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A sedentary lifestyle can cause metabolic syndrome to develop. Metabolic syndrome is associated with metabolic function in
the skeletal muscle, a major consumer of nutrients. Dietary exercise, along with an adequate diet, is reported to be one of the
major preventive therapies for metabolic syndrome; exercise improves the metabolic capacity of muscles and prevents the loss
of muscle mass. Epidemiological studies have shown that physical activity reduces the risk of various common diseases such as
cardiovascular disease, diabetes, and cancer; it also helps in reducing visceral adipose tissue. In addition, laboratory studies have
demonstrated the mechanisms underlying the benefits of single-bout and regular exercise. Exercise regulates the expression/activity
of proteins associated with metabolic and anabolic signaling in muscle, leading to a change in phenotype. The extent of these
changes depends on the intensity, the duration, and the frequency of the exercise. The effect of exercise is also partly due to a
decrease in inflammation, which has been shown to be closely related to the development of various diseases. Furthermore, it
has been suggested that several phytochemicals contained in natural foods can improve nutrient metabolism and prevent protein
degradation in the muscle.

1. Introduction

The incidence of metabolic syndrome is increasing world-
wide. Metabolic syndrome refers to a collection of issues
including visceral obesity, elevated blood glucose levels,
dyslipidemia (elevated fasting triglycerides and low high-
density lipoprotein (HDL) cholesterol levels), and hyperten-
sion. It leads to an increase in the risk of developing of
cardiovascular disease (CVD), type 2 diabetes, and cancer.
It can therefore occur as a predisease state. Thus, effective
strategies preventing metabolic syndrome are required to
decrease the incidence of diseases and promote healthy aging.

The development of metabolic syndrome is primary
caused by a sedentary lifestyle and overnutrition; however,
genetic characteristics are also involved to some extent. Daily
physical activity directly influences obesity and metabolic

syndrome associated with the metabolic function of skele-
tal muscle (Figure 1). Thus, dietary exercise, along with
adequate diet, is well known to be one of the major
preventive therapies against metabolic syndrome. In the last
few decades, it has been shown, in epidemiological and
experimental studies, that exercise reduces obesity, improves
glucose tolerance, and decreases the risk of diabetes and
CVD. The effects of exercise are brought about by elevated
energy consumption, improvement of insulin sensitivity, and
a reduction in inflammation. The molecular mechanisms
underlying these benefits have been established. A single
bout of exercise drastically changes various physiological
parameters such as hormone production, blood flow, and
the activity of the nervous system, in addition to altering
the expression/activity of certain genes and proteins in the
skeletal muscle. Further, regular exercise leads to permanent
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Figure 1: Crosstalk between skeletal muscle and adipose tissue in nutrient metabolism.

beneficial adaptations. This paper reviews evidence regarding
the influence of exercise on the progress of metabolic
syndrome along with its underlying molecular mechanisms.
It particularly focuses on the skeletal muscle, a major
metabolic organ, and describes the benefits of functional
food factors combined with exercise therapy.

2. Progression of Metabolic Syndrome due to
a Sedentary Lifestyle

Sedentary behavior and persistent low levels of physical
activity are known to induce progression toward metabolic
syndrome, type 2 diabetes, and CVD [1–5]. Energy con-
sumption depends on the intensity and amount of physical
activity; therefore, a sedentary life tends to result in a positive
energy balance and leads to an accumulation of body fat.
Adipose tissue secretes bioactive factors, adipocytokines,
such as tumor necrosis factor alpha (TNF-α), plasminogen
activator inhibitor, and resistin, into circulation. It has been
considered that there is aclose relationship between these
adipocytokines and health problems, such as obesity and
metabolic and cardiovascular disorders, as they cause insulin
resistance, injury to the endothelium, and inflammation. In
addition, a sedentary lifestyle causes a decrease in resting
energy metabolic capacity. This decrease may be due to
atrophy of skeletal muscle, a major energy-consuming tissue
in the body [6]. It has been reported that the loss of fat-
free mass with inactivity and age explains a reduction in the
resting metabolic rate (RMR) [7]. Muscle atrophy may be
due to both muscle fiber atrophy and loss of complete muscle
fibers [8, 9] due to several factors including the apoptosis of
muscle cells [10], decreased differentiation of satellite cells
[11], and reduced protein levels as a result of decreased
protein synthesis and increased protein degradation [12].
The activity of enzymes involved in aerobic metabolism and
glucose uptake in muscle is also decreased by inactivity and
aging. Laboratory studies have shown that significant protein
degradation is seen within 2 days of muscle immobilization
leading to loss of muscle mass within 1 week [13]. Insulin-
induced glucose uptake into the muscle is also reduced along
with a reduction in its signaling pathway, within 2 days
of immobilization [14]. At the same time, the activity of
lipoprotein lipase (LPL), a protein important for controlling

