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Metagenomic shotgun
sequencing and metabolomic
profiling identify specific human
gut microbiota associated with
diabetic retinopathy in patients
with type 2 diabetes

Lihua Li1†, Kaibo Yang2†, Cong Li3†, Han Zhang2, Honghua Yu3,
Kang Chen2*, Xiaohong Yang3* and Lei Liu3*

1Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China,
2Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China,
3Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, China
Background: Diabetic retinopathy (DR) is a common microvascular

complication of diabetes mellitus (DM) and is one of the leading causes of

blindness among DM patients. However, the molecular mechanism involving

DR remains unclear.

Methods: A case–control study with age-, sex-, and duration-matched

diabetic patients and controls was conducted, which included 15 type 2 DM

(T2DM) patients with DR and 15 T2DM patients without DR. Shotgun

sequencing and non-targeted metabolomic profiling analyses of fecal

samples were performed, and comprehensive bioinformatics analyses were

conducted.

Results: Using metagenomic analyses, we identified 293,460 unique genes in

the non-DR group, while that in the DR group was 283,235, and the number of

overlapping genes was 1,237,914. Regarding phylum levels, Actinobacteria

decreased but Bacteroidetes increased in the DR group when compared with

those in the control group. Regarding genus levels, Bifidobacterium and

Lactobacillus decreased. Cellular processes, environmental information

processes, and metabolism-related pathways were found at higher levels in

the gut microbiome of DR patients. Using metabolomic analyses, we found 116

differentially expressed metabolites with a positive ion model and 168

differentially expressed metabolites with a negative ion model between the

two groups. Kyoto Encyclopedia of Genes and Genomes annotation revealed

six pathways with different levels between DR and diabetic controls, namely,

cellular processes, environmental information processing, genetic information

processing, human diseases, organismal systems and metabolism. Moreover,

lysine biosynthesis and lysine degradation were enriched using a positive
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model, but histidine metabolism and b-alanine metabolism were enriched

using a negative model.

Conclusions: Together, the metagenomic profiles of DR patients indicated

different gut microbiota compositions and characteristic fecal metabolic

phenotypes in DR patients. Our findings of microbial pathways therefore

provided potential etiological and therapeutic targets for DR patients.
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Introduction

Gut microbiota studies have recently become an intensive

field of research. Under normal physiological conditions, the

microbiome is a homeostatic ecosystem with several essential

functions. Destruction of this ecosystem is called dysbiosis and is

associated with multiple diseases. The composition and essential

functional disorders of the gut microbiota are related to the

pathophysiology of most chronic diseases, including obesity (1),

cardiovascular system-related diseases (2), chronic kidney

diseases (3), neurological diseases (4), and mental disorders

(5). Recent studies have reported that the gut microbiota have

been linked to type 2 diabetes mellitus (T2DM) (6, 7), and results

have also suggested a basic mechanism of action.

Important insights have recently been reported regarding the

possibility that gut microbiota associate with degenerative retinal

diseases, including diabetic retinopathy (DR), uveitis, and age-

related macular degeneration, supporting a “microbiota-gut-

retina axis” (8). This implies that there is a connection

between the gut microbiome and retinal diseases, with the

composition and disturbance of the microbiome potentially

regulating metabolism and acting as inflammatory or

pathological factors in the retina.

DR involves microvascular complications of DM, which has

become the leading cause of blindness and vision impairment in

working-age adults (9). However, the potential mechanisms

regarding DR pathogenesis remain unknown. The gut

microbiota in DR etiology is also supported by alterations in

species compositions and dysfunctions of the microbiome.

Furthermore, metabolic factors related to chronic low-grade

inflammation or oxidative stress that link an altered gut

microbiota composition and T2DM may also affect the

development of DR (10). For example, Beli et al. (11) reported

that restructuring of the gut microbiome by long-term

intermittent fasting prevented the development of DR and

prolonged the life span by activation of tauroursodeoxycholate

(TUDCA) receptor (TGR5) in a diabetic db/db mouse model.

The recent focus on gut microbiome dysbiosis in DR patients has
02
led to new pathophysiological and therapeutic directions (12–

16). Most of these microbiome studies regarding DR used 16S

rRNA sequencing, which limited their associations in the

microbiome to the genus level. This knowledge gap can be

addressed using whole-genome shotgun sequencing,

which provides more in-depth taxonomic characterization

and functional insights into human microbiomes (17).

