
Yulan Jin,1,2,3 Ashok Sharma,2,3 Shan Bai,2 Colleen Davis,2 Haitao Liu,1,2 Diane Hopkins,2 Kathy Barriga,4

Marian Rewers,4 and Jin-Xiong She1,2,3

Risk of Type 1 Diabetes
Progression in Islet
Autoantibody-Positive Children
Can Be Further Stratified Using
Expression Patterns of Multiple
Genes Implicated in Peripheral
Blood Lymphocyte Activation
and Function
Diabetes 2014;63:2506–2515 | DOI: 10.2337/db13-1716

There is tremendous scientific and clinical value to
further improving the predictive power of autoantibodies
because autoantibody-positive (AbP) children have het-
erogeneous rates of progression to clinical diabetes.
This study explored the potential of gene expression
profiles as biomarkers for risk stratification among 104
AbP subjects from the Diabetes Autoimmunity Study in
the Young (DAISY) using a discovery data set based on
microarray and a validation data set based on real-time
RT-PCR. The microarray data identified 454 candidate
genes with expression levels associated with various
type 1 diabetes (T1D) progression rates. RT-PCR anal-
yses of the top-27 candidate genes confirmed 5 genes
(BACH2, IGLL3, EIF3A, CDC20, and TXNDC5) associ-
ated with differential progression and implicated in lym-
phocyte activation and function. Multivariate analyses
of these five genes in the discovery and validation data
sets identified and confirmed four multigene models
(BI, ICE, BICE, and BITE, with each letter representing
a gene) that consistently stratify high- and low-risk sub-
sets of AbP subjects with hazard ratios >6 (P < 0.01).

The results suggest that these genes may be involved
in T1D pathogenesis and potentially serve as excellent
gene expression biomarkers to predict the risk of pro-
gression to clinical diabetes for AbP subjects.

Type 1 diabetes (T1D) is a chronic autoimmune disease
resulting from the targeted destruction of insulin-secreting
pancreatic islet b-cells. Islet autoantibodies, markers of
active islet autoimmunity, can be detected years, and
even decades, before the appearance of clinical symptoms
(1). The long asymptomatic period between the appear-
ance of islet autoantibodies and disease onset provides
a window of opportunity for T1D prevention in subjects
who are autoantibody positive (AbP). At least one of four
major islet autoantibodies (insulin autoantibody, GAD an-
tibody, IA-2 antibody, and zinc transporter 8 antibody) is
detected in .90% of patients with newly diagnosed T1D
(2). These autoantibodies have become the gold standard
for identifying at-risk subjects from first-degree relatives
(FDRs) of T1D patients as well as the general population
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(3). Further improvement of risk prediction using auto-
antibodies has clear scientific and clinical value. Subjects
with multiple islet autoantibodies have a high projected
risk within 10 years (69.7% [95% CI, 65.1–74.3%]),
whereas the presence of a single autoantibody shows
a low risk (14.5% [95% CI, 10.3–18.7%]) (4). Further-
more, AbP subjects have variable progression to T1D,
with a prediabetes period ranging from 0 to 20 years.
Given the variable length of time, further stratifying these
individuals for more accurate prediction to clinical disease
would be advantageous. Although age at seroconversion
and titer of autoantibodies can further improve risk pre-
diction (4,5), additional biomarkers are still needed. Con-
siderable efforts have been devoted to the development of
genetic and metabolic biomarkers based on AbP prospec-
tive cohorts or T1D prevention trials. HLA (4,6–8), non-
HLA (9–12) genetic markers, and metabolic risk scores
(13–15) have shown certain levels of improvement for
stratifying the risk of AbP subjects. However, the practical
potential of these markers is limited by either their in-
trinsic deficiencies or low predictive values.

Gene expression profiles are expected to dynamically
change during disease progression and treatment. There-
fore, gene expression patterns may serve as potential
biomarkers for risk stratification and therapeutic moni-
toring. Several studies have examined gene expression
changes related to T1D and identified a large number of
genes that may differ in expression levels among healthy
control subjects, AbP subjects, and T1D patients (16–22).
However, these studies have been limited by their cross-
sectional design and, hence, hardly suggest biomarker po-
tential. The present study identified five genes that in
combination can serve as biomarkers to stratify progres-
sion risk in AbP subjects. Our strategy first used micro-
array data to discover gene expression changes associated
with differential progression from AbP to T1D and then
validated the top-27 genes using quantitative RT-PCR
data from independent AbP subjects from the Diabetes
Autoimmunity Study in the Young (DAISY) cohort.