plasma triglyceride catabolism HDL cholesterol and other
metabolic risk factors was lost [15]. Consistent with the
decrease in LPL function, the clearance of plasma triglyceride
by skeletal muscle was significantly decreased and plasma
HDL cholesterol concentration declined [15].

Recently, it has been established that low-grade con-
tinuous inflammation and oxidative stress are associated
with metabolic disorders and CVD [16–18]. Low levels
of physical inactivity lead to chronic inflammation and
oxidative stress in the skeletal muscle, the circulatory system,
and other tissues. Some adipocytokines, such as TNF-α and
interleukin-6 (IL-6), which are secreted from accumulated
visceral adipose tissue can cause this inflammation. These
proinflammatory cytokines impair glucose transport via the
inhibition of insulin signal transduction. Insulin-induced
activation of the insulin receptor (IR), phosphatidylinositol
3-kinase (PI3K), and Akt is prevented along with IκB kinase
(IKK) activation and degradation of IκB in the muscle
tissue [19–21]. Furthermore, IKK-β silencing prevents TNF-
α-induced impairments in insulin action on Akt phos-
phorylation and glucose uptake [22]. Growing evidence
suggests that additional adipocytokines including resistin,
fatty-acid-binding protein (FABP), and visfatin have also
induced insulin resistance associated with inflammation [23–
25]. In addition, a reduction of circulating adiponectin,
an adipocytokine with anti-inflammatory properties, occurs
with obesity and leads to insulin resistance in skeletal
muscle and liver [26–28]. A recent study clearly showed that
adiponectin directly improves glucose and lipid metabolism
along with mitochondria biogenesis and activation of the key
metabolic modulators via adiponectin receptor 1 (AdipoR-
1) in skeletal muscle [29]. This inflammation of skeletal
muscle is caused by muscle inactivity even when body
fat is low. Indeed, expression of TNF-α in skeletal muscle
is elevated with insulin resistance in human [30]. This
indicates that TNF-α generated from not only other cells
but also myocytes disturbs insulin signaling. An increased
level of oxidation of lipids, DNA, and proteins is also
observed in muscles of sedentary subjects compared to
that of active subjects [31–34]. Furthermore, continuous
activation of intracellular oxidative-stress-sensitive factors
such as the nuclear factor-kappa B (NF-κB) and mitogen-
activated protein kinase is seen in the muscle of sedentary
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men [35, 36]. Oxidative-stress is also strongly associated
with development of insulin resistance in the skeletal muscle.
Thus, oxidative-stress-induced insulin resistance in muscle
leads to the initiation of diabetes and potentially late
diabetic complications. It is without doubt that insulin
sensitivity is inversely correlated with the plasma levels of
free radicals in diabetic patients [17, 18]. Several studies
have demonstrated that reactive oxygen species (ROS) impair
insulin-mediated glucose uptake and storage by disrupting
signaling control points such as glycogen synthase kinase-
3, Akt phosphorylation, and actin remodeling [37–39].
In addition, we have recently found that 3-nitrotyrosine
modification of adenylate kinase 1 (AK1), a key enzyme in
synthesis; equilibration; regulation of adenine nucleotides is
elevated in older muscle and that the modification of AK1 is
involved in the impairment of glucose uptake via inhibition
of AMP-activated protein kinase (AMPK). Furthermore, it
has been suggested that metabolic regulation of adiponectin
is associated with reduction of oxidative-stress in skeletal
muscle [29].

