polymerase, and 45 cycles of 15 s at 95 °C and 1min at 55 °C.
Each run included one viral template control (see below) and one non-
template control. A specimen was considered positive for HRSV A or B
if a well-defined fluorescence curve crossed the auto threshold setting
within 45 cycles. Specificity of the duplex HRSV rRT-PCR was eval-
uated by testing other respiratory pathogens (RNA and DNA genomes)
also using the AgPath-ID™ One-Step RT-PCR kit which has been vali-
dated for simultaneous testing of RNA and DNA pathogens (Weinberg
et al., 2013).

2.4. Viral template control

A HRSV positive RNA control template was synthesized and cloned
into pUC57 by GenScript® USA Inc. (http://www.genscript.com/). The
control template contained primer/probe sequences for duplex HRSV A
and B, pan-HRSV and RNP rRT-PCR assays arranged 5′→ 3′ in one
continuous sequence capped with 5′-T7 and 3′-SP6 promoter sequences.

Table 1
Primer/probe sequences for HRSV real-time RT-PCR assays.

HRSV rRT-PCR Assay Gene target Genome location a Name Primer or Probe Sequence (5’-3’)

Duplex Nucleocapsid 1141-1162 HRSV-F Forward primer ATGGCTCTTAGCAAAGTCAAGT
1239-1262 HRSV-R Reverse primer TGCACATCATAATTRGGAGTRTCA
1171-1204 HRSV A-Pb Probe ACACTCAACAAAGA"T"CAACTTCTRTCATCCAGCA
1171-1204 HRSV B-Pc Probe ACATTAAATAAGGA"T"CAGCTGCTGTCATCCAGCA

Pan
(Fry et al., 2010)

Matrix 3255-3278 HRSV-pan-F Forward primer GGCAAATATGGAAACATACGTGAA
3311-3338 HRSV-pan-R Reverse primer TCTTTTTCTAGGACATTGTAYTGAACAG
3281-3307 HRSV-pan-Pd Probe CTGTGTATGTGGAGCCTTCGTGAAGCT

a Primer nucleotide numbering was based on human RSV A2 strain. Probe nucleotide numbering was based on human RSV A2 and B1 strains (GenBank accession
numbers KT992094 and AF013254, respectively).

b Probe labeled with 5′ reporter molecule 6-carboxyfluorescein (FAM) and quenched internally at a modified “T” residue with Black Hole Quencher (BHQ) 1. A
terminal 3′ phosphate is added to prevent probe extension by Taq polymerase.

c Probe labeled with 5′ CAL Fluor Red 610 and quenched internally at a modified “T” residue with BHQ2. A terminal 3′ phosphate is added as above.
d Probe labeled with 5′-FAM and 3′-BHQ1.

L. Wang, et al. Journal of Virological Methods 271 (2019) 113676

2

https://www.geneious.com/
http://www.genscript.com/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=KT992094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=AF013254


The insert sequence was confirmed and run-off RNA transcripts
were prepared using the MEGAscript T7 kit and purified using the
MEGAclear kit (Thermo Fisher Scientific). Transcript quantitation was
performed on a Qubit 4 Fluorometer (Thermo Fisher Scientific).

3. Results

3.1. Assay selection

After sequence selection and oligonucleotide synthesis, multiple
primer/probe sets were compared for optimal performance against four
representative HRSV A and B isolates. Primer/probe concentrations
were determined by cross-titrations adjusted to achieve comparable Ct
values with the reference pan-HRSV assay. A single primer pair tar-
geting the nucleoprotein gene with two subgroup discriminating probes
performed in a single duplex reaction were selected for further study.

The duplex assay was then evaluated against 15 diverse HRSV isolates
by staff who were blinded to subgroup. All 15 isolates were correctly
identified by the duplex assay as well as detecting both HRSV A and B in
mixed reactions (Supplementary Table 1).

3.2. Assay analytical sensitivity and specificity

To estimate the analytical sensitivity of the rRT-PCR assays, serial 2-
fold dilutions of the RNA transcript were prepared in 10mM Tris-EDTA
buffer containing 50 ng/μl yeast tRNA and tested in 16 replicates. The
limit of detection for HRSV A and B that yielded 100% replicate posi-
tives ranged from 5 to 10 RNA transcript copies per reaction, identical
with the pan-HRSV assay (Table 2). Linear amplification was achieved
over a 8-log dynamic range, from 5×100 to 5× 107 copies per reac-
tion (Fig. 1). The specificity of the duplex HRSV rRT-PCR assay was
evaluated with high concentration total nucleic acids extracted from a
diverse collection of other respiratory pathogens, including adenovirus,
human metapneumovirus, rhinovirus, parainfluenza viruses, influenza
viruses, coronaviruses, human bocavirus, Mycoplasma pneumoniae and
Streptococcus pneumoniae (Supplementary Table 2). No false positive
results were obtained with these samples. In addition, the HRSV
primer/probe sequences were evaluated by in silico BLASTn analysis
queries. No combined homologies with human genome, other re-
spiratory tract pathogens or commensals were observed that would
predict potential false positive results.

