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Abstract

Estimating intra- and extra-axonal microstructure parameters, such as volume fractions and 

diffusivities, has been one of the major efforts in brain microstructure imaging with MRI. The 

Standard Model (SM) of diffusion in white matter has unified various modeling approaches based 

on impermeable narrow cylinders embedded in locally anisotropic extra-axonal space. However, 

estimating the SM parameters from a set of conventional diffusion MRI (dMRI) measurements 

is ill-conditioned. Multidimensional dMRI helps resolve the estimation degeneracies, but there 

remains a need for clinically feasible acquisitions that yield robust parameter maps. Here we find 

optimal multidimensional protocols by minimizing the mean-squared error of machine learning-

based SM parameter estimates for two 3T scanners with corresponding gradient strengths of 

40 and 80 mT/m. We assess intra-scanner and inter-scanner repeatability for 15-minute optimal 

protocols by scanning 20 healthy volunteers twice on both scanners. The coefficients of variation 

all SM parameters except free water fraction are ≲ 10% voxelwise and 1 – 4% for their region-

averaged values. As the achieved SM reproducibility outcomes are similar to those of conventional 
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diffusion tensor imaging, our results enable robust in vivo mapping of white matter microstructure 

in neuroscience research and in the clinic.
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1. Introduction

The promise of increased sensitivity and specificity in detecting brain microstructure 

changes is a major driving force for developing biophysical models of the diffusion MRI 

(dMRI)(Jones, 2010) signal in biological tissues. This imaging modality measures random 

displacements of water molecules within a voxel (Callaghan, 1991), which are ~ 10 μm 

in clinical experimental settings (Kiselev, 2017). Thus, dMRI signals encode information 

about the tissue architecture restricting the diffusion of water molecules at a scale orders 

of magnitude below current MRI resolution (Alexander et al., 2019; Novikov et al., 2019), 

where disease processes originate. Brain microstructure mapping could provide biomarkers 

of pathological processes that would aid in early diagnosis (Assaf, 2008). This prompts the 

development of dMRI scan protocols and parameter estimation methods that are not only 

sensitive and specific, but also reproducible within clinically feasible scan time.

For water diffusion in brain white matter (WM), the overarching multiple Gaussian 

compartment framework is the so-called Standard Model (SM), cf. Fig. 1 and Novikov 

et al. (2019) for a review. Briefly, axons (and possibly glial processes) are represented 

by impermeable zero-radius cylinders (the so-called “sticks”) arranged in locally coherent 

fiber fascicles. The diffusion in the extra-axonal space of each fascicle is assumed to 

be Gaussian and described by an axially symmetric diffusion tensor. The third, optional 

tissue compartment is the cerebro-spinal fluid (CSF). Such multi-component fascicles 

are distributed in a voxel according to an arbitrary fiber orientation distribution function 

(ODF). All fascicles in a voxel are assumed to have the same compartment fractions and 

diffusivities, and differ from each other only by orientation (cf. Section 2 for technical 

details).

The SM encompasses1 a number of WM models made of anisotropic Gaussian 

compartments with axons represented by sticks (Fieremans et al., 2011; Jelescu et al., 

2016a; Jensen et al., 2016; Jespersen et al., 2010; 2007; Kaden et al., 2016; Kroenke et al., 

2004; Novikov et al., 2018; Reisert et al., 2017; Sotiropoulos et al., 2012; Veraart et al., 

2018; Zhang et al., 2012). From the SM point of view, earlier models impose constraints 

either on compartment parameters or the functional form of the fiber ODF; such constraints 

improve robustness but may introduce biases into the estimation of remaining parameters 

(cf. recent reviews by Alexander et al., 2019; Jelescu and Budde, 2017; Novikov et al., 

1The SM name originates from a tongue-in-cheek association with the Standard Model in the particle physics (Novikov et al., 2019), 
as both incorporate a fair bit of previous modeling effort from various groups. Here “standard” refers to common assumptions among 
modeling approaches and does not imply “exact”. While particle physicists are on the lookout for physics beyond their SM, in dMRI 
such physics has been already found. At finite diffusion time, tissue compartments exhibit residual non-Gaussian time-dependent 
diffusion. These effects, neglected in the SM, are below 10% in clinical dMRI experiments.
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2019). The constraints are typically employed when analyzing common dMRI acquisition 

protocols based on low-to-intermediate diffusion weightings with pulsed field gradient 

(PFG) measurements, since the problem of recovering unconstrained SM parameters is 

ill-conditioned (Jelescu et al., 2016a; Novikov et al., 2018).

Multidimensional diffusion MRI (Mitra, 1995; Topgaard, 2017; Westin et al., 2016) is 

a way to encode diffusion along more than one direction, probing the response to an 

ellipsoid encoded by a 3 × 3 B-tensor (cf. Fig. 2 and Section 2 below). This adds 

complementary information to that accessible through conventional PFG, also known as 

linear tensor encoding (LTE) (Jespersen et al., 2013; Szczepankiewicz et al., 2016). To 

resolve the degeneracy in SM parameter estimation, PFG/LTE has been combined with 

planar tensor encoding (PTE) at intermediate diffusion weightings (Coelho et al., 2019b; 

Reisert et al., 2019). Fieremans et al. (2018) and Dhital et al. (2018) analyzed the advantages 

of combining LTE with spherical tensor encoding (STE), and PTE, respectively, for SM 

parameter estimation. Similary, Afzali et al. (2019) used numerical simulations to compare 

the estimation errors of the SM for a few discrete combinations of LTE, PTE and STE 

encodings. While all these studies show the value of multidimensional MRI for improving 

SM parameter estimation, some combinations of B-tensor encodings provide more precise 

and accurate estimation results than others.

