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ABSTRACT: In immature oocytes, Balbiani bodies are conserved
membraneless condensates implicated in oocyte polarization, the
organization of mitochondria, and long-term organelle and RNA
storage. In Xenopus laevis, Balbiani body assembly is mediated by
the protein Velo1. Velo1 contains an N-terminal prion-like domain
(PLD) that is essential for Balbiani body formation. PLDs have
emerged as a class of intrinsically disordered regions that can
undergo various different types of intracellular phase transitions and
are often associated with dynamic, liquid-like condensates.
Intriguingly, the Velo1 PLD forms solid-like assemblies. Here we
sought to understand why Velo1 phase behavior appears to be biophysically distinct from that of other PLD-containing proteins.
Through bioinformatic analysis and coarse-grained simulations, we predict that the clustering of aromatic residues and the amino
acid composition of residues between aromatics can influence condensate material properties, organization, and the driving forces for
assembly. To test our predictions, we redesigned the Velo1 PLD to test the impact of targeted sequence changes in vivo. We found
that the Velo1 design with evenly spaced aromatic residues shows rapid internal dynamics, as probed by fluorescent recovery after
photobleaching, even when recruited into Balbiani bodies. Our results suggest that Velo1 might have been selected in evolution for
distinctly clustered aromatic residues to maintain the structure of Balbiani bodies in long-lived oocytes. In general, our work
identifies several tunable parameters that can be used to augment the condensate material state, offering a road map for the design of
synthetic condensates.

Over the past decade, biomolecular condensates have
emerged as one route by which cells address the

challenge of intracellular spatiotemporal organization.1−4

Defined as nonstoichiometric assemblies that locally concen-
trate a specific subset of biological components, condensates
range in size from hundreds of molecules to micrometer-sized
organelles.5,6 In many cases, condensate formation, material
state, and disassembly appear well-described by the physical
principles of liquid−liquid phase separation.7,8 Prominent
examples of biomolecular condensates described by liquid−
liquid phase separation include the P granules, stress granules,
and the nucleolus.6,7,9−16 Beyond their role as naturally
occurring organelles, synthetic, stimulus-responsive conden-
sates are emerging as a new class of tools for intracellular
manipulation across a wide range of length scales.17−21 As
such, there is ongoing and ever-evolving interest in under-
standing the protein-encoded molecular grammar that
determinanes condensate behavior.15,20,22−46

One feature of biomolecular condensates that has attracted
substantial interest is the role of their material state. While
much attention has been focused on condensates with liquid-
like properties, condensates with solid-like, semiliquid, hyper-
viscous, or dynamically arrested properties make up a

ubiquitous class of cellular assembly.47 Pioneering work by
Görlich and colleagues revealed that in vitro reconstitution of
phenylalanine-glycine-rich nucleoporin domains (FG-Nups)
could form porous hydrogels with arrested dynamics and
recapitulate nuclear transport receptor specificity.48−51 This
early work provided prescient insight into how aromatic
residue-dependent intermolecular interactions could drive
biologically essential molecular assemblies in the context of
nuclear transport.52−55 More recently, changes in condensate
material state have been linked with disease14,56−59 and with
altered growth and fitness in bacteria and yeast.18,59−61 Taken
together, an emerging consensus suggests that the condensate
material state appears to be a property that is optimized for a
given molecular function.18,39,45,47,62−67
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In many cases, proteins that contain intrinsically disordered
regions (IDRs) are associated with biomolecular condensates.
This observation likely reflects the fact that some IDRs offer a
convenient platform upon which multivalent interaction sites
can be encoded across a flexible scaffold.38,68−70 This
hypothesis is supported by numerous studies in which specific
IDRs undergo spontaneous concentration-dependent phase
transitions in vitro and in cells, although we emphasize that
IDRs are not required for phase transitions or biomolecular
condensate formation.15,23,28,38,41,43,44,70,71

The encoding of adhesive binding sites embedded within a
flexible polymeric scaffold is described well by the physics of
associative polymers.72−75 In particular, the stickers-and-spacer
framework has been effectively co-opted to quantitatively
describe multivalent flexible polymers that can drive the
formation of biomolecular condensates (Figure 1A).22,69,76,77

In the stickers-and-spacers framework, molecules can be
divided into stickers and spacers. Stickers are regions or sites
that contribute to the adhesive interactions that drive phase
transitions. Spacers are regions between stickers and influence
phase behavior primarily by tuning chain dynamics and the
effective solvation volume, a parameter that reports on the total
volume a polymer occupies (as determined by both steric and
solvation effects).77,78 The stickers-and-spacers framework is
remarkably simple yet offers a convenient first-order
approximation through which the physical chemistry of a
given system can be interpreted.69 An appealing feature of this
framework is that it offers both a qualitative mental model and
a quantitative mathematical framework through