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The microbiological quality and safety of food could be assessed by mapping the mi-
croorganisms present in a particular type of food. Through the years, different approaches
have been adopted to monitor and characterize the microorganisms present in a certain
type of food. Microbial characterization of isolated microorganisms was performed through
the application of morphological and biochemical tests and/or molecular approaches [1].
In recent years, the evolution of molecular biology has led to the development of new
technologies where the DNA is extracted directly from a sample and the microbiota could
be considered by analyzing the massive sequences resulting from these methods [2]. The
use of these advances techniques to monitor the presence, survival, behavior and character-
istics of food-related microorganisms with food quality and safety aspect is reviewed [3–7].
Nowadays, new approaches are employed to evaluate the quality and safety of foods
by collecting data from several sensors combined with data analysis using advanced
mathematics [8]. The Special Issue “Food Microbial Diversity” of Microorganisms aimed
to collect original research articles or reviews that apply culture-dependent and culture-
independent technologies to study the microbial diversity of foods and/or exploit the
microbial physiology and microbial properties with a view on safety and quality of foods.

In this Special Issue, one review and seven research articles are included. In these
articles the microbial diversity of several foods including the plant-based foods (cher-
ries and olives) [9–11], foods of animal origin (meat and dairy products) [12,13] and
drinks/beverages (wine and kombucha) [14–16] was monitored and/or the microbial
physiology and properties were exploited [11,14,16]. In these studies, the microbial char-
acterization was performed through the application of molecular approaches to identify
the isolated microbial species [12,13] and analyses of the massive sequences resulting from
culture-independent approaches [9–11,13,15]. The mapping of microorganisms present
in a particular type of food through this collection of articles revealed important infor-
mation related to the quality and safety of the studied products. In brief, the microbial
consortium that comprises the starter cultures used for the production of Kombucha in
several brewers located in North America was explored [15]. Moreover, the technological,
spoilage and pathogenic mycobiota present on cherries was characterized [11]. Simi-
larly, Madoroba et al. [13] collected microbial quality and safety data from meat and meat
products purchased from South Africa.

Three works [9,10,12] aimed to assess the validity of the hypothesis that certain
taxa could serve as potential indicators of a plant cultivar, geographical origin and/or
harvested-production period of foods. Indeed, the bacterial and yeast communities of three
different table olives varieties harvested from certain Greek regions were characterized
by metagenomic analysis [9,10]. Garroni et al. [12] characterized with genomic approach
the lactic acid bacteria isolates derived from raw milk which was collected from differ-
ent regions of Malta during summer and winter periods. The set of these three studies
concluded that the microbial fingerprint is associated with and could be an indication
of the olive’s variety [9], the geographical region of collection [9,10,12] and the period
of collection/production [12]. Similarly, another study reported the effect of harvesting
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tree and post-harvesting processing on detected microbial taxa of cherries detected by
metagenomic analysis [11].

The exploitation of microbial properties of yeasts isolated from cherries revealed that
several yeast species could be used to inhibit important fungal pathogens to control the
disease of the fruit [11]. In another work, the ability of different strains of an important
wine spoilage yeast to form biofilm was examined and highlighted the importance of
understanding the mechanism of adaptation in a winery environment [14]. Moreover,
the microbial interactions that could be occurred during the wine production were re-
viewed [16]. These works emphasize the required knowledge related with the succession
of microbial communities during fermentation to be gained for the better understanding of
the fermentation process and avoiding the abnormal fermentation.

Overall, this Issue presents several aspects of food microbial diversity including the
detection and characterization of technological, spoilage and pathogenic microorganisms
present in food and the monitoring of starter culture succession during fermentation,
microbial interactions and antagonism.
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