RESEARCH DESIGN AND METHODS

Human Subjects and Samples
A total of 104 AbP subjects who were consecutively seen
in DAISY and followed until February 2012 were included
in the analyses. AbP status was identified based on the
presence of at least one of the following three autoanti-
bodies: insulin autoantibody, GAD antibody, and IA-2
antibody. By the cutoff date, diabetes developed in 39 of
the 104 AbP subjects, with a median follow-up time (from
first AbP) of 5.64 years. The median follow-up time of the
65 nonprogressors was 8.9 years. Diabetes was diagnosed
according to American Diabetes Association criteria. De-
mographic information on the distribution of age and sex,
age at the appearance of first antibody, FDR status,
genetic risk [classified by HLA genotype (23)], number of
antibodies, and follow-up time (after first AbP) is summa-
rized in Table 1. The 104 subjects were split into two

study phases: discovery (microarray) and validation
(real-time RT-PCR). Thirty-six subjects were selected for
the discovery phase, with progressors (n = 21) and non-
progressors (n = 15) matched for age, sex, age at first AbP,
FDR status, genetic risk, and number of autoantibodies
(most with two or more AbP). The remaining 68 subjects
(18 progressors and 50 nonprogressors) were included in
the validation phase. Compared with nonprogressors, the
progressors in the validation data set were younger, had
an earlier age of first antibody appearance, had a higher
frequency of multiple autoantibodies, and had more fre-
quently FDRs with diabetes. Demographic information for
the subjects in the two data sets is summarized in Table 1.
A dot plot of the distribution of age of first AbP, age of
sample collection, and age of T1D/last visit for each sub-
ject is shown in Supplementary Fig. 1. For most subjects,
gene expression was analyzed at a relatively early time
point following first antibody detection, with a mean in-
terval time of 2.01 6 2.17 years.

RNA Samples
Peripheral blood (2.5 mL) was immediately preserved in
PAXgene RNA tubes. After 2 h at room temperature, the
tubes were stored at 280°C, and total RNA was extracted
within a few weeks using a QIAGEN kit specially devel-
oped for the PAXgene RNA tubes. RNA quality and quan-
tity was determined using NanoDrop ND-1000. Extracted
RNA was stored at 280°C until use.

Microarray Analysis
Gene expression profiling was performed using the
HumanRef-8 Expression BeadChip (Illumina, San Diego,
CA). The BeadChip targets ;24,526 probes. Probe prep-
aration and hybridization were carried out according to
manufacturer’s recommendations. The microarray data
are Minimum Information About a Microarray Experi-
ment compliant and have been deposited in the National
Center for Biotechnology Information Gene Expression
Omnibus repository and are accessible through Gene Ex-
pression Omnibus Series accession number GSE51058.

High-Throughput Real-Time RT-PCR
High-throughput real-time RT-PCR was performed on the
BioMark 96.96 Dynamic Array (Fluidigm) with TaqMan
Gene Expression Assays (Applied Biosystems). Briefly, an
aliquot of total RNA was converted to cDNA through
a High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems), then cDNA was preamplified with pooled
gene assays. Preamplified cDNA was loaded into BioMark
Dynamic Array chips using the NanoFlex IFC controller.
Threshold cycle, as a measurement of relative fluores-
cence intensity, was extracted by BioMark Real-Time PCR
Analysis software. Threshold cycle values were directly
used in data analysis after normalization to eight pre-
selected reference genes: RNF31, TM9SF4, ABL, PPIB, ESD,
FPGS,MRPL19, and TRAP1 (Supplementary Table 1). Tech-
nical reproducibility was examined using a pooled cDNA
sample aliquot.
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Statistical Analysis
All analyses were performed using the R statistics pack-
age and environment for statistical computing (www
.r-project.org). The lumi package in R was used for pre-
processing and normalization of the microarray data us-
ing variance stabilizing transformation and robust spline
normalization. Probes not detected in .50% of the sam-
ples were excluded from further analysis. We used Cox
proportional hazard models to evaluate the impact of
gene expression levels on diabetes-free survival. Diabetes-
free survival was calculated as time from first antibody-
positive date to the T1D diagnosis date. Subjects with no
evidence of disease were censored at the date of the last
follow-up visit. The subjects were divided into two groups
(low and high) using the median gene expression value
of each individual gene as a cutoff. Kaplan-Meier plots
were used to compare differences in diabetes-free survival
between these groups. A combination of log-rank test
P value and absolute value of the hazard ratio (HR) was
used for selecting significant genes. Only genes having a
significant effect in the univariate analysis were entered
into the multivariate analyses to assess the combined
effect of various genes on diabetes-free survival. For the
models using multiple genes, self-organizing map cluster
analysis (24) was used to divide the subjects into two