Optimizing the parameter estimation is a complementary way to increase precision. This 

has made supervised machine learning (ML)-based approaches gain attention lately. Neural 

networks (Golkov et al., 2016), polynomial regression (Reisert et al., 2017), or random 

forest (Palombo et al., 2020) have provided useful results in different dMRI applications. 

ML has been applied to estimate SM parameters by Reisert et al. (2017), and in more 

recent works (Coelho et al., 2021a; de Almeida Martins et al., 2021; Gyori et al., 2022). 

Irrespective of the implementation, all these works concluded that ML estimation alone 

is unable to resolve SM parameter degeneracies, and that a sufficiently rich acquisition 

protocol is needed. Furthermore, Coelho et al. (2021b) recently showed theoretically that 

data-driven approaches become increasingly influenced by the ML prior (the training set) as 

the signal-to-noise ratio (SNR) decreases, and that an optimal acquisition minimizes such an 

undesired effect. This was also observed empirically by Gyori et al. (2022).

In this work we aim to use ML not only to improve parameter estimation, but also to 

guide the experimental design. Acquisition optimization strategies are needed to reduce 

scan times and/or improve quality of SM parameter estimation. Alexander (2008) optimized 

PFG diffusion sequence parameters for a parallel fibers biophysical model. More recently, 

Coelho et al. (2019a) explored the space of isotropically distributed B-tensors and selected 

the combination that maximized the precision of the cumulant tensor elements up to the 

second order in B. Interestingly, this work did not impose measurements to be grouped in 

shells, but these emerged from the optimization. Subsequently, Lampinen et al. (2020) used 

the Cramér-Rao bound (CRB) (Cramér, 1946; Rao, 1945) of the SM parameters to optimize 

the acquisition for an extended version of the SM that also accounts for intra-compartmental 

T2 relaxation values (Veraart et al., 2018). While the CRB provides a lower bound on the 

variance for an unbiased estimator, this is not necessarily optimal for ML estimators which 

are usually biased at the expense of increased precision. Here we propose to use instead the 
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(root) mean squared error (R)MSE as a quality metric for experiment design, as it enables 

trading off between bias and precision at each SNR. Hence, minimal MSE, rather than a 

proxy like the CRB, is a target for the protocol design. Furthermore, the optimal protocol 

precision serves as a benchmark for the experimental precision in a reproducibility study, 

where other inevitable factors, such as imaging artifacts and misregistration, can affect the 

net parameter variation.

Complementary to the search for the optimal acquisition, there has been an increasingly 

prescient need to evaluate reproducibility of dMRI, to enable its adoption in clinic and 

clinical research. Grech-Sollars et al. (2015) performed a multi-center reproducibility study 

of apparent diffusion coefficient (ADC) and diffusion tensor imaging (DTI) parameters 

with 1.5T and 3T MRI scanners, and found the relative error (coefficient of variation, or 

COV) of < 4% for average values in different WM regions of interest (ROI). For diffusion 

kurtosis imaging (DKI) (Jensen et al., 2005), Henriques et al. (2021) recently proposed a 

regularized estimator and studied its reproducibility on different publicly available datasets. 

Modeling the dMRI signal aims for more specific information than the above signal 

representations. Andica et al. (2020) assessed scan-rescan and inter-vendor reproducibility 

of neurite orientation dispersion and density imaging metrics (Zhang et al., 2012), which is 

a constrained version of the SM. However, reproducibility studies for the unconstrained SM 

are so far lacking because they require non-conventional (beyond-LTE) diffusion data.

The main outcomes of this work are (i) a framework that minimizes the estimation error of 

the SM parameters by coupling experiment design with ML-based parameter estimation, and 

(ii) its validation in a reproducibility study involving 20 healthy volunteers that underwent 

dMRI on two clinical scanners with different gradient strengths. In Section 2 we introduce 

the SM adapted for multidimensional dMRI, and the ML-based parameter estimation. In 

Section 3 we describe the experimental design, image acquisition, and processing. In Section 

4 we report the resulting 15-minute optimal acquisition protocols for two 3T scanners with 

corresponding gradient strengths of 40 and 80 mT/m, Fig. 3. We assess the optimized 

protocols via numerical noise propagation and in vivo experiments, Fig. 4. Finally, in 

Section 5 we quantify the reproducibility of SM parameter estimates for 20 control subjects 

that underwent scan-rescan on both scanners. Our optimized protocol achieves voxelwise 

COV ≲ 10% for all SM parameters except free water fraction; the COV for ROI-averaged 

values are 1 – 4%, Fig. 6. These actual experimental values turn out to be in a good 

agreement with predictions based on the optimal MSE.

2. Theory

2.1. Multidimensional dMRI

Multidimensional dMRI, also known as q-space trajectory imaging (QTI) (Eriksson et al., 

2013; Westin et al., 2016), probes a trajectory q(t), rather than a point in the diffusion 

q-space, within a single measurement. In other words, QTI treats the dMRI signal as a 

functional of q(t), rather than a function of q, which results in the signal being sensitive to 

displacements along multiple dimensions simultaneously.
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For Gaussian diffusion, the picture gets simplified, as the cumulant series is truncated at the 

level of the second-order velocity cumulant ⟨vi(t)vj(t′)⟩ = 2Dijδ(t − t′) defining the diffusion 

tensor Dij. Hence, the signal

S[q(t)] = ei∫ dtq(t) ⋅ v(t) = e−∑ijBijDij (1)

gets reduced to a function of the 3 × 3 symmetric tensor B = (Bij):

Bij = ∫
0

TE
qi(t)qj(t)dt, with

qi(t) = ∫
0

t
gi t′ dt′, and b = ∑i Bii,

(2)

where the trace of B is the conventional b-value2, and g(t) = dq/dt is the diffusion gradient 

waveform used to generate the trajectory. Hence, for a medium (e.g., a voxel) comprised of 

multiple non-exchanging Gaussian-diffusion compartments (in general, anisotropic, such as 

in the SM), the B-tensor fully parametrizes the measurement.