Inflammatory cytokines and ROS are also associated
with protein degradation via activation of the ubiquitin-
proteasome pathway. This is one of the major causes of
protein degradation. In vitro studies have revealed that the
addition of oxidants and TNF-α to myotubes increases
protein degradation rates, ubiquitination of proteins such
as myosin, and expression of the main components of the
ubiquitin-proteasome pathway [40–42]. Muscle ring finger 1
(MuRF1) and atrogin-1 have been identified as the ubiquitin
ligases whose activities increase during atrophy [43, 44].
NF-κB can regulate the ubiquitin-proteasome proteolytic
pathway through the induction of MuRF1 and proteasome
expression [45–47]. Furthermore, it has been shown that the
20S proteasome can selectively degrade oxidatively modified
proteins without ubiquitination [48, 49]. These observations
suggest that protein degradation could be the link between
oxidative stress, inflammatory cascade, and muscle atrophy.
In fact, hyperactivity of NF-κB and the ubiquitin-proteasome
pathway has been identified as a major cause of aged-related
muscle atrophy [50, 51].

3. Evidence for the Beneficial Effects of Exercise

Many large cohort studies have found that higher level of
physical activity is associated with reduced risk of developing
diabetes and CVD [52–58]. One of the first major trials to
examine the effect of physical activity was the University
of Pennsylvania Alumni Health Study [53]. In this study,
the level of physical activity was found to be inversely
related to the development of type 2 diabetes in 202 male
subjects. The incidence declined by 6% for each 500 kcal
increment in energy expenditure from less than 500 to
3500 kcal. In addition, the Osaka Health Survey [59] showed,
in 444 men, that regular exercise, at least once a week,
reduced the relative risk of type 2 diabetes to 0.75 compared
with in those engaging in exercise less often. Subjects
who engaged in intense exercise at least once a week,
at weekends, exhibited further reduction of the multiple-
adjusted relative risk of type 2 diabetes to 0.55 compared

with sedentary subjects. Cardiorespiratory fitness is also
protective against diabetes and metabolic syndrome [60,
61]. Several controlled trials support this effect of physical
activity. Studies lasting for 3–12 months involving exercise
sessions of 30–60 min in a week have shown that regular
exercise reduces fat mass and improves insulin sensitivity
without dietary caloric restriction in overweight men and
women [62–66]. Moreover, regular exercise decreases plasma
levels of triglyceride and HDL cholesterol and lowers blood
pressure [67–69]. Consistent with the improvement, regular
exercise reduces circulating adipocytokines, such as resistin,
visfatin, and FABP, involving development in metabolic
disorder and inflammation [70–72]. On the other hand, the
effect of exercise on circulating adiponectin is not completely
known. Several studies have suggested that the improve-
ment in insulin sensitivity induced by regular exercise is
not mediated by changes in plasma adiponectin [73–75].
However, the ratio of high-molecular-weight form to total
adiponectin was increased by regular exercise and there was
a positive correlation between the increase of the adiponectin
ratio and the improvement of insulin sensitivity in older
insulin-resistant adults [76]. In addition, it has been shown
that muscle AdipoR-1 is elevated in response to physical
exercise [77], which elevates metabolic signal transduction
of adiponectin and then improves oxidative metabolism.
Therefore, the regulation of these adipocytokines including
adiponectin likely contributes to the prevention of metabolic
syndrome by daily exercise.

Aerobic training has traditionally been adopted as the
main form of exercise therapy in epidemiological and labo-
ratory studies. However, recently, the inclusion of resistance
training as an integral part of an exercise therapy program
has recently been endorsed by the American Heart Associ-
ation [78], the American College of Sports Medicine [79],
and the American Diabetes Association [80]. Cross-sectional
studies have shown that muscle mass is inversely associated
with mortality [81] and the prevalence of metabolic syn-
drome [82], independent of cardiorespiratory fitness levels.
Even in the elderly, resistance training increases muscle mass
from, 7.4% to 10.0%, along with muscle strength after 10–16
weeks [83, 84]. One study demonstrated that twice-weekly
resistance training could prevent age-associated loss of lean
body mass (LBM) and RMR, which is closely correlated to
losses in LBM [85]. Resistance training contributes to an
elevation in RMR as a result of a greater muscle protein
anabolism [86]. Theoretically, a gain of 1 kg in muscle mass
should result in an increase of approximately 21 kcal in
RMR. Thus, resistance training, when sustained over years
or decades, translates into clinically important differences in
daily energy expenditure and can prevent age-associated fat
gains. However, resistance training can rather inhibit LBM
loss when combined with dietary restriction in antimetabolic
syndrome therapy. In several randomized control trials,
where obese men were randomly assigned to either a diet-
only group or a diet with resistance training group, LBM was
preserved by exercise training [87–95]. Furthermore, there is
a strong support for the notion that resistance training is at
least as effective as aerobic training in reducing some major
CVD risk factors. Findings from several studies demonstrate
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Figure 2: Molecular mechanism of muscle metabolic improvement due to exercise.