clusters (C1 and C2) based on the gene expression pat-
terns. Kaplan-Meier plots were used to compare the dif-
ferences in diabetes-free survival between these groups.
The consistency between models was assessed by calculat-
ing the percentage of subjects classified in the same group
by model. Cox regression analysis was used to evaluate
the independent prognostic value of gene expression by
including known confounding factors, such as age at first
AbP, the number of autoantibodies present, genetic risk,
and FDR status, in the regression models. The Akaike
information criterion (AIC) was calculated to compare
the quality of fit for each model.

RESULTS

Identification of Genes Associated With Progression
From Autoimmunity to Diabetes
Microarray analysis was carried out on peripheral blood
mononuclear cells from 36 AbP subjects, 21 of whom had
progressed to T1D by the end of follow-up. Among the
12,904 genes tested, 454 showed significant associations
(P, 0.05) with T1D progression, and 112 of them had an
HR .3 (or ,0.33).

To validate these findings, the top-27 genes were
selected for real-time RT-PCR confirmation in an in-
dependent cohort that included 68 AbP subjects (18

Table 1—Clinical characteristics of AbP subjects in the whole cohort and separate data sets

Characteristic Progressors Nonprogressors P value

Total
Sample size (n) 39 65
Age at sampling (years) 7.41 (1.74–15.02) 9.05 (1.55–45.08) 4.07E-04
Age at first AbP (years) 3.48 (0.77–12.56) 7.28 (0.84–40.78) 1.79E-05
Follow-up time (years) 5.64 (0.21–12.12) 8.9 (5.5–16.35) 6.77E-08
Male sex 22 (56.41) 34 (52.31) 0.84
FDR 23 (58.97) 27 (41.54) 0.13
Genetic risk (H/M/L/unknown) 19/7/12/1 16/16/30/3 2.12E-02
$2 AbP 31 (79.49) 24 (36.92) 6.15E-05
Interval time* 2.60 6 2.44 1.66 6 1.94 3.32E-02

Microarray data set
Sample size (n) 21 15
Age at sampling (years) 7.66 (1.74–10.56) 7.86 (2.25–15.18) 0.34
Age at first AbP (years) 3.15 (0.77–9.77) 4.53 (0.84–13.46) 0.12
Follow-up time (years) 6.12 (0.21–11.41) 8.38 (6.23–16.35) 2.09E-03
Male sex 9 (43) 8 (53.33) 0.78
FDR 10 (48) 8 (53.33) 1.00
Genetic risk (H/M/L/unknown) 11/5/5/0 4/5/6/0 0.23
$2 AbP 20 (95) 14 (93.33) 1.00
Interval time* 2.59 6 2.48 1.94 6 2.16 0.42

RT-PCR data set
Sample size (n) 18 50
Age at sampling (years) 7.22 (3.48–15.02) 9.68 (1.55–45.08) 1.82E-03
Age at first AbP (years) 4.02 (0.81–12.56) 8.95 (1.3–40.78) 1.75E-04
Follow-up time (years) 4.6 (2.48–12.12) 9.2 (5.5–15.65) 2.46E-04
Male sex 13 (72.22) 26 (52) 0.23
FDR 13 (72.22) 19 (38) 2.65E-02
Genetic risk (H/M/L/unknown) 8/2/7/1 12/11/24/3 0.18
$2 AbP 11 (61.11) 10 (20) 3.28E-03
Interval time* 2.60 6 2.55 1.57 6 1.88 0.07