The number of nonzero eigenvalues in B reflects how many dimensions of the anisotropic 

Gaussian diffusion are being probed simultaneously. In this work, we focus on axially 

symmetric B:

Bij(b, β, u) = b βuiuj + 1 − β
3 δij (3)

that are parametrized by the overall scale (the b-value), the unit vector û along the symmetry 

axis, and the adimensional shape parameter β (Fig. 2a). Compared to conventional dMRI, 

the extra degree of freedom β represents the B-tensor shape, e.g., β = 1 for linear encoding 

(a single nonzero eigenvalue), β = 0 for spherical encoding (isotropic B-tensor), and β = − 1
2

for planar encoding (two nonzero eigenvalues). Here δij is the Kronecker symbol (the unit 

matrix).

The encoding time required for the gradient waveforms corresponding to a given B-tensor 

depends on its shape and b-value. Fig. 2b shows the minimum diffusion encoding times 

for {b, β} combinations given specific hardware constraints (more details in Section 3.1). 

Isotropic weighting and large b-values demand more encoding time if gradient hardware 

constraints are kept constant.

2.2. SM for multidimensional dMRI

Multiple approaches (Fieremans et al., 2011; Jelescu et al., 2016a; Jensen et al., 2016; 

Jespersen et al., 2010; 2007; Kaden et al., 2016; Kroenke et al., 2004; Novikov et al., 2018; 

Reisert et al., 2017; Sotiropoulos et al., 2012; Veraart et al., 2018; Zhang et al., 2012) to 

model the physics of water diffusion in WM had relied on similar assumptions. This led to 

2We use the “microstructure units”, i.e., μm and ms, throughout the paper. In such units, the diffusion weighting, b = 1000 s/mm2 = 1 
ms/μm2. In these units, free water diffusivity at body temperature Dw ≈ 3μm2/ms.
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the unifying framework dubbed Standard Model (SM) of diffusion in WM as formulated in 

Reisert et al. (2017), Novikov et al. (2019, 2018).

Consider an elementary fiber segment or fiber fascicle, which is a local bundle of aligned 

sticks with the extra-neurite space surrounding them. The signal from such fascicle oriented 

along the unit vector n, has contributions from two axially symmetric non-exchanging 

Gaussian compartments aligned along n, Fig. 1:

• Stick compartment, with signal fraction f, representing axons and possibly other 

elongated cells such as glial processes. Sticks are zero-radius cylinders, where 

diffusion occurs only along the cylinder axis with diffusivity Da, such that the 

diffusion tensor is Da ninj.

• Zeppelin compartment reflecting hindered diffusion in the extra-axonal space. Its 

diffusion tensor eigenvalues are the parallel and perpendicular diffusivities De
∥

and De
⊥, such that the tensor is Δeninj + De

⊥δij, where Δe = De
∥ − De

⊥.

• In addition, an optional free water compartment with signal fraction fw and 

fixed isotropic diffusivity Dw = 3 μm2/ms accounts for CSF partial volume 

contributions. We will include it in our analysis.

Applying Eqs. (1) and (3) to each compartment above, and using

∑ij λninj + μδij βuiuj + 1 − β
3 δij = βλ ξ2 − 1

3 + λ
3 + μ,

where ξ = n · u is the cosine of the angle between the symmetry axes of the kernel and of the 

B-tensor, we obtain a fascicle’s response function (or a response kernel) to the measurement 

encoded by the B-tensor:

K(b, β, ξ) = f exp −bDa β ξ2 − 1
3 + 1

3

+ 1 − f − fw exp −bDe
⊥ − bΔe β ξ2 − 1

3 + 1
3

+fWexp −bDw .

(4)

Voxels contain not one but a collection of fiber segments whose orientation is given by a 

probability distribution on the sphere P(n), dubbed fiber orientation distribution function 

(ODF). Thus, the SM signal becomes the convolution of the kernel and the ODF on the unit 

sphere3:

3Technically, the convolution is defined on the rotation group SO(3), equivalent to the 3-dimensional unit sphere S3. However, due to 
the fiber fascicle’s axial symmetry, the SO(2) rotation around its axis can be factored out, and the convolution becomes over the factor 

group SO(3)/SO(2) equivalent to the 2-dimensional unit sphere S2, ∥ n ∥ = 1 (Healy et al., 1998). Henceforth, as in (Novikov et al., 

2018), we normalize the measure on S2, dn ≡ sinθdθdϕ/4π, such that ∫ dn = 1.
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S(B) = s0∫
S2dn P(n)K(b, β, n ⋅ u), (5)

where s0 ≡ S(B)|B=0 is the non-weighted signal, and P(n) is normalized to the unit 

probability, ∫S2P(n)dn = 1.

The SM ODF is represented via a spherical harmonic (SH) decomposition:

P(n) ≈ 1 + ∑
ℓ = 2, 4, …

ℓmax
∑

m = − ℓ

ℓ
pℓmY ℓm(n), (6)

where Yℓm(n) are the SH basis functions conventionally normalized to

4π∫ dnYℓm* (n)Yℓ′m′(n) = δℓℓ′δmm′,

Pℓm are the SH coefficients (only even ℓ are nonzero due to the time-reversal symmetry of the 

Brownian motion and p00 = 4π), and ℓmax is the maximum order in the expansion (typically 

4–8, depending on the SNR and the maximal b).