that resistance training significantly decreases glycosylated
hemoglobin levels in people with an abnormal glucose
metabolism and has a tendency to improve lipoprotein-lipid
profiles [90, 96, 97], independent of changes in body weight
or composition.

4. Molecular Mechanisms Underlying the
Benefits of Exercise

Exercise is accompanied by muscle contraction and subjects
muscle cells to mechanical stress. This induces various intra-
cellular signals. In addition, several factors such as hormones,
growth factors, oxidative stress, and heat stress also affect
signaling. Numerous human and animal studies have shown
that metabolic improvement due to exercise occurs along
with changes in the expression/activity of muscle proteins
and alterations in their mRNA transcription (Figure 2). A
single exercise bout improves glucose uptake in skeletal mus-
cles via insulin-dependent and insulin-independent signal
transduction mechanisms [98–101]. This effect is observed
for several hours after exercise, often persisting until the
next day. The increase in glucose uptake is caused by
the translocation of the glucose transporter 4 (GLUT4) to
the plasma membrane after activation of the IR/PI3K/Akt
signaling pathway [102, 103]. Elevated AMPK activity and
intracellular calcium levels can also induce GLUT4 translo-
cation independent of the insulin signaling pathway [104,
105]. In addition, a considerable amount of attention has
been given to the peroxisome proliferator-activated receptor
gamma coactivator-1 alpha (PGC-1α) as a target for the
prevention or treatment of metabolic syndrome. PGC-1α
has been shown to have the central role in a family of

transcriptional coactivators involved in aerobic metabolism
and is activated by exercise [106]. Activation of PGC-1α
alters the metabolic phenotype through interaction with
nuclear respiratory factor and the peroxisome proliferator-
activated receptor α [107, 108]. Improved understanding
of the activation of the PGC-1α protein by exercise has
implications beyond improving athletic performance [109,
110]. It may be target for the treatment of various diseases
such as the mitochondrial myopathies and diabetes [111–
113]. The activity/expression of LPL, a protein important
for controlling triglyceride catabolism and cholesterol levels
in plasma, is also elevated for 3 to 22 hours after exercise
[114, 115]. These beneficial adaptations persist in humans
and animals who perform regular exercise, independent of
the acute effects of exercise.

The molecular mechanisms underlying the maintenance
of muscle mass have also been established. Exercise, par-
ticularly resistance exercise, promotes protein synthesis.
Initiation of protein synthesis appears to be regulated by the
Akt/the mammalian target of rapamycin (mTOR) signaling
proteins. Akt phosphorylation regulates the catabolic path-
way by preventing the induction of muscle-specific ubiquitin
ligases such as atrogin-1 and MuRF1 [116] and activates the
anabolic pathway by phosphorylating mTOR [117]. mTOR
then initiates translation via the activation of translation
regulators p70s6k and the eukaryotic initiation factor-4E (eIF-
4E) complex, following phosphorylation of eIF-4E-binding
protein-1, one of the main translational inhibitors [118].