3.3. Assay reproducibility

Assay reproducibility was assessed using three RNA transcript
concentrations (5× 105, 5×103 and 5× 101 copies/reaction) re-
presenting the range of HRSV Ct values found with most positive
clinical specimens (see below). Intra-assay variation was estimated
from four replicates each of the three transcript concentrations tested in
a single run. Inter-assay variation was estimated from four identical
replicates tested twice on two separate days. The intra-assay coefficient
of variation (CV) ranged from 0.35% to 1.31%; inter-assay CV ranged
from 0.45% to 1.51% (Table 3).

3.4. Assay clinical evaluation

Assay clinical performance was assessed with 334 respiratory spe-
cimens that previously tested positive for HRSV. Specimens were

Table 2
Duplex HRSV rRT-PCR assay limits of detection with RNA transcripts.

Predicted no. of transcript
copies/reaction

No. of positive tests/no. of transcript replicates (%)

HRSV A HRSV B pan-HRSV

50 16/16 (100) 16/16 (100) 16/16 (100)
10 16/16 (100) 16/16 (100) 16/16 (100)
5 14/16 (87.5) 16/16 (100) 14/16 (87.5)
2.5 11/16 (68.8) 8/16 (50) 9/16 (56.3)
1.25 6/16 (37.5) 9/16 (56.3) 9/16 (56.3)

Fig. 1. Amplification plots and standard curves of serial 10-fold dilutions ran-
ging from 5×107 (curve 1) to 5×100 (curve 8) copies/reaction for RNA
transcripts analyzed by duplex HRSV and pan-HRSV rRT-PCR assays. Plot in-
serts show calculated linear correlation coefficients (R2) for each assay.

Table 3
Duplex HRSV and pan-HRSV rRT-PCR assays reproducibility with RNA tran-
scripts.

Assay Copies/
reaction

Number of
replicates

Mean Ct SD CV (%)

Intra-assay HRSV A 5×105 4 19.73 0.15 0.78
5× 103 4 26.47 0.26 0.97
5× 101 4 32.97 0.32 0.98

HRSV B 5×105 4 19.66 0.12 0.59
5× 103 4 26.41 0.20 0.78
5× 101 4 33.07 0.43 1.31

pan-HRSV 5×105 4 21.09 0.07 0.35
5× 103 4 27.84 0.10 0.35
5× 101 4 34.76 0.14 0.41

Inter-assay HRSV A 5×105 8 19.52 0.27 1.39
5× 103 8 26.19 0.40 1.51
5× 101 8 33.18 0.31 0.94

HRSV B 5×105 8 19.90 0.26 1.31
5× 103 8 26.41 0.15 0.58
5× 101 8 33.01 0.32 0.96

pan-HRSV 5×105 8 21.08 0.09 0.45
5× 103 8 27.56 0.32 1.17
5× 101 8 34.31 0.48 1.41

SD, standard deviation; CV, coefficient of variation.
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simultaneously retested by the duplex and pan-HRSV rRT-PCR assays.
HRSV was detected in all specimens and correctly identified as sub-
group A (152) or B (177) as confirmed by RT-PCR and sequencing
(Supplementary Table 3). Five patients were identified with dual HRSV
A and B detections by the duplex assay that were confirmed by se-
quencing (Supplementary Table 4). Ct values obtained by duplex and
pan assays were correlated with each other (HRSV A, R2=0.954; B,
R2= 0.968). However, one sample from Brazil showed a ∼9.5 Ct dif-
ference between the pan (Ct= 26.66) and duplex subgroup A assays
(Ct= 36.15) (Fig. 2) that was confirmed on retesting. Sequencing re-
vealed a single base substitution at the 3′-terminis of the duplex assay
reverse primer (T → A) that would predict diminished amplification
efficiency. A review of more recent HRSV genomes deposited in Gen-
Bank following study completion found 31 sequences that contained
two single base substitutions in the primer/probe region of the duplex
assay that would also predict compromised performance; one at the 3′-
terminis of the forward primer and the other near the middle of RSV B
probe (e.g., MF973158). A review of sequences obtained from clinical
specimens in our study found two (8221 and 8266) with identical
substitutions (unpublished result). Interestingly, Ct values obtained by
the duplex and pan assays for these specimens were nearly identical,
suggesting that the two substitutions had no deleterious effect on the
duplex assay.

4. Discussion

In this study, we developed and validated a duplex rRT-PCR assay
for detection and subgroup-specific identification of HRSV using the
most currently available sequences in the GenBank. Our duplex assay
proved sensitive and specific and correctly identified HRSV subgroups
from a diverse collection of HRSV positive clinical specimens with
comparable performance to our previously reported pan HRSV re-
ference assay (Fry et al., 2010). To achieve long-term efficacy of our
assay in the face of continued HRSV genome evolution, we targeted
conserved regions of the nucleoprotein gene. The nucleoprotein gene
offers the added advantage of location nearer the 3′-promoter where an
enhanced transcription gradient yields increased potential targets and
theoretically improved test sensitivity (Cowton et al., 2006). Primer/
probe design also included degeneracy at mixed base alleles and long,
internally quenched probes that exhibit lower background fluorescence
and are more tolerant to sequence polymorphisms.