The ODF form (6) is chosen due to a number of reasons. First, the SH basis is standard for 

functions on a sphere, and it does not give preference to any particular functional form of 

the ODF (since there are currently no justifiable empirical ODF models). Second, this basis 

realizes the angular-radial connection in the q-space (Novikov et al., 2018) (the successive 

terms in the Taylor expansion of Eq. (5) in the powers of qi1…qiℓ bℓ/2 correspond to the 

sensitivity to SH up to order ℓ). Third, the convolution on a sphere becomes a product 

in the SH basis, as discussed below. As a result, the free parameters of the SM are the 

compartmental diffusivities and water fractions of the kernel, and the fiber ODF coefficients 

pℓm.

When referring to the SM, unless specified otherwise, it is implied that kernel and ODF 

parameters are estimated directly from the data without constraints on parameters (Novikov 

et al., 2019). Kernel parameters provide important tissue microstructural information, and 

have shown potential clinical relevance as they are sensitive to specific disease processes 

such as demyelination (Fieremans et al., 2012; Jelescu et al., 2016b) (De
⊥), axonal loss 

(Fieremans et al., 2012) (f) or beading (Lee et al., 2020) (Da). Additionally, we anticipate 

that ODF parameters (pℓm) estimated from the SM can be used for a more accurate 

tractography since the kernel is estimated at each voxel locally, rather than being averaged 

over white matter tracts as in model-free deconvolution methods (Tournier et al., 2004). This 

has also been discussed by Schilling et al. (2018), and assessed in realistic simulations of 

fiber geometries by Callaghan et al. (2021).
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2.3. ODF-kernel factorization and rotational invariants

The Fourier transform diagonalizes the convolution operation. In other words, it provides a 

basis where convolutions become products. The Fourier basis on a sphere is the SH basis 

(6). In this basis, the convolution in Eq. (5) becomes a product:

Sℓm(b, β) = s0 pℓmKℓ(b, β) . (7)

Here

Kℓ(b, β) = ∫
0

1
dξK(b, β, ξ)Pℓ(ξ) (8)

are the projections of the kernel onto the Legendre polynomials Pℓ(ξ) (proportional to m = 0 

SH), such that

K(b, β, n ⋅ u) = ∑
l = 0, 2, …

(2l + 1)Kℓ(b, β)Pℓ(n ⋅ u) . (9)

Indeed, substituting Eqs. (6) and (9) into Eq. (5), and using the SH addition theorem

Pℓ(n ⋅ u) = 4π
2l + 1 ∑

m = − ℓ

ℓ
Yℓm* (n)Yℓm(u),

one gets the signal SH coefficients (7). Since the fascicle is axially symmetric and is probed 

by an axially symmetric B-tensor, the m ≠ 0 SH coefficients Kℓm of the kernel vanish.

To remove the dependence on the choice of the physical basis in three-dimensional space 

(via m = −ℓ …ℓ), the rotational invariants of the signal and ODF are employed:

Sℓ
2(b, β) = 1

4π(2 ℓ + 1) ∑m = − ℓ
ℓ Sℓm(b, β) 2,

pℓ
2 = 1

4π(2 ℓ + 1) ∑m = − ℓ
ℓ pℓm

2 .
(10)

The above normalization is chosen such that: i) p0 = 1, since the integral of the ODF over 

the sphere equals 1; ii) the remaining ODF invariants characterizing anisotropy satisfy 0 ≤ pℓ 
≤ 1. It follows that for ℓ ≥ 2 an isotropic ODF has pℓ = 0 while a delta-function on a sphere 

(a perfectly aligned fiber tract) has all pℓ = 1. Hence, pℓ are the “partial” ODF anisotropy 

metrics at each degree ℓ.

From Eqs. (7) and (10), one can relate the signal rotational invariants to the kernel 

parameters:

Sℓ(b, β) = s0 pℓKℓ(b, β), ℓ = 0, 2, … . (11)

This allows separating the parameter estimation in two steps {S(b, β, u} → {Sℓ(b, β)} → 
kernel, without loss of information and having to estimate only a few pℓ from the ODF. The 
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above treatment generalizes earlier factorization approach (Novikov et al., 2018; Reisert et 

al., 2017) from LTE to arbitrary axially-symmetric B-tensors.

2.4. Supervised machine learning regression

Unlike conventional parameter estimation approaches which rely on an analytical forward 

model, e.g. maximum likelihood, data-driven ML regressions learn the mapping from 

noisy measurements to model parameters. This is done by applying a sufficiently flexible 

regression to training data generated with the forward model of interest, which generally 

contains noise to mimic realistic scenarios.

Here, we will use the polynomial regression

θ = ∑
j1 + j2 + … + jN ≤ W

aj1, j2, …, jNy1
j1y2

j2⋯yN
jN, (12)

where θ  is the ML estimator, yi i = 1
N  are the noisy measurements (in our case, the rotational 

invariants Sℓ(b, β)), W is the degree of the polynomial, and aj1, j2, …, jN are the regression 

coefficients computed during training.

In the SM context, the above approach was pioneered by Reisert et al. (2017), who used 

the rotational invariants of the LTE signals (Eq. (11) for β = 1) as measurements in 

the above regression. Interestingly, Coelho et al. (2021b) and Gyori et al. (2022) showed 

that the learned mapping becomes smoother with increased levels of noise, effectively 

removing high order features that would be obtained in the case of noise-free mapping. 