Data are median (range), n (%), and mean 6 SD unless otherwise indicated. H, high; L, low; M, medium. *Time between first antibody
detection and collection of the sample tested.
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progressors and 50 nonprogressors). Genes were first
selected based on HR and P values (HR or 1/HR close to
3, P , 0.02) and were further prioritized based on
functional relevance to autoimmunity (especially T1D),
inflammation, cellular activation, or proliferation. Three
randomly selected negative control genes (XRCC2, FKBP11,
and ORM1) were also included for validation (Table 2).
Among the 27 candidate genes, 3 (BACH2, TXNDC5, and
CDC20) had a confirmed high HR (3.9, 3.3, and 2.8, re-
spectively) and significant P values (P , 0.05), whereas 2
(IGLL3 and EIF3A) had a confirmed good HR (2.6 and 2.3,
respectively) and marginal P values (P = 0.055 and 0.074,
respectively). The remaining 22 candidate genes and the 3
negative control genes were excluded from further study
because of insignificant P values (P . 0.1) or inconsistent

HRs in the discovery and validation data sets (Table 2).
As shown in Fig. 1, the higher expression of these five
genes is associated with a higher risk of T1D progression.
The difference in mean gene expression levels of the high-
expression subset and low-expression subset are also shown
in Fig. 1 (fold change 1.6–3.9 in the validation data set) and
are consistent with the microarray data set for four of the
five genes.

Multigene Expression Models Are Better Predictors of
Progression From AbP to T1D
It is well known that predictive power using multiple
genes may be significantly better than that of any single
gene. Thus, we evaluated the predictive value of models
containing combinations of the five genes selected by the
single-gene analysis (BACH2, IGLL3, TXNRD5, CDC20,