Metagenomics is a more accurate way to study the

composition and interaction of cultured microorganisms in

the sample; it can also identify metabolic pathways involving

gene functions at the molecular level. However, no reports have

used integrative metagenomics-metabolomics to identify

possible relationships between various microbial compositions

and functions in DR individuals. Herein, we used a 1:1 matched

case–control study to identify undesirable biological genes/

pathways and species-level clades of the human gut

microbiome associated with DR by metagenomic shotgun

sequencing and metabolomic profiling. The results may assist

in the development of novel targeted therapies for the treatment

of DR patients.
Methods

Subject recruitment and data collection

The research flowchart is shown in Figure 1. The

institutional review board and the ethics committee at The

First Affiliated Hospital of China Medical University approved

this study (No. 201913). Written informed consent was obtained

from all participants. In this 1:1 matched case–control study, 15

patients with T2DM complicated with retinopathy, aged >18

years, were recruited in the Endocrinology Department of the

First Affiliated Hospital of China Medical University. Slit lamp

videography, ophthalmoscopy, and fundus photography were

used to determine the extent of fundus lesions. The diagnostic

criteria of DR used the International Clinical Diabetic

Retinopathy Disease Severity Scale (2002) (18). In addition, 15
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patients with T2DM without any signs and symptoms of

retinopathy were age-, sex-, and diabetes duration-matched

and recruited from the same institution as the controls.

Subjects who had a medical history of malignant tumors,

severe abnormal liver functions, gastrointestinal diseases and

gastrointestinal surgery, any infectious disease (e.g., HIV and

syphilis), antibiotic/probiotic/prebiotic use, or known

gastrointestinal symptoms such as diarrhea, constipation,

abdominal pain, and blood-in-stool within a month were

excluded from the study. Demographics, lifestyle (smoking

status), and medical history information were collected using

questionnaires on the day of stool sample collection. Diabetes

duration was defined as the difference between age at study and

age at onset. Current biochemical indicators were extracted from

the medical records on the same day. Three peanut-sized stool

samples were collected at the institution using DNA/RNA-free

sterile swabs (BD BBL CultureSwab Sterile, Media-free Swabs

kit; Fisher Scientific, Hampton, NH, USA) and stored

immediately at 4°C for 12 h, transferred to -20°C for another

24 h, and then stored at -80°C until the DNA was extracted.
Sample processing and shotgun
metagenomic sequencing

Stool samples were thawed on ice and aliquoted, and

genomic DNA was extracted using a Magnetic Soil and Stool

DNA Kit (Tiangen, Beijing, China) according to the kit

instructions. Quality check of DNA samples was performed

using agarose gel electrophoresis to determine the extent of
Frontiers in Immunology 03
DNA degradation and potential contamination. DNA

concentration was measured using a Qubit® DS DNA Assay

Kit (Thermo Fisher Scientific, Waltham, MA, USA) in a Qubit®

2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA). The

absorbances were 1.8−2.0, with DNA contents >1 µg used to

construct the library. A total of 30 stool samples were randomly

assigned to extraction batches. To account for uncertain

bacterial contamination during extraction, the PCR and

sequencing kits included negative controls with each tissue

DNA extraction batch (19).

Sequencing libraries were generated using a NEBNext®

Ultra™ DNA Library Prep Kit for Illumina (New England

Biolabs, Ipswich, MA, USA) following the manufacturer’s

recommendations. Index codes were added to attribute

sequences to each sample. The qualified DNA samples were

randomly disrupted using a Covaris M220 ultrasound apparatus

(Covaris, Woburn, MA, USA), and the entire library was

prepared after the fragments with a growth degree of about

350 bp were randomly disrupted. The library was then diluted to

2 ng/µl using a Qubit® 2.0, and the insert size of the library was

detected using an Agilent 2100 Bioanalyzer (Agilent, Santa

Clara, CA, USA). After the correct insert size was obtained,

the effective concentration of the library was quantified by PCR

(the effective concentration of the library was set at >3 nM). PCR

products were purified (AMPure XP system; Beckman Coulter,

Brea, CA, USA), and libraries were analyzed for their size

distribution using an Agilent 2100 Bioanalyzer and quantified

using real-time PCR. After passing quality inspection, clustering

of the index-coded samples was performed on a cBot cluster

generation system according to Illumina PE150 instructions
FIGURE 1

The research flowchart.
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(Illumina, San Diego, CA, USA). After cluster generation, the

library was ready to be sequenced on a NovaSeq 6000 platform

(Illumina) using paired-end reads. All samples were sequenced

on an Illumina platform in PE150 mode at Novogene

Bioinformatics Technology (Beijing, China).
Metagenomic data processing
and analysis

Preprocessing the raw data obtained from the Illumina

HiSeq sequencing platform using Readfq V8 was conducted to

acquire clean data for subsequent analyses. Clean data were

blasted using the host database, which defaulted using

Bowtie2.2.4 (20) software to filter the reads that were of host

origin. Metagenome assembly was conducted from the clean

data of each sample after quality control, and the unused reads of

each sample were combined for mixed assembly. For Scaftigs

generated from single samples and mixed assemblies, fragments

less than 500 bp were filtered and subjected to statistical analysis

and subsequent gene prediction.