Thus, for typical SNR values found in clinical dMRI experiments, the optimal regression, 

i.e. minimizing MSE of the training data, can be achieved already by a cubic polynomial, 

W = 3 (suggested by Reisert et al., 2017 for LTE), as it captures all relevant degrees of 

freedom in the data represented by the set of Sℓ. During training, we add the corresponding 

Gaussian noise to the Sℓ as it would propagate from the diffusion signals. We assume that 

our denoising in the complex signal domain eliminates most of the initial Rician bias (see 

Section 3.3).

A major advantage of polynomial regression over neural networks is that it is a linear 

optimization problem and the training can be computed much faster without the risk of 

local minima. Coelho et al. (2021b) provided fast analytical equations to compute not only 

optimal regression coefficients but also the MSE over a distribution of values for all model 

parameters with a given acquisition protocol and noise level. This makes MSE a good metric 

for comparing the performances of different protocols and thus, a better objective function 

than the CRB for optimal experimental design.

3. Methods

3.1. Optimal experimental design

To select the experimental design that exploits our parameter estimation the most, we look 

for the set of measurements that minimize the RMSE in the parameter estimates:
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RMSE = ( bias )2 +  variance , (13)

where  variance  typically scales with the noise level. By minimizing Eq. (13) we are 

simultaneously aiming for increased accuracy and precision.

The metric for quantifying the goodness of a protocol was: 

RMSEobj  = RMSEf + 1
3RMSEDa + 1

3RMSEDe
∥ + 1

3RMSEDe⊥ + RMSEfw, where the coefficients 

in this equation reflect the fact that each RMSE is normalized by the range of its parameter 

(i.e., 0 – 1 for fractions and 0 – 3 for diffusivities). This assured that an even sensitivity to 

all parameters was kept. Individual MSE values were computed analytically as in Coelho et 

al. (2021b), based on the measuredb-shells, the noise level, and the moments of the training 

data distribution. This accurately captures how experimental design and SNR affect our 

parameter estimates over a distribution of values.

We assume that the acquisition time is fixed and defined by the user. In this work we focus 

on 15-minute scan times. Thus, the optimization framework had to find the best way to 

fill the available time without violating hardware limitations such as maximum gradient 

amplitude and slew rate. Shells of uniformly distributed directions were assumed to be 

part of the optimal acquisition since it has been shown that measurements grouped into 

shells increase precision (Coelho et al., 2019a). For each shell, the optimization framework 

selected: diffusion weighting b, the B-tensor shape parameter β, number of directions, and 

TE.

Using the framework proposed by Sjölund et al. (2015) and Szczepankiewicz et al. (2019) 

we generated a library of minimum encoding times as a function of the {b, β} combination, 

see Fig. 2b. These were used to compute how much encoding time was needed for 

each specific B-tensor on each scanner. The optimization handled the trade-off between 

adding many shorter high-SNR measurements or fewer longer low-SNR ones. The TE was 

constrained to be equal for all shells to factor out T2 dependence in the analysis. Thus, the 

overall TE, and the SNR of the dataset, was determined by the longest diffusion waveform.

We included conventional DKI shells (LTE, b = 0 – 1 – 2ms/μm2, (Alfaro-Almagro et 

al., 2018; Casey et al., 2018; Sotiropoulos et al., 2013)) as fixed into our protocols. This 

enables future comparisons against standard DKI-derived maps and increases the flexibility 

of the data analysis. The maximal b-value that the optimizer could explore was set to 

bmax = 10ms/μm2 and bmax = 8ms/μm2 to accommodate our two scanners described below. 

Stochastic optimization (Zelinka, 2004) was used to navigate the high-dimensional and 

non-convex protocol landscape.

3.2. In vivo dMRI experiments

Twenty normal volunteers (23–66 years old, 10 males - 10 females) underwent brain 

diffusion MRI on Siemens Magnetom Prisma and Skyra 3T systems (80mT/m and 40mT/m 

gradient systems, respectively), using a 20-channel head coil. The local Institutional Review 

Board approved the study and informed consent was obtained and documented from all 

participants. Maxwell-compensated asymmetric waveforms (Szczepankiewicz et al., 2019) 
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were employed in all acquisition protocols using an in-house diffusion sequence with EPI 

readout (Veraart et al., 2019b) and with a single TE. Isotropically distributed directions 

were used at different combinations of diffusion weightings and encodings (see Fig. 3 for 

a representation of both protocols). Both protocols took 15 minutes to acquire for each 

repetition.

On the Skyra scanner, scan(1)-rescan(2) of this protocol was acquired with TR/

TE=6700/127ms (SKYRA127
(1)  and SKYRA127

(2) ), while on the Prisma scanner, scan(1)-

rescan(2) was acquired with TR/TE=5300/92ms (PRISMA 92
(1) and PRISMA 92

(2)) in addition to 

one scan(3) matching the Skyra protocol with TR/TE=6700/127ms (PRISMA 127
(1) ). Imaging 

parameters: resolution: 2.0 mm isotropic, in-plane FOV: 220mm, GRAPPA and SMS 

acceleration factors: 2, PF = 6/8. Subjects were taken out of scanner and repositioned 

between scans.

3.3. Image pre-processing

Magnitude and phase data were reconstructed using projection onto convex sets (POCS) 

reconstruction (Haacke et al., 1991). Then, a phase estimation and unwinding step preceded 

the denoising of the complex images (Lemberskiy et al., 2019). Denoising was done 

using the Marchenko-Pastur principal component analysis method (Veraart et al., 2016). 

By preserving only the significant principal components in the signal, this method reduces 

the noise with minimal smoothing. An advantage of denoising before taking the magnitude 

of the data is that Rician bias is reduced significantly.

Data was subsequently processed with the DESIGNER pipeline (Ades-Aron et al., 2018). 