Table 2—Genes correlated with T1D progression from AbP

Microarray RT-PCR

Gene HR (95% CI) P value FC CV HR (95% CI) P value FC CV

TXNDC5 3.48 (1.38–8.78) 5.23E-03 1.63 6.86 3.30 (1.17–9.32) 1.80E-02 3.00 4.69

CDC20 3.27 (1.31–8.16) 7.66E-03 1.52 6.50 2.82 (1.04–7.67) 3.46E-02 3.22 5.75

IGLL3 3.93 (1.43–10.80) 4.71E-03 1.37 4.60 2.64 (0.94–7.42) 5.54E-02 3.99 9.27

EIF3A 3.52 (1.35–9.21) 6.65E-03 1.66 5.37 2.37 (0.90–6.28) 7.37E-02 1.65 1.91

BACH2 3.72 (1.43–9.62) 3.79E-03 1.08 1.04 3.94 (1.39–11.21) 5.71E-03 1.62 1.92

LHPP 0.23 (0.09–0.62) 1.83E-03 1.45 3.92 0.84 (0.33–2.15) 7.17E-01 2.13 6.42

ETS2 0.35 (0.14–0.89) 2.12E-02 1.22 2.28 0.54 (0.21–1.41) 2.02E-01 2.26 3.64

TMEM91 0.31 (0.12–0.78) 9.41E-03 1.71 5.12 0.63 (0.24–1.63) 3.34E-01 1.89 2.53

RNF167 0.21 (0.08–0.57) 8.51E-04 1.30 2.87 0.83 (0.33–2.10) 6.95E-01 1.57 1.89

ATP6V1F 0.24 (0.09–0.66) 2.74E-03 1.47 3.55 0.65 (0.25–1.69) 3.77E-01 1.87 2.38

ANKRD9 0.19 (0.07–0.54) 5.71E-04 1.91 6.88 2.56 (0.90–7.31) 6.91E-02 2.41 4.74

CHCHD5 0.31 (0.12–0.83) 1.35E-02 1.36 3.77 1.55 (0.59–4.07) 3.72E-01 2.49 7.17

DOCK8 3.94 (1.43–10.81) 4.62E-03 1.58 4.29 0.61 (0.24–1.59) 3.10E-01 2.07 3.06

ESAM 0.19 (0.07–0.53) 4.57E-04 1.35 3.59 0.85 (0.33–2.14) 7.24E-01 2.37 3.89

F5 0.25 (0.09–0.65) 2.40E-03 1.29 3.59 0.49 (0.18–1.30) 1.43E-01 3.76 5.82

HP 0.30 (0.11–0.81) 1.22E-02 1.39 4.60 1.20 (0.40–3.61) 7.36E-01 6.04 9.28

ITGB5 0.28 (0.11–0.74) 6.31E-03 1.75 6.16 0.64 (0.25–1.65) 3.51E-01 3.16 5.52

KHDRBS1 4.39 (1.61–12.00) 1.87E-03 1.43 3.21 1.61 (0.62–4.15) 3.21E-01 1.61 1.92

LY6G6F 0.25 (0.09–0.68) 3.45E-03 1.36 3.65 1.23 (0.46–3.23) 6.81E-01 2.84 5.41

MAP2K1 2.84 (1.13–7.18) 2.18E-02 1.32 2.83 1.39 (0.54–3.61) 4.91E-01 1.66 2.18

NFE2 0.38 (0.15–0.97) 3.65E-02 1.77 5.11 0.58 (0.23–1.49) 2.53E-01 2.31 3.44

PLD3 0.25 (0.09–0.68) 3.82E-03 1.40 3.35 1.56 (0.60–4.03) 3.60E-01 2.23 3.56

PRDX5 0.30 (0.12–0.75) 6.58E-03 1.81 5.62 1.62 (0.62–4.20) 3.17E-01 1.88 2.49

TRAPPC5 0.14 (0.05–0.43) 7.39E-05 1.46 3.88 1.64 (0.62–4.33) 3.13E-01 2.41 4.98

TSC1 3.76 (1.42–9.98) 4.47E-03 1.45 3.88 1.49 (0.59–3.81) 3.98E-01 1.53 1.79

TSPAN33 0.25 (0.10–0.63) 1.69E-03 1.67 5.22 1.10 (0.43–2.79) 8.44E-01 1.85 2.68

UBP1 3.70 (1.42–9.65) 4.77E-03 1.44 3.45 1.04 (0.41–2.62) 9.33E-01 1.45 1.58

XRCC2 1.36 (0.57–3.24) 4.93E-01 1.52 6.64 1.16 (0.46–2.94) 7.52E-01 2.19 4.37

FKBP11 2.18 (0.91–5.21) 7.43E-02 1.35 3.71 1.30 (0.51–3.31) 5.76E-01 2.93 5.95

ORM1 0.42 (0.17–1.05) 5.51E-02 1.80 6.59 0.86 (0.34–2.18) 7.44E-01 7.22 10.33

CV, coefficient of variance; FC, fold change.

diabetes.diabetesjournals.org Jin and Associates 2509



and EIF3A). With five genes, there is a total of 25 two-,
three-, and four-gene models. In the discovery data set,
17 of the 25 models can distinguish two clusters of sub-
jects with significant differences in T1D progression
(Supplementary Table 2). Further assessment of these
models in the validation cohort confirmed 14 of the 17
models to have predictive value. It should be noted that
not every confirmed combination model had an in-
creased predictive power over the single genes. Four
models were preferred for their larger HR values, more
significant P values, and lower AIC values (Table 3).
Model BI (comprising the BACH2 and IGLL3 genes)
had an HR of 7.34 (adjusted P = 0.004) and AIC of
122.02. Model ICE (comprising IGLL3, CDC20, and
EIF3A) had an HR of 6.32 (adjusted P = 0.007) and
AIC of 122.02. Model BICE (comprising BACH2, IGLL3,
CDC20, and EIF3A) had an HR of 7.76 (adjusted P =
0.003) and AIC of 121.12. Finally, model BITE (compris-
ing BACH2, IGLL3, TXNDC5, and EIF3A) had an HR of
7.76 (adjusted P = 0.003) and AIC of 121.12. As shown in
Fig. 2, these four models consistently stratify AbP sub-
jects with differential progression rates in both the dis-
covery and the validation data sets.