The clean data of each sample were mapped to an initial gene

catalog using Bowtie2.2.4. The abundance information of each

gene was calculated in each sample based on the number of

mapped reads and the length of genes. The basic information

statistics, core-pan gene analysis, correlation analysis of samples,

and Venn diagram involving number of genes were all based on

the abundance of each gene in each sample in the gene catalog.

DIAMOND V0.9.9 software was used to blast the unigenes

to the sequences of bacteria, fungi, archaea, and viruses, which

were extracted from the non-redundant protein sequence

database of the National Center for Biotechnology Information

(NCBI). A Lossless Compression Algorithm was used in the

system classification of MEGAN software to ensure species

annotation information of the sequences. Krona analysis, the

relative abundance, the bioinformatics analyses of abundance

cluster heat map, principal coordinate analysis (PCoA) and non-

econometric multidimensional (NMD) scaling analysis (21), and

decrease-dimension analyses were based on the abundance table

of each taxonomic hierarchy. The difference between groups was

tested by analysis of similarities (ANOSIM). Metastat and the

Linear discriminant analysis (LDA) Effect Size (LEfSe) (22)

analysis were used to identify different species between

two groups.

DIAMOND V0.9.9 software (23) was used to blast Unigenes

to identity functional databases with the parameter settings of

the blasts. The functional databases included the Kyoto

Encyclopedia of Genes and Genomes (KEGG) Orthology

catalog database, the eggNOG database, and the CAZy

database. Based on the abundance table of each taxonomy

hierarchy, the exhibition of the general relative abundance

situation, exhibition of the abundance cluster heat map, and

the decrease-dimension analysis of PCoA and NMDS were
Frontiers in Immunology 04
conducted. In addition, the ANOSIM (24) test of the

differences between cases and control individuals based on

functional abundance, the comparative analysis of metabolic

pathways, and the MetaStat and LEfSe analyses of functional

differences between two groups were conducted.
Non-targeted metabolomic
analysis of fecal samples

A total of 50 mg of stool sample was placed in an Eppendorf

tube for metabolite extractions, followed by addition of 1,000 µl

extract solution (acetonitrile:methanol:water = 2:2:1). After

vortexing, the samples were homogenized at 35 Hz and

sonicated. The supernatants were then obtained after incubation

and centrifugation. The resulting supernatant was prepared for

quality control and analysis. Liquid chromatography-tandem

mass spectrometry was conducted using an ultra-high-

performance liquid chromatography (UHPLC) system

(Vanquish; Thermo Fisher Scientific) with an ultra performance

liquid chromatography (UPLC) BEH Amide column (2.1 mm ×

50 mm; 1.7 µm; Waters, Milford, MA, USA) coupled to a

QExactive HFX mass spectrometer (Orbitrap Ms; Thermo

Fisher Scientific). The QE HFX mass spectrometer was used to

acquire MS/MS spectra using an information-dependent

acquisition mode under the control of the acquisition software

(Xcalibur; Thermo Fisher). In this mode, the acquisition software

continuously evaluated the full scan mass spectra. The raw data

were converted to the mzXML format using ProteoWizard and

processed with an in-house program, which was developed using

R software (R Project for Statistical Computing, Vienna, Austria).

An in-house MS2 database (BiotreeDB) was then used for

metabolite annotation. For three fecal samples, all technical

experiments were replicated three times to acquire robust

results. During raw data preprocessing, based on the relative

standard deviation filtering deviation values, only the peak area

data with nomore than 50% null values or no more than 50% null

values were reserved, and the missing values in the raw data were

simulated with a minimum half of the value. Total ion current was

then used with each sample for normalization.
Correlation analysis of gut microbial
species and metabolites

We selected gut microbial species discriminately enriched in the

DR or control groups by LEfSe analysis, with LDA >3 and P < 0.05.

Significantly abundant metabolites were defined as log2fold change

(FC) >1 or <-1, P < 0.05, q < 0.05, with 31 metabolites included.

Spearman’s correlation of differentially enriched species and

metabolites was calculated using the scipy-stats package. Heat

maps were hierarchically clustered to represent the species-

metabolite-associated patterns based on the correlation distance.
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Statistical analysis

Differences in clinical indices among two groups were

determined using Student’s t-test or the Kruskal–Wallis test.

Differentially elevated or depleted gut microbes and fecal

metabolites were evaluated using the Wilcoxon rank sum test.