Our duplex rRT-PCR assay offers several important advantages over
previous assay designs. Earlier assays were handicapped by the limited
sequence data available for primer/probe design and sequences that
were available were often from archaic highly passaged culture isolates
not representative of naturally occurring HRSV strains (Kuypers et al.,
2004; Perkins et al., 2005). We were able to take advantage of the now
greatly expanded HRSV genomic data made available by the J. Craig
Venter Institute Genomic Center for Infectious Diseases (http://gcid.
jcvi.org/projects/gcid/viral/aim1/project) and others. Moreover, our
assays were validated with newer commercial single-step rRT-PCR

enzyme kits that offer improved amplification efficiency and reduced
set-up times not previously available.

We chose to target the HRSV nucleocapsid gene for assay develop-
ment because it is relatively conserved compared to other genome re-
gions. Other assays that targeted the G glycoprotein gene (Tan et al.,
2012) that shows the highest sequence variability are subject to in-
creased risk of primer/probe mismatch destabilization. In another,
older assay (Perkins et al., 2005), melting temperatures of rRT-PCR
probes were lower than their corresponding primers, which would re-
sult in a lower percentage of probe bound to the target during each
amplification cycle, compromising assay sensitivity (Rodriguez et al.,
2015). To exploit short regions of homology in the HRSV genome for
primer/probe targeting, some assays used short probes with 3′-minor
groove binder (MGB) moieties to increase the stability of the probe–-
target hybrid (Kuypers et al., 2004; You et al., 2017). However, MGB
probes were originally designed to detect single nucleotide poly-
morphisms and are inherently susceptible to base mismatch destabili-
zation (Whiley and Sloots, 2006; Yao et al., 2006).

Commercial molecular assays with HRSV packaged individually or as
part of larger respiratory pathogen panels and certified for in vitro diag-
nostic use by U.S. or international agencies are a seemingly attractive al-
ternative (Reddington et al., 2013). However, commercial assays are also
vulnerable to potential variant dropout, are costly, often depend on
dedicated equipment and oligonucleotide sequences used are typically
proprietary and inaccessible to end users to assess compatibility with
currently circulating HRSV strains. Moreover, when primer/probe changes
are needed to accommodate new genetic variants, regulatory requirements
can delay implementation. Finally, where some HRSV subgrouping assays
require up to 11 primer/probes to perform (Perkins et al., 2005), our assay
only requires four oligonucleotides for subgroup identification (or seven
total if combined with our pan rRT-PCR assay).

The recent study by Kamau and collaborators (Kamau et al., 2017)
identified a HRSV subgroup B variant that failed detection by an es-
tablished rRT-PCR assay (Gunson et al., 2005). Sequencing identified
mismatched bases in the probe’s central region disrupting probe-tem-
plate annealing. The authors designed a replacement assay to correct
this problem, but did not provide validation data documenting assay
performance. These variants were discovered because the hospitalized
children were routinely screened for HRSV by IFA, a method less sus-
ceptible to virus strain variation. However, routine IFA screening is
impractical and would be less effective for testing adults where the
method would lack the requisite sensitivity. Even with updated se-
quences, we also encountered a single HRSV strain that was poorly
amplified with our duplex assay. Sequencing revealed a single nucleo-
tide mismatch with the 3′-end of the reverse primer. Although generally
more tolerant than probes (Suss et al., 2009; Whiley and Sloots, 2005),
primer mismatches can also diminish target amplification (Blais et al.,
2015). Although occasional HRSV variants that elude molecular de-
tection would not be expected to greatly impact HRSV disease burden
estimates, HRSV variants can quickly replace competing strains as oc-
curred with the novel “BA” virus that emerged in 1999 and is now the

Fig. 2. Comparison of duplex HRSV and pan-HRSV rRT-PCR as-
says with 156 HRSV A and 178 HRSV B single positive clinical
specimens. Linear regression lines fitted to cycle threshold (Ct)
data with regression equations and coefficients of determination
(R²) insets. Outlier sample (*) selected for retesting.
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most common HRSV B lineage detected worldwide (Trento et al., 2003,
2006). Simultaneous testing of specimens with both our duplex and pan
rRT-PCR assays would reduce the risk of undetected HRSV variant
dropout (Blais et al., 2015).

In conclusion, we developed a duplex rRT-PCR assay for rapid,
sensitive and specific detection and simultaneous subgroup identifica-
tion of HRSV using currently available genome sequence data in
GenBank. This assay can be applied to outbreak investigations and
surveillance studies to obtain baseline information regarding circu-
lating HRSV subgroups and serve as a reference standard for other as-
says to achieve comparable HRSV disease burden estimates.
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