Consistency Among Predictive Models
Having shown the utility of the multigene models in risk
stratification of AbP subjects, we next assessed the
consistency of risk stratification for individual subjects
using the various models. Fig. 3 shows the consistency
among all possible combinations of these top-four mod-
els. A major conclusion from these results is that 75% of
the individuals are consistently classified into the same
progression group by all four models. Further examina-
tion of the data suggests that model ICE has less consis-
tency than the other three models (BI, BICE, and BITE).
The mean consistency among models excluding ICE is
.89% for both data sets, whereas the mean consistencies
for models including ICE are 82.6% and 84.4% for the
discovery and validation data sets, respectively. Indeed,
ICE has the lowest HR and highest AIC in both the dis-
covery and the validation data sets compared with the
other three models (Fig. 2, Table 3).

Gene Expression Models Are Independent Predictors
of T1D Progression
Several demographic parameters and molecules are well-
established risk factors associated with T1D progres-
sion. These factors include age at first appearance of

Figure 1—Diabetes-free survival in two AbP subgroups (high and low) stratified according to expression of individual genes (BACH2,
CDC20, TXNDC5, IGLL3, and EIF3A). HR, P value, fold change between high- and low-expression groups [FC(H/L)] and number of
progressors in each subgroup are shown for each gene in both microarray and real-time RT-PCR data sets.
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autoantibodies, the number of autoantibodies present,
genetic factors, and FDR status. With the exception of
FDR status, significant differences in these factors were
observed between the progressors and the nonprogres-
sors (Table 1). To examine whether these known factors
were confounding factors for the gene expression models
on T1D risk stratification, Cox regression analysis was
used to analyze both the discovery and the validation
data sets. According to multivariate analyses, three of
the four gene expression models (BI, BICE, and BITE)
are independent predictors of T1D progression with sig-
nificant adjusted P values (P , 0.05) (Table 4).

The study also suggests that using gene expression in
conjunction with other known risk markers improves the
risk stratification for AbP subjects. Consistent with pre-
vious findings, subjects with more than one autoantibody
have a significantly higher risk for T1D progression than
those with only one autoantibody (HR 3.07, P , 0.05)
(Supplementary Fig. 2A). Of note, the subjects with more
than one autoantibody can be further stratified into
a high-risk and a low-risk group by model BI (HR 7.12,
P , 0.05) (Supplementary Fig. 2B).

DISCUSSION

Islet autoantibodies are the current gold standard for risk
stratification for the development of T1D and have been
used in large population-based studies, including TEDDY
(The Environmental Determinants of Diabetes in the
Young) and many clinical trials for T1D prevention
(25–27). However, testing for islet autoantibodies is not
specific enough even when multiple autoantibodies are

detected. The aim of the current study was to investigate
whether gene expression patterns can be used as bio-
markers to complement islet autoantibodies for T1D
risk stratification. We demonstrate that expression changes
of certain genes are associated with T1D progression from
autoimmunity. The predictive value of single genes is gen-
erally moderate (HRs of 2.4–3.9) and may be further lim-
ited because the risk assignment by different genes may
not be consistent enough. Several multigene models have
shown much better predictive power than individual
genes. One two-gene model (BACH2 and IGLL3) identified
two AbP subgroups with very different progression rates
(HR 7.3). Adding two other genes (CDC20 and EIF3A or
TXNDC5 and EIF3A) did not significantly improve the HR
values (HR 7.8). However, the two four-gene models are
highly consistent in risk assignment (consistency of 100%
in the validation data set). Because risk of T1D progres-
sion among AbP subjects is influenced by many other
factors, such as family history of diabetes, genetic factors,
and number of autoantibodies, it was necessary to deter-
mine whether the risk associated with differential gene
expression is independent of these known factors. Cox
regression analyses suggested that risk attributed to
gene expression could not be accounted for by the risk
factors examined in this study. Indeed, gene expression
can be used together with the number of autoantibodies
to improve risk stratification.