In addition, regular exercise can inhibit the apoptotic
signaling pathway; this is associated with reducing oxidative
stress and inflammation, and it results in the preservation
of skeletal muscle fibers. This inhibitory effect results from
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the upregulation of antiapoptotic mediators, such as B-
cell lymphoma/leukemia, X-linked inhibitors of apoptosis,
and heat shock protein 70 and from the downregulation
of proapoptotic mediators such as caspase-3 and Bax [119,
120]. A decrease in TNF-α, a factor that accelerates the
caspase cascade, may be involved in antiapoptotic signaling,
as regular exercise blunts TNF-α expression in aged muscle
[121, 122]. Furthermore, the inhibition of TNF-α and oxida-
tive stress would lead to a reduction in age-related muscle
dysfunction, including prevention of protein degradation
and impaired glucose uptake.

The study of the mechanisms underlying the effects of
exercise has been enhanced by the analysis of the function of
microRNAs (miRNAs) in recent years. The miRNAs are small
noncoding sections of RNA that regulate gene expression
by degrading mRNA molecules or, more frequently in
mammalian cells, inhibiting their translation [123, 124]. It
has been suggested that miRNA-mediated gene regulation is
a part of the fundamental mechanism of posttranscriptional
regulation and may have diverse functional effects. In fact,
30% of protein-coding genes may be regulated by miRNAs
[125]. Several of these miRNAs have been suggested to have
a role in a wide range of biological processes, including
development, cell death, carcinogenesis, and response to
stress [126–129]. Some miRNAs, including miR-1, miR-
133, and miR-206, which are referred to as myomiRs, have
also been suggested to act as modulators of skeletal muscle
function [130, 131]. We along with other researchers have
shown that physical activity elevates muscle metabolism
associated with PGC-1α, via regulation of some miRNAs
[132, 133].

Furthermore, there is growing evidence that secreted
proteins derived from muscle, also known as myokines, are
elevated in plasma in response to exercise and regulate var-
ious functions of other organs. This regulation can mediate
the benefits of exercise. Muscle-derived IL-6 is well known as
a representative myokine that is markedly elevated in muscle
and secreted into plasma following muscle contraction [134,
135]. This myokine could mediate some of the exercise-
induced metabolic changes and anti-inflammatory effects in
other organs such as the liver, adipose tissue, and blood ves-
sels. Subsequently, other muscle-derived proteins, IL-15, and
fibroblast growth factor-21 have been reported to regulate
nutrient metabolism in other organs [135]. Furthermore, it
has been shown that brain-derived neurotrophic factor is
produced in skeletal muscle in response to contraction and
has been suggested to increase fat oxidation in skeletal muscle
in both an autocrine and paracrine fashion [135].

5. Effects of Combining Food Factors with
Exercise Therapy

The potential effects of several food factors on muscle lipid
metabolism in exercise have been investigated. Some of them
have been found to accelerate lipid utilization; however, their
efficacy is still controversial. A rate-limiting step in lipid
metabolism in myocytes is the entry of long-chain fatty
acids into the mitochondria. Carnitine palmitoyltransferase
I (CPT I), located on the outer mitochondrial membrane,

plays an important role in the entry of fatty acids into
mitochondria. We found that a novel antioxidant astaxanthin
limits the oxidative modification of CPT I by hexanoyl
lysine [136]. This causes, along with elevated CPT I activity
during exercise, acceleration of the reduction in body fat
due to exercise training [136]. Ikeuchi et al. also showed
that astaxanthin supplementation accelerates a catabolism in
body fat along with a reduction of blood lactate [137]. Other
food compounds with antioxidative capacities have also been
identified. Catechin, one of the polyphenols contained in
Japanese green tea, accelerates the utilization of fatty acids
as an energy source for skeletal muscle contraction during
exercise [138]. It has been suggested that the effect of catechin
is related to the enhancement of β-oxidation activity and
the level of fatty acid translocase/CD36 mRNA in muscle.
An antioxidant, α-lipoic acid, increases glucose transport
in the skeletal muscle. Intake of α-lipoic acid, combined
with endurance exercise training, further accelerates glu-
cose uptake and activity of the insulin signaling pathway
compared with training alone [139]. Another compound
that can affect energy metabolism is caffeine. It inhibits
phosphodiesterase by promoting catecholamine release and
increasing hormone-sensitive lipase activity [140]. This leads
to an increase in circulating free fatty acids and a further
improvement in endurance. Capsaicin, obtained from hot
red peppers, is likely to enhance fat metabolism by increasing
lipolytic hormones and promoting fat oxidation in the
skeletal muscle [141].