Denoised images were corrected for Gibbs ringing artifacts (Kellner et al., 2015; Tournier 

et al., 2019), based on resampling the image using local sub-voxel shifts. These images 

were rigidly aligned and then corrected for eddy current distortions and subject motion 

simultaneously (Smith et al., 2004). A b = 0 image with reverse phase encoding was 

included for correction of EPI-induced distortions (Andersson et al., 2003).

3.4. Parameter estimation

We used the regression method described in Section 2.4 where the SM parameters are 

estimated from the rotational invariants, employing the cubic polynomial regression of 

Reisert et al. (2017). Compared to fitting directly the diffusion-weighted signals, this has the 

advantage of reducing the dimensionality of the problem without loss of generality, since 

rotational invariants are model-free and capture all the SM microstructural information in a 

few variables. For SNR ranges accessible with diffusion MRI there is no gain for using a 

more complex regression such as neural networks (cf. Coelho et al., 2021b). Furthermore, 

polynomial regressions are convex problems which are faster to solve than other types of 

machine learning regressions. The rotational invariants were estimated from the diffusion-

weighted images using linear least squares since these had minimal bias after denoising 

complex images.
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We used wide uniform priors for training the machine learning estimator (see Fig. 5). 

Training took approximately 5 seconds for each SNR level on a desktop iMac with 32 Gb 

of RAM and the size of the training matrix was ~ 100 Mb. All codes for SM parameter 

estimation were implemented in MATLAB (R2021a, MathWorks, Natick, Massachusetts). 

These are publicly available as part of the SMI (standard model imaging) toolbox at https://

github.com/NYU-DiffusionMRI/SMI. DKI parameters were estimated using weighted linear 

least-squares (Veraart et al., 2013) fitting on the DKI shells (~ 40% of the acquired dMRI 

data).

For each kernel parameter x, the coefficients of variation COV = σ/μ were computed from 

the two repetitions x1,2 we had for each protocol, where the mean and standard deviation 

were estimated as: μ = 1
2 x1 + x2 , σ = π

2 x1 − x2 . The, COV values were averaged over 

either voxels or over ROIs.

4. Results

4.1. Protocol optimization

Fig. 3 a shows a representation of the optimized protocols, with b-values, b-shapes and 

number of directions for each shell. The proposed optimal acquisitions were similar for both 

scanners (40 and 80mT/m maximum gradient strength). After fixing DKI shells into the 

optimization problem (LTE, b = 0, 1, 2ms/μm2), we see that three complementary shells 
arise:

• (A) a high-b LTE shell (b ≥ 5ms/μm2, β = 1);

• (B) an intermediate/high-b highly anisotropic B-shape shell (3.5 ≤ b ≤ 5ms/μm2, 

0. 75 ≤ β ≤ 0.8);

• (C) an intermediate-b STE shell (b = 1.5ms/μm2, β = 0).

These locations in the acquisition space provide functionally independent forms for the 

rotational invariants while maintaining a sufficiently high SNR. Fig. 3b shows how the 

positions of the non-DKI shells vary as SNR increases.

Non-LTE data contribute significantly to parameter precision. As an example, Fig. 3c shows 

the RMSE landscape for each model parameter and the normalized and averaged RMSE of 

all model parameters after fixing the DKI shells and high-b LTE shell. Here, we move the 

position of shell B in the full {b, β} acquisition space. We remove shell C, and keep TE 

and number of directions fixed for simplicity. It can be appreciated that small modifications 

will not affect the protocol significantly since the RMSE landscape is very flat in their 

neighborhood. However, the sharp transition of the averaged RMSE as shell B moves away 

from LTE in Fig. 3c makes evident that after adding high-b LTE data to the DKI shells, 

non-LTE shells are the most informative.

4.2. Volunteer experiments

Representative WM parametric maps are shown in Fig. 4 for a 25 year old female subject. 

Maps are visually reproducible for both TEs, even when comparing PRISMA vs SKYRA. 
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Reproducibility on both scanners and between scanners showed similar results but the best 

COVs were seen on the Prisma due to better performing gradients providing a higher SNR 

due to a shorter TE (see representative histograms of WM voxels in Fig. 5 and ROI average 

values in Fig. 7). Here, voxelwise COVs were between 5 – 10% for f, Da, De
⊥, and p2. De

∥

showed the smallest COV (~ 3%), possibly due to a combination of having small variability 

and being the hardest parameter to estimate, making it the most influenced by the training 

data (Coelho et al., 2021b). Note that fw is not only a noisy parameter but it also has small 

values, leading to very high relative variations (~ 40%).

The COV of SM parameters are comparable to the ones from FA estimated from the DKI 

subset. This is encouraging since FA is known to be reproducible due to being a much 

simpler parameter to measure and estimate (intra-scanner voxelwise COV ≃ 7 – 13%, ROI 

COV ≃ 1 – 4%, see Fig. 6).

Interestingly, SM voxelwise COV values from noise propagation simulations agreed with the 

measured ones, see Fig. 6c. This agreement implies that the main factor hindering parameter 

reproducibility is measurement noise.

5. Discussion

5.1. Reproducibility

Biophysical modeling methods for clinically feasibly dMRI protocols must provide reliable 

parametric maps to achieve adoption in clinic and clinical research. For the first time, 

we assessed the reproducibility of unconstrained estimation of Standard Model parameters 

in human white matter. We proposed a framework to optimally design the acquisition 

protocol by selecting the combination of b-values and B-tensors that simultaneously 

maximize accuracy and precision for SM parameter estimation over a range of biologically 

plausible values. The optimized protocol, tailored to specific hardware and acquisition time 

constraints, combined with robust machine learning-based parameter estimation, gives us a 

favorable position to study reproducibility.