This study has demonstrated for the first time in our
knowledge that gene expression patterns may serve as
biomarkers to stratify T1D risk among AbP children.
When compared with genetic markers (HLA and non-HLA)

Table 3—Multigene expression models for T1D risk classification

Microarray RT-PCR

Combination HR (95% CI) Adjusted P value AIC HR (95% CI) Adjusted P value AIC

BI 3.10 (1.24–7.76) 2.05E-02 122.93 7.34 (2.07–25.99) 3.88E-03 122.02

ICE 2.51 (1.05–6.01) 4.25E-02 125.19 6.32 (1.82–21.96) 6.69E-03 123.62

BICE 3.06 (1.23–7.66) 2.05E-02 123.08 7.76 (2.20–27.39) 2.78E-03 121.12

BITE 5.86 (2.16–15.91) 2.65E-03 115.94 7.76 (2.20–27.39) 2.78E-03 121.12

BC 2.96 (1.21–7.24) 2.09E-02 123.35 3.59 (1.26–10.22) 2.05E-02 132.18

BT 3.35 (1.34–8.34) 1.50E-02 122.01 2.90 (1.08–7.81) 4.25E-02 133.94

BCT 3.86 (1.58–9.47) 7.78E-03 120.23 2.83 (1.06–7.59) 4.25E-02 134.22

BCI 3.99 (1.61–9.88) 7.78E-03 120.04 4.04 (1.43–11.44) 1.20E-02 127.28

BIT 5.86 (2.16–15.91) 2.65E-03 115.94 4.96 (1.62–15.22) 8.99E-03 125.50

BIE 3.11 (1.24–7.76) 2.05E-02 122.93 4.88 (1.58–15.01) 9.24E-03 125.81

CET 2.52 (1.06–5.96) 4.25E-02 125.07 2.83 (1.06–7.59) 4.25E-02 134.22

TIE 3.63 (1.42–9.25) 1.16E-02 121.92 3.63 (1.28–10.34) 2.05E-02 128.57

BICT 3.65 (1.49–8.98) 9.46E-03 120.99 2.84 (1.06–7.63) 4.25E-02 130.72

BCTE 3.86 (1.58–9.46) 7.78E-03 120.23 2.97 (1.09–8.06) 4.23E-02 133.93

TI 3.63 (1.42–9.25) 1.16E-02 121.92 1.46 (0.57–3.75) 0.43 134.57

CIT 3.36 (1.39–7.93) 1.16E-02 122.18 2.51 (0.94–6.72) 0.07 131.67

CITE 3.33 (1.39–7.93) 1.16E-02 122.18 2.53 (0.95–6.75) 0.07 131.63
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Figure 2—Diabetes-free survival in two AbP subgroups (C1 and C2) stratified according to multigene expression models (BI, ICE, BICE, BITE).
HR, P value, and number of progressors in each subgroup are shown for each model in both microarray and real-time RT-PCR data sets.
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(4,6–12) and metabolic markers (13–15), the present gene
expression markers have several strengths. First, the in-
trinsic deficiencies of genetic and metabolic markers limit
their usefulness for T1D prevention. For example, genetic
markers cannot be used as surrogate markers for thera-
peutic outcomes. Whereas metabolic anomalies are indic-
ative of pancreatic islet cell dysfunction, they are only
useful markers at a very late stage of disease progression
when the opportunity for disease prevention may have
passed. In contrast, gene expression markers can be
used for both early disease prediction and therapeutic
evaluation because of their dynamic change during dis-
ease progression. Second, the identified gene expression

markers were shown to further stratify AbP subjects into
subgroups with different progression rates to T1D. High
HR values (up to 7.76), consistency of their predictive
values between discovery and validation data sets, and
high model consistency (75–100%) indicate that these
gene expression biomarkers have a potentially strong pre-
dictive power and reliability. Finally, cohorts in most pre-
vious studies were restricted to children with a family
history of T1D, such as the genetic studies in BABYDIAB
(10–12), the Belgian Diabetes Registry (7), and DiMe
(Childhood Diabetes in Finland) (8) and metabolic marker
studies in Diabetes Prevention Trial–Type 1 (13–15). The
DAISY cohort used in the current study includes children

Figure 3—Risk stratification consistency in individual subjects by model. Model 1, BI; model 2, ICE; model 3, BICE; and model 4, BITE. M,
microarray data set; P, real-time RT-PCR data set.