However, growing evidence indicates that a large dose of
dietary antioxidants prevents the adaptation generally seen
as a result of regular exercise. Vitamin C supplementation
(1 g/day, for 6 weeks) decreases the improvement of VO2

max associated with training [142]. Antioxidant vitamins
and N-acetylcysteine reduced mitochondria biogenesis asso-
ciated with the expression of PGC-1α, a key modulator of
aerobic metabolism in skeletal muscle cells [143, 144]. More
recently, in a prospective randomized intervention study,
a combination of vitamin C (1000 mg/day) and vitamin E
(400 IU/day) has been shown to inhibit the improvement of
insulin sensitivity and elevation of plasma adiponectin along
with the cancellation of PGC-1α induction in response to
exercise training in healthy men [145]. These observations
suggest that the intake of antioxidants is not always beneficial
in counteracting muscle dysfunction related with inactivity
and that oxidative stress is involved in signal transduction of
exercise adaptation.

It has been shown that the protein requirement for
subjects performing resistance training is higher than that
for sedentary individuals [146]. The daily recommended
protein intake is estimated to be 1.4–1.8 g/kg for those
performing resistance exercise when the intake of calories
and carbohydrates is adequate [147]. However, it is not only
the amount of protein, but also the timing of intake that
is important for the efficient building of muscle. Eating
protein immediately after exercise is more effective, in terms
of increasing protein synthesis, compared with several hours
later. The cross-sectional area of the quadriceps muscle
after a 12-week resistance training program is greater [148].
Additionally, protein synthesis in muscle can be promoted
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by intake of proteins combined with carbohydrates via the
actions of insulin as this accelerates the increase in muscle
mass and strength [149].

In addition, it has been reported that the intake of amino
acids and peptides is beneficial. Free amino acids and small
peptide molecules do not need to be digested. Hence, absorp-
tion can be expected to be rapid. Amino acids are not only
utilized in the synthesis of muscle protein but can also exert
a variety of physiological effects. Attention has been focused
on the effects of branched-chain amino acids (BCAAs),
including valine, leucine, and isoleucine, which are known
to be found in relatively high concentrations in both muscle
proteins and food proteins. BCAAs are metabolized in the
muscles and utilized as energy substrates. Their oxidation is
enhanced during exercise by activation of branched-chain-
α-keto acid dehydrogenase [150]. Therefore, when BCAAs
are not supplied in the diet, muscle protein is catabolized to
obtain them. Furthermore, dietary BCAAs modulate muscle
protein metabolism to promote the synthesis and inhibit the
degradation of proteins [151]. This results in an anabolic
effect on muscles. Glutamine has also been reported to
promote muscle growth by inhibiting protein degradation
[152]. It is the most abundant free amino acid in muscle
tissue, and its intake leads to an increase in myocyte volume
and results in the stimulation of muscle growth. Glutamine
is also found at relatively high concentrations in many
other human tissues and has an important homeostatic
role. Therefore, during catabolic states such as exercise,
glutamine is released from skeletal muscle into the plasma
to be utilized for maintenance of the glutamine level in
other tissues [153]. β-hydroxy-β-methylbutyrate (βHMB)
is a metabolite of the branched-chain amino acid leucine.
It increases muscle mass by inhibiting the degradation of
protein via its influence on the metabolism of branched-
chain amino acids. A meta-analysis supported the use of
βHMB while performing resistance exercise to augment LBM
and strength [154]. Several studies have demonstrated that
an intake of βHMB for at least 4 weeks achieved a greater
increase in LBM or muscle power output [155].

6. Conclusion

Previously, numerous studies on prevention and develop-
ment of metabolic syndrome have focused on effects of adi-
pose tissue. On the other hand, because skeletal muscle plays
an important role as a metabolic organ in the development of
metabolic syndrome, recently these relationships have been
established, as described in this paper. Exercise is the best
tool for improvement in the muscle function. Daily exercise
habit and physical fitness level are associated with a reduction
in risk of metabolic syndrome, independently of body fat
level. Therefore, although adequate diet is important for
prevention and treatment of metabolic syndrome, regular
exercise it needed for the therapies.
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