We report coefficients of variation of SM parameters around ≃ 5 – 10% at the voxel-level 

and around ≃ 1 – 4% for ROI means, which are actually comparable to the ones for FA 

(see Fig. 6). Noise propagation experiments using the estimated parameters from the WM 

ROIs showed our predicted COVs from simulation are similar to the ones from experiment 

(±50%), see Fig. 6c. Motion and image artifacts contribute to differences with the noise 

propagation predictions. Nonetheless, approximate COV estimates further support the use of 

the analytically predicted MSE as a quality metric for optimal protocol design.

The obtained COVs are encouraging since precise and unconstrained SM estimation has 

remained elusive for clinically feasible protocols. Unlike previous biophysical modeling 

works (Fieremans et al., 2011; Jelescu et al., 2016a; Kaden et al., 2016; Zhang et al., 2012), 

we remove all parameter constraints. This makes parameter estimation more challenging 

but reduces biases due to arbitrary constraints and provides additional contrasts that may 

aid in detecting pathology. Combining optimal acquisition protocols and robust parameter 

Coelho et al. Page 13

Neuroimage. Author manuscript; available in PMC 2022 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimation allowed us to obtain SM parameters from 15-minute scans, thereby enabling 

brain tissue microstructure mapping in clinical (research) settings.

5.2. Optimal protocols

The 15-minute optimized acquisition protocols were similar for both scanners albeit with 

a different TE due to the different maximum gradient strengths for both scanners. After 

fixing the two low-b LTE shells in each protocol (b = 0 − 1 − 2 ms/μm2, β = 1) to 

make them suitable for DTI and DKI analysis, similar complementary shells arose from the 

optimization for both scanners (see Fig. 3): A high b LTE shell, an intermediate b - highly 

anisotropic b-shape shell, and a low b STE shell. Fig. 3c shows the advantage of including 

non-LTE measurements into the protocol (see also Supplementary Fig. S1). It can be seen 

that the selected shell B is mostly optimal for estimating f and Da, while the position that we 

dub shell C is the one contributing more to precision in De
∥, De

⊥, and fw.

It is important to note that the optimal locations for the non-DKI shells depend on the SNR 

as shown in Fig. 3b. Related work from Lampinen et al. (2020) optimizing for minimal 

CRB also revealed the use of non-LTE low b-shells to achieve complementary information 

from DTI/ DKI, i.e. β = 0.1 − 0.6. However, their work also varies TE which limits direct 

comparison since T2 contrast is also involved.

5.3. Parameter estimates

The employed machine learning parameter estimation (Reisert et al., 2017) is very fast, 

even for the training step, since the formulation presented by Coelho et al. (2021b) only 

needs inverting a matrix with averages of the model measurements evaluated over the prior 

distribution. As the ground-truth is generally lacking for all SM-parameters, especially for 

pathology, we used uninformative prior distributions both for parameter estimation and 

MSE quantification during the protocol optimization. Such implementation is a significant 

improvement upon previous works that typically rely on either hard constraints or soft tissue 

priors (Fieremans et al., 2011; Kaden et al., 2016; Zhang et al., 2012).

For typical experimental SNR ranges, the proposed machine learning estimation leads 

to a smaller errors than conventional maximum likelihood estimation approaches. See 

supplementary Fig. S2 for a synthetic experiment that highlights such difference. The 

optimized data acquisition will not only improve the performance of machine learning 

estimators but also any estimator such as maximum likelihood.

All SM-parameter values are found to be consistent between subjects (see Fig. 7). While 

ground truth values are unavailable for in vivo dMRI experiments, their values are plausible 

and agree well with prior studies. The axonal water fraction f showed the largest values 

in regions with the most densely packed axons while fw only has large values close to 

the ventricles likely due to CSF partial volume. The major WM ROIs show Da values 

centered at ~ 2.3μm2/ms for the TE=92ms data, in agreement with measurements using 

more extensive acquisitions involving high diffusion weighted PTE done by Dhital et al. 

(2019), and with high b LTE (Veraart et al., 2019a), yet slightly lower than those reported by 

(Howard et al., 2020; Nilsson et al., 2021). Furthermore, Da > De
∥ in the majority of voxels, 
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agreeing with gadolinium-based contrast experiments in the rat corpus callosum (Kunz et al., 

2018), though this observation depends on the ROI and both values are generally close to 

each other.

5.4. Limitations

As we optimized the measurements for a given scan time, SNR levels may still be in an 

intermediate regime where some information from the prior “leaks” into the parameter fits. 

This may be especially the case for the dMRI data with TE=127ms and for the noisiest 

parameters: De
∥ and fw. Of note, both Da and De

∥ become smaller for the TE=127ms data, 

potentially due to the decreased SNR and reduced number of measurements, which results 

in estimates getting closer to the mean of the training data. In such regime, increased 

precision comes at the cost of bias. Nonetheless, both scan protocols are still able to capture 

reproducible differences between distinct WM regions for all parameters, Fig. 7. Hence, 

despite the potential introduction of bias for given parameters, the proposed protocols and 

fitting procedures enable capturing biological variability across WM regions and potentially 

also variability due to pathology.

The diffusion waveforms used in the experiments were implemented on clinical scanners but 

are not available as a product sequence from typical vendors. Due to duty cycle gradient 

heating, LTE high-b shells were acquired at b = 5.5 ms/μm2 rather than b = 8 ms/μm2 for the 

Prisma and at b = 5 ms/μm2 rather than b = 7 ms/μm2 for the Skyra, as initially suggested by 

the protocol optimization to avoid having to increase the TE (see Fig. 3a). Noise propagation 

experiments showed such change did not significantly deteriorate the quality of the protocol. 