Table 4—Cox regression analysis for multigene expression models

Univariate Multivariate

Variable P value HR (95% CI) AIC P value HR (95% CI) AIC

Microarray
Model 1: BI 1.08E-02 3.11 (1.24–7.76) 122.93 2.97E-02 3.93 (1.14–13.50) 127.99
Model 2: ICE 3.31E-02 2.51 (1.05–6.00) 125.19 0.14 2.35 (0.76–7.33) 131.27
Model 3: BICE 1.19E-02 3.06 (1.23–7.66) 123.08 3.69E-02 3.56 (1.08–11.75) 128.56
Model 4: BITE 1.06E-04 5.86 (2.17–15.91) 115.94 8.76E-04 12.54 (2.83–55.10) 118.48

RT-PCR
Model 1: BI 3.88E-04 7.34 (2.1–26.0) 122.02 1.68E-02 5.53 (1.37–22.47) 111.55
Model 2: ICE 9.37E-04 6.32 (1.82–21.96) 123.62 7.75E-03 6.17 (1.62–23.56) 109.50
Model 3: BICE 2.22E-04 7.76 (2.20–27.39) 121.12 8.52E-03 6.48 (1.61–26.07) 110.06
Model 4: BITE 2.22E-04 7.76 (2.20–27.39) 121.12 8.52E-03 6.48 (1.61–26.07) 110.06

In addition to gene expression factor, age at first AbP, the number of autoantibodies present, genetic risk, and FDR status were included
in multivariate models.
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from the general population and with T1D relatives. The
Cox regression results suggest that the gene expression
markers are independent of family history.

The limitations of this study include the absence of
zinc transporter 8 antibody information and the relatively
small number of AbP subjects, especially when split into
two sample sets. Despite the potential utility of these
gene expression models in risk stratification, it should be
noted that as a result of population differences and
sampling bias, the best genes and models may not be
selected in this study. However, the experimental and
analytical approaches advocated in this study should serve
as a model for future studies using much larger sample
sizes. Also essential is that the candidate genes and
models identified in this study are further validated in
other cohorts.

From a functional perspective, the genes identified in
this study may provide novel insights into the disease
mechanism. BACH2 and IGLL3 are two B-cell–related
genes. IGLL3 encodes the Igl–like polypeptide 3, which
is expressed mainly in pre-B cells and involved in B-cell
development (28). The present study is the first in our
knowledge to suggest a potential role of this gene in T1D
or other autoimmune diseases and should be investigated
further in T1D human and animal models. BACH2 is a
B-cell–specific transcription factor critical for Ig class
switching. B cells with lower levels of BACH2 mature
directly to IgM plasma cells, whereas cells with higher
levels undergo class switching and differentiate to other
cell types, mainly IgG-secreting plasma cells, including
autoantibody-secreting cells (29). Higher expression of
BACH2 is associated with a faster and higher progression
rate from AbP to T1D, consistent with the concept that
antibody switching may be a potential risk factor that can
differentiate progression risks from AbP to T1D (30).
Genetic polymorphisms within the BACH2 gene are asso-
ciated with several autoimmune diseases, including T1D
(31), Crohn disease (32), celiac disease (33), multiple scle-
rosis (34), and vitiligo (35). Although T1D was considered
an ultimately T-cell–mediated autoimmune disorder, ac-
cumulating evidence in animal models and human studies
indicates a crucial role for B cells in T1D development.
The present findings further strengthen the connection
between B cells and T1D.

EIF3A and CDC20 are involved in cell cycle regulation
(36,37). The association of the two cell cycle–related
genes with T1D progression is consistent with a suspected
increase in the activation and proliferation of immune
cells, especially B cells and T cells, in AbP subjects who
are progressing to T1D. TXNDC5 encodes the thioredoxin
domain-containing 5 protein, a protein-disulfide isomer-
ase that possesses thioredoxin activity. TXNDC5 may de-
crease receptor binding activity of insulin by catalyzing
the reduction of insulin disulfide bonds (38). TXNDC5
may increase T1D progression risk by promoting glucose
intolerance through reducing insulin receptor binding

activity, a hypothesis that should be verified in future
studies.

In summary, this retrospective study using transcrip-
tomic profiling and RT-PCR validation suggests that five
genes may be involved in T1D pathogenesis and may
serve as biomarkers for risk stratification among AbP
subjects. The findings further indicate that gene expres-
sion patterns of multiple genes have much better pre-
dictive value and higher consistency in risk assessment
than individual genes.
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