The connection of microbes to host metabolites was assessed

using Spearman’s rank correlation, and the importance was

corrected using the Benjamini–Hochberg procedure. Differentially

enriched KEGG modules/pathways were identified according to

their reporter scores, which were calculated from the Z-scores of

individual KEGG orthologous (KO) groups (25). A module with

reporter score of Z >1.5 (>90% confidence according to a normal

distribution) was considered as a significant dysbiosis module (3).

All data analyses were conducted using the R Statistical Computing

framework v3.4 (The R Project for Statistical Computing). All

statistical tests were two-tailed, and a P < 0.05 was considered

statistically significant.
Frontiers in Immunology 05
Results

The study recruited 15 DR patients and 15 diabetic controls

without DR (NDR). Participant demographics, lifestyles, and

clinical information are shown in Table 1. There was no

significant difference regarding age, sex, and medical indicators

and biochemical test results between the NDR and DR

participants. To examine the gut microbiome, 30 fecal samples

were processed, and the DNA was extracted and sequenced

using whole-genome shotgun sequencing.
Metagenomic signature data of diabetic
retinopathy (DR) and diabetic retinopathy
(NDR) participants

The number of genes in the gene catalog was 1,957,836. The total

length of genes in the gene catalog was 1,470.48 Mbp. The mean
TABLE 1 Demographic and clinical characteristics of diabetic patients with and without DR.

Total (n = 30) Diabetic controls (n = 15) DR (n = 15) P value

Age, years 57 (51–62) 57 (51–62) 55 (51–63) 0.86

Sex (men), % 15 (50.0) 7 (46.7) 8 (53.3) 0.72

BMI, kg/m2 26.6 (24.8–29.0) 27.6 (25.5–30.3) 26.0 (23.5–28.0) 0.20

Diabetes duration, years 12 (9–15) 10 (9–14) 13 (8–17) 0.39

Smoking (yes), % 3 (10.0) 2 (66.7) 1 (33.3) 0.55

HbA1c, % 8.0 (7.2–10.0) 7.8 (6.9–9.5) 8.7 (7.5–10.4) 0.19

SBP, mm Hg 149 (134–160) 140 (131–156) 157 (138–165) 0.52

DBP, mm Hg 85 (77–90) 84 (78–90) 85 (74–89) 0.56

TG, mmol/L 1.7 (1.5–2.9) 1.7 (1.6–3.0) 1.6 (1.4–2.8) 0.65

TC, mmol/L 4.8 (4.1–5.3) 4.8 (3.7–5.6) 4.7 (4.5–5.1) 0.92

HDL, mmol/L 1.0 (0.9–1.2) 1.0 (0.9–1.1) 1.1 (1.0–1.3) 0.24

LDL, mmol/L 2.8 (2.3–3.5) 3.2 (2.1–3.8) 2.8 (2.5–3.3) 0.67

SCr, mmol/L 54 (40–63) 53 (40–62) 57 (40–63) 0.70

BUN, mmol/L 6.1 (4.9–7.1) 5.8 (5.1–6.8) 6.5 (4.6–7.2) 0.47

ApoA-1, g/L 1.2 (1.1–1.4) 1.2 (1.1–1.3) 1.3 (1.2–1.4) 0.19

ApoB, g/L 1.0 (0.8–1.2) 1.1 (0.8–1.2) 1.0 (0.9–1.1) 0.51

LP(a), nmol/L 22.7 (10.3–66.9) 37.4 (6.2–68.4) 21.8 (19.2–53.3) 0.34

Cys-c, mg/L 0.9 (0.8–1.0) 0.9 (0.8–1.0) 1.0 (0.9–1.2) 0.12

eGFR, ml/min/1.73 m2 108.4 (101.4–113.7) 109.9 (102.8–113.0) 106.4 (100.5–114.4) 0.86

CK, U/L 76.5 (57.5–95.5) 72.0 (54.0–94.0) 92.0 (67.0–100.0) 0.39

LDH, U/L 176.5 (150.0–191.0) 166.0 (135.0–188.0) 178.0 (172.0–194.0) 0.13

UA, mmol/L 322.0 (275.0–404.0) 323.0 (251.0–404.0) 311.0 (293.0–399.5) 0.76

FT4, pmol/L 13.3 (12.4–13.8) 13.3 (12.4–13.7) 12.9 (12.4–14.1) 0.54

FT3, pmol/L 4.2 (4.0–4.6) 4.2 (4.0–4.6) 4.2 (4.0–4.7) 0.47

TSH,µIU/ml 1.7 (1.2–2.7) 2.3 (1.3–3.3) 1.7 (0.9–2.0) 0.07

TPOAb, IU/ml 0.4 (0.1–1.4) 0.4 (0–116.1) 0.5 (0.2–0.8) 0.40

TGAb, IU/ml 1.6 (0.8–3.3) 1.7 (0.9–6.1) 1.2 (0.8–2.6) 0.52
front
Categorical variables are presented as counts (percentages), continuous variables are presented as median [interquartile range (IQR)].
ApoB, apolipoprotein B; APOA-1, apolipoprotein A1; BMI, body mass index; BUN, blood urea nitrogen; Cys-c, cystatin C; CK, creatine kinase; DR, diabetic retinopathy; DBP, diastolic
blood pressure; eGFR, estimated glomerular filtration rate; FT4, free thyroxine 4; FT3, free thyroxine 3; HbA1c, glycosylated hemoglobin; LDH, lactate dehydrogenase; LP(a), lipoproteins;
TG, triglyceride; TC, total cholesterol; TSH, thyroid-stimulating hormone; TPOAb, thyroid peroxidase antibody; TGAb, tnti-thyroglobulin antibodies; SBP, systolic blood pressure; SCr,
serum creatinine; UA, uric acid.
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length of genes in the gene catalog was 751.25 bp, and the guanine to

cytosine (GC) percentage was 47.45%. The basic characteristics of

genes in all samples are shown in Supplementary Figure S1. The gene

catalog length distribution statistics are shown in Supplementary

Figure S1A, and the core-pan gene dilution curves are shown in

Supplementary Figures S1B, C. The numbers of nonredundant genes

in the DR and control participants are shown in Figure 2A. The

number of unique genes in the NDR group was 293,460, while that in

the DR group was 283,235, and the number of overlapping genes was

1,237,914 (Figure 2B). In addition, we analyzed the top 10

predominant bacterial genera (at high abundances >5%) regarding

phylum and genus (Figures 2C, D) between DR and NDR

participants and found that at the phylum level, Actinobacteria

decreased but Bacteroidetes increased. At the genus level,
Frontiers in Immunology 06
Bifidobacterium and Lactobacillus decreased in the DR group when

compared with those in the control group (Wilcoxon test, P < 0.005).

Cluster analyses using a heat map indicating the level of microbiome

in each participant are shown in Figure 2E. Furthermore, LDA

indicated that Eubacterium (LDA = 4.71) had the highest score in the

DR group, and Lactobacillus mucosae (LDA = 5.91) had the highest

score in the control group (all LDA>3, P < 0.005) (Figure 2F).

Furthermore, we also conducted bioinformatics analyses

regarding the abundance tables at various taxonomic levels to

identify their potential roles in the etiology of DR. ANOSIM was

performed based on the functional abundances of the KO, Level

1 of eggNOG, and Level 2 hierarchy of CAZy, but none of the

differences between groups were statistically significant

(Supplementary Figure S2). Figure 3A shows the number of
B

C D

E F

A

FIGURE 2

Characterization of the gut microbiome from metagenomic data. (A) The number of nonredundant genes in the DR and NDR groups. (B) The
identification of genes in the DR and NDR groups. (C) Top 10 microbiome phyla between the case and control groups. (D) Top 10 microbiome
from the genera of case and control groups. (E) Heat map showing the levels of microbiome from each participant. (F) The influence of
differentially expressed microbiome using LDA. DR, diabetic retinopathy; NDR, diabetes without diabetic retinopathy; LDA, linear discriminant
analysis
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unigenes of the KEGG. Regarding the Metastat of functional

differences between groups, we found that cellular processes,

genetic information processes, immune diseases, and

metabolism-related pathways were enriched, suggesting that

these pathways had important roles in the process of DR

(Table 2). Among them, metabolism-related pathways

included carbohydrate metabolism, amino acid metabolism,

metabolism of other amino acids, biosynthesis of other

secondary metabolites, lipid metabolism, and energy

metabolism. Regarding eggNOG analyses, Figure 3B shows the

number of unigenes and the LEfSe analyses of functional

differences between the groups (Figure 3C), which showed that

several metabolism-related pathways were enriched. Among

them, the metabolism-related pathways included lipid

transport and metabolism, amino acid transport and

metabolism, and carbohydrate transport and metabolism.

Regarding CAZy analyses, Figure 3D shows the number of

unigenes and the LEfSe analyses of the functional differences

between the groups (Figure 3E), which showed that two classes

of carbohydrate enzymes were enriched, including glycoside

hydrolases and glycosyl transferases.
Metabonomics signatures of DR and
NDR participants

From the results of metagenomics of DR patients and

controls, bioinformatics analyses suggested that microbial

metabonomics pathways could play an important role in

DR. We therefore conducted metabonomics analyses using

fecal samples to identify the role of metabolism in DR. All

samples had good qualities and system stabilities. The

principal component analysis score plots (26) of the Quality

control (QC) samples with positive and negative ions,

respectively, are shown in Supplementary Figure S3. We

identified differentially expressed (DE) metabolites using

significance analysis with projection (VIP) values >1 and P <

0.05. As a result, we detected 116 DE metabolites using the

positive ion model and 168 DE metabolites using the negative

ion model (Figures 4A, B). The expression pattern of DE

metabolites using positive and negative ion models is shown

using a cluster heat map (Figures 4C, D). The radar plot of DE

metabolites is shown in Supplementary Figure S3.

Furthermore, bioinformatics analyses to detect the potential

roles of DE metabolites revealed that lysine biosynthesis and

lysine degradation were enriched using the positive model

(Figure 5A), while histidine and b-alanine metabolisms were

enriched using the negative model (Figure 5B), suggesting that

the lysine-related metabolism, histidine metabolism, and b-
alanine metabolism could play important roles in the etiology

of DR.
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Analysis of metagenomic and
metabolomic associations of DR and
NDR participants

To identify the association of metagenomes and

metabonomics of DR patients and NDR patients, we

correlated the results from LEfSe analyses of divergent species

between the metagenomes and the differential metabolites in the

metabonomics. We found 17 metabolites associated with the

divergent species using the positive ion model and six

metabolites associated with the divergent species using the

negative ion model (Figure 6A, P < 0.05), suggesting that

divergent species between gut microbiota may ultimately affect

the pathophysiology of DR patients by affecting intestinal

metabolic processes. The scatter plots of asymmetric

dimethylarginine in the positive ion model with the associated

microflora Odoribacter, Firmicutes-bacterium-CAG83, and

Parabacteroides-merdae (P < 0.05) are shown in Figure 6B.

Simultaneously, the scatter plots of carnosine in the negative ion

model with the associated microflora Veillonellales, Alistipes-

fineg, Eubacterium-Eubacterium-hallii, and Firmicutes-

bacterium-CAG83 (P < 0.05) are shown in Figure 6C.
Discussion

DR is a common and specific microvascular complication of

diabetes and remains the leading cause of preventable blindness in

the working-age population (9). However, the exact molecular

mechanisms of DR remain unclear. In our current study, we

investigated the associations of the gut microbiome with DR

among Chinese patients with T2DM using metagenomic

shotgun sequencing combined with metabolomics profiling and

a well-designed case–control study that controlled for potential

confounders. This study provided metagenomic insight into the

gut microbiome in DR patients and identified a cluster of DR

subjects whose gut microbiome was different from that of the

NDR group. It was of interest to find Eubacterium enriched in the

gut microbiome of DR patients. Moreover, microbial pathway

analysis indicated that there were three pathways in the gut

microbiome with higher relative abundance levels in DR

patients when compared with the NDR group.

Next-generation high-throughput sequencing and mass

spectrometry have been increasingly used to identify disease

mechanisms using metagenomic and metabonomics data (27,

28), suggesting that the gut microbiome and metabolites could

play important roles in the pathological processes of different

diseases. However, to the best of our knowledge, there has been

no such study for DR, which could provide important clues

regarding the molecular mechanisms of DR. We therefore

conducted metagenomic and metabonomics studies using fecal
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FIGURE 3

Characterization of the gut microbiome from function annotation. (A) The unigene number statistics of the Kyoto Encyclopedia of Genes and
Genomes. (B) The unigene number statistics of eggNOG. (C) The LEfSe analysis of the functional differences between the groups of eggNOG.
(D) The unigenes number statistics of CAZy. (E) The LEfSe analysis of functional differences between the groups of CAZy.
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samples from DR and NDR participants. Based on

bioinformatics analyses, we found that metabolism-related

pathways were enriched in metagenomic results, suggesting

that the DE gut microbiome could influence metabolism

processes in DR patients when compared with the NDR

group. Regarding the metabonomics results, we found that

lysine-related metabolism, histidine metabolism, and b-alanine
Frontiers in Immunology 09
metabolism were enriched, suggesting that these aforementioned

metabolism-related pathways could play important roles in the

pathogenesis of DR. Recent single-cell RNA sequencing for DR

showed that Müller cell-mediated changes in b-alanine and

histidine signaling were important for pathway and cell-

specific alterations in the progression of DR, which also

supported our conclusions (29).
TABLE 2 Metastat of the functional differences between the groups.

KEGG level 2 Mean (NDR) Standard error (NDR) Mean (DR) Standard error (DR)

Metabolism; Carbohydrate metabolism 0.045055 0.001350 0.039049 0.002067

Cellular Processes; Cell growth and death 0.005582 0.000174 0.004887 0.000237

Human Diseases; Immune diseases 0.000351 0.000330 0.000273 0.001231

Metabolism; Metabolism of other amino acids 0.009551 0.000403 0.008123 0.000471

Genetic Information Processing; Folding 0.009485 0.000301 0.008408 0.000397

Human Diseases; Infectious diseases: Bacterial 0.002702 0.000140 0.002324 0.00012

Genetic Information Processing; Transcription 0.001274 0.000131 0.000970 0.007061

Metabolism; Amino acid metabolism 0.034519 0.001297 0.030546 0.001477

Metabolism; Biosynthesis of other secondary metabolites 0.008683 0.000271 0.007653 0.000399

Metabolism; Lipid metabolism 0.010915 0.000429 0.009629 0.000478

Organismal Systems; Aging 0.001551 0.007120 0.001341 0.000753

Metabolism; Energy metabolism 0.021537 0.000578 0.019669 0.000859
KEGG, Kyoto Encyclopedia of Genes and Genomes; DR, diabetic retinopathy; NDR, diabetes without diabetic retinopathy.
B

C

D

A

FIGURE 4

DE metabolites between DR and NDR. (A) Volcano plot indicating upregulated and downregulated metabolites using the positive ion model.
(B) Volcano plot indicating upregulated and downregulated metabolites using the negative ion model. (C) Heat map of DE metabolites using the
positive ion model. (D) Heat map of DE metabolites using the negative ion model. DE, differentially expressed.
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Studies have suggested an association between human gut

microbiota dysbiosis and DR. There is a significant increase in

the percentage of Bacteroidetes in DR patients when compared

with healthy controls. Higher DR Bacteroidetes abundance has

also been reported in previous 16S rRNA sequencing studies

(12). Unlike these studies, we found a decrease in the DR group

at the genus level of Bifidobacterium and Lactobacillus.

Lactobacillus is a common probiotic bacterium with good

immunomodulatory and antioxidant properties (30), and its

elevated levels have been positively correlated with long-term

control of fasting blood glucose, glycosylated hemoglobin, and

glycemic control (20). Bifidobacterium can inhibit harmful

bacteria, improve gastrointestinal barrier function, inhibit the

release of pro-inflammatory cytokines (31), increase

the production of short-chain fatty acids, and affect the

metabolic transformation of intestinal microbiota (32). Our

results suggested that a reduction of Lactobacillus and

Bifidobacterium may be involved in the mechanism of DR.

Nevertheless, a significant increase in Acidaminococcus,

Escherichia, and Enterobacter was observed in patients with

DR (14). A recent study showed that a significant decrease in

18 genera was observed in DR patients, and 12 of 18 genera

were also decreased in DM (13). Analysis of microbiota

composition showed a significant decrease in the percentage

of Pasteurellaceae in DR patients (12). At the genus level using

high-throughput 16S rDNA analysis, Faecalibacterium,

Roseburia, Lachnospira, and Romboutsia were enriched in

DR patients (16). The 16S rRNA gene sequencing and

untargeted metabolomics showed that reduced diversity and

altered composition of gut microbiota and specific microbe–

metabolite interplay were associated with proliferative DR (15).

These previous studies in humans linking the gut microbiome

to DR reached divergent conclusions and differed from our

findings (12–16). However, it was difficult to directly compare

these findings due to different study designs, sequencing
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techniques, statistical methods, and varied confounders. In

the present study, we conducted a case–control study (age,

sex, and diabetic duration were all matched), which included a

comprehensive analysis of systematic variables as potential

confounders. Moreover, we used both metagenomic shotgun

sequencing and metabolomic profiling to ensure that outcomes

were robust and further discovered the role of the gut

microbiome on DR at global, taxonomic, and functional

levels. Our findings complemented and may coalesce

seemingly inconsistent results from various reports.

A key question is the role of microbiome dysbiosis in the

etiology of DR. Gut biodiversity and its function in subjects with

metabolic disorders have been particularly concerned with type

1 diabetes and T2DM complications (33). A wide spectrum of

scientific research has shown how the gut microbiome influences

the host through different pathways, including products of gut

microbial metabolites (33). Microbial metabolites are key

mediators of microbe–host crosstalk, significantly affecting the

organism’s glucose metabolism. Intestinal microbiota produces

metabolites such as short-chain fatty acids, amino acids,

trimethylamine N-oxide, bile acids, and indole propionic acids,

which participate in the regulation of host metabolism and gut

integrity (34, 35). Using these metabolites, the gut microbiome

moderates and generates its complex effects on diseases such as

diabetes. As a complication of diabetes, a previous study

reported that DR patients had higher bacterial conjunctival

flora when compared with T2DM patients without DR (36),

which suggested that the gut microbiome could be associated

with DR. However, the exact role of the gut microbiome in DR

remains largely unknown. Our study highlighted the key roles of

the gut microbiome in DR, but further studies are still needed to

identify the molecular mechanisms involved in the process

of DR.