This happens because at high-b the location of shell A is already independent from the rest 

and the MSE becomes very flat around it, see a similar situation for shell B in Fig. 3c.

Overall, the protocol optimization is a high-dimensional problem which has multiple local 

minima. Our approach showed robust estimations of global optima in a toy function of 

similar dimensionality and complexity. We do not explore B-tensor shapes without axial 

symmetry (inner part of the triangle in Fig. 2a). Releasing this constraint would increase the 

space of acquisitions but not necessarily increase precision of the parameter estimation, as 

shown previously for the cumulant expansion parameters Coelho et al. (2019b). Therefore, 

we constrained B-tensors to be axially symmetric, reducing the dimensionality of the 

optimization problem. Future work will explore reproducibility of optimal acquisitions with 

varying TE to simultaneously capture compartmental T2 values, as it was proposed by 

McKinnon and Jensen (2019); Veraart et al. (2018) and later assessed by Lampinen et al. 

(2020).

6. Conclusion

This work provided optimal protocols for white matter diffusion modeling and studied the 

reproducibility of the unconstrained \standard model in clinical settings. For this, we coupled 

optimal experimental design with robust machine-learning based parameter estimation and 

proposed a general framework to obtain the protocol that minimizes the RMSE of the 

Standard Model parameters.
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In vivo experiments performed in twenty control subjects showed ≲ 10% COV for all 

voxel-wise parameter estimates for all SM parameters, except free water fraction, and ~ 1 – 

4% for ROI means, comparable to DTI derived metrics. These are encouraging results that 

may boost the application of WM biophysical modeling into clinical research.

This work reveals that three diffusion measurement settings provide complementary 

information to DKI: high b LTE, intermediate/high b-highly anisotropic b-shape, and 

intermediate b STE. Finally, our framework is flexible and can be adapted to different 

acquisition constraints (e.g. scan time, resolution, hardware, etc). All processing codes 

for the estimation of the Standard Model (SMI toolbox) are available at https://github.com/

NYU-DiffusionMRI/SMI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The Standard Model of diffusion in white matter. Shown is an elementary fiber fascicle 

(whose dMRI signal yields the so-called fiber response kernel), characterized by the 

compartment diffusivities and water fractions. A voxel is a collection of such fascicles 

oriented via an arbitrary fiber ODF P(n).
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Fig. 2. 
Elements of a multidimensional dMRI acquisition. a) shows a representation of an STE 

waveform g(t) with the x (red), y (green), and z (blue) axes. Superquadric glyphs 

representing B-tensor shapes are arranged in a barycentric ternary diagram (Topgaard, 

2017), according to their linear, planar, and spherical components. Axially symmetric B-

tensors lie on the edge of such diagram. b) Contour lines show the maximum achievable 

b-value for a given B-tensor shape and encoding time considering that gmax ≤ 75mT/m and 

slew rate ≤ 125mT/m/s. The encoding time is the sum of both encoding periods (τ1 + τ2), 

before and after the 180 ° radiofrequency pulse.
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Fig. 3. 
a) Results from the optimization search for the two scanners. Each red dot represents 

a shell with its unique combination of b-value, B-tensor shape, and number of 

measurements. Although these optimizations considered different hardware constraints, they 

look qualitatively similar. In both cases DKI shells were fixed and the optimization selected 

the remaining ones (A, B, and C). Black arrows indicate the decreased b-value for the high-b 

LTE shell to avoid gradient duty cycle issues. b) Optimal protocols for different SNR levels. 

The positions of shells A and B move towards higher diffusion weightings as SNR increases. 

c) Landscape of the RMSE of each individual parameter and also for the actual objective 

function (average over parameters normalized with the parameter range) for the position of 

shell B, after fixing DKI shells and shell A. Shell C is not present for simplicity, to illustrate 

the RMSE improvement due to going beyond linear tensor encoding.
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Fig. 4. 
Columns show different SM parameter and fractional anisotropy (FA) maps for a 25 year 

old female control subject. Color maps of SM WM parameters are plotted on top of a T2-

weighted image. Each row contains a different repetition, labeled as SCANNER TE
repetition . The 

first two rows were computed at TE=92ms (protocol optimized for the PRISMA scanner) 

while the bottom three rows were computed at TE=127ms (protocol optimized for the 

SKYRA scanner).
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Fig. 5. 
Voxel-wise reproducibility of Standard Model parameters and FA for the PRISMA scan-

rescan. The bottom row shows the prior distributions used in the machine learning 

regression. Uniform distributions were chosen for all diffusivities and p2. Since 0 ≤ f + 

≤ fw ≤ 1, 0 ≤ f ≤ 1, and 0 ≤ fw ≤ 1, the less informative prior is assuming the sum of 

water fractions being uniformly distributed between 0 and 1. This makes their individual 

distributions triangular.
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Fig. 6. 
Coefficients of variation (COV) for all SM parameters and FA (computed from the DKI 

shells). a) shows measured COVs for voxel reproducibility. b) Shows COVs for the means of 

the main WM ROIs. Note that due to its low value, free water fraction has a large COV since 

this is a relative error metric. c) Comparison of the measured voxelwise COVs against the 

predicted ones through a noise propagation experiment.
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Fig. 7. 
Box plots showing mean values for all subjects for all SM parameters for different WM 

ROI.Biological variability of the different SM parameters is observed across the WM. Water 

fractions and dispersion (p2) are, as expected, different between protocols of different TE 

due to different T2-weighting. However, we also observe a small decrease of the parallel 

diffusivities at larger TE values.
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