Although the above findings suggested the association of gut

microbiota with DR, the altered gut microbiota and its pathways
BA

FIGURE 5

Bioinformatics analyses of differentially expressed (DE) metabolites. (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of
DE metabolites using the positive ion model. (B) KEGG pathway analyses of DE metabolites using the negative ion model.
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FIGURE 6

Metagenomic and metabolomic association between DR and NDR. (A) Heat maps were hierarchically clustered to represent the species
metabolite-associated patterns based on the correlation distances. (B) The scatter plots of asymmetric dimethylarginine in the positive ion
model with the associated microflora (P < 0.05). (C) The scatter plots of carnosine in the negative ion model with the associated
microflora (P < 0.05). *P<0.05.
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in host-modulating DR conditions remain unclear. In the

present study, we identified pathways involved in the

differential abundance of metabolites between DR patients and

NDR patients. Importantly, lysine acetylation was one of the

most widespread posttranslational modifications (PTMs) and

induced modifications such as succinyl-lysine, malonyl-lysine,

and acetyl-lysine (37, 38). Furthermore, the succinylome of the

vitreous humor is significantly enriched in the regulation of

defense responses during DR (39). Different types of protein

modifications could change the activity of proteins and affect

different pathways during disease progression. Using

metabonomics analyses, we found that lysine biosynthesis and

lysine degradation were enriched in the host during DR,

suggesting that different types of PTMs might have changed

during the pathophysiological processes of DR. However, little is

known regarding the potential roles of PTMs in DR when

compared with NDR, which could explain the molecular

mechanisms of DR. Carnosine was a differential metabolite

that we identified in the negative model. Recent studies have

found that it improved DR through the Mitogen-activated

protein kinases/extracellular regulated protein kinases (MAPK/

ERK) pathway (40) and that carnosine and its derivatives were

possible novel treatments for diabetic vascular complications

(41). We found a significant correlation between carnosine and

the gut microbial Eubacterium hallii. E. hallii is a major producer

of short-chain fatty acids, providing an energy source for

enterocytes and inducing anti-inflammatory effects in the

intestinal tract to enhance the function of the intestinal barrier

(42). Previous studies showed that E. hallii also contributed to

the formation of intestinal propionate and cobalamin (43).

Propionate was identified as a health-promoting intestinal

metabolite (44), and cobalamin was beneficial for neuropathy

in DR patients (45). These results suggested a potential beneficial

effect of E. hallii in DR patients. Because the asymmetric

dimethylarginine metaboli te inhibited intercel lular

communication in retinal pericytes, it could aggravate the

destruction of the blood–retinal barrier in DR and contribute

to neovascularization in DR patients (46, 47). From our

correlation analysis, the associated bacteria were Odoribacter,

CAG83, and merdae, whose effects need future experimental

verification (48). Further research on the exact mechanisms of

the gut microbiota and metabolites in DR patients is also needed,

which might mechanistically be involved in DR.

The main strength of this study was that it was the first to

identify the mechanisms of human fecal microbiota during DR

using both metagenomic and metabonomics analyses. In

addition, enrollment of participants was based on strict

inclusion/exclusion criteria, and the recruited subjects were

strictly control matched, indicating that the stool samples in

the current study were reliable and our findings were

repeatable. Several limitations should also be addressed.
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First, we did not perform validations of molecular

mechanisms in vivo or in vitro, which are now our future

research objectives. Second, the sample size was relatively

small due to the use of strict inclusion and exclusion

criteria. Third, we did not collect information on dietary

habits, which may have influenced the gut microbial

composition. Finally, due to the inherent limitations of a

case–control study, we could not reveal the causal

relationships between identified differential gut microbial

and DR; thus, further large-scale prospective studies are still

needed. Based on the present and future studies, it is hoped

that probiotic products can be developed for the prevention

and treatment of DR patients.
Conclusion

The use of metagenomics and metabonomics analyses has

highlighted the relationships of gut microbiomes in DR patients.

This study identified differential gut microbiota compositions

and characteristic fecal metabolic phenotypes, as well as

pathways with differentially abundant metabolites in DR

patients, when compared with those in patients with T2DM.

Our findings may provide new insights into the pathophysiology

of DR and the basis for the development of novel treatments for

DR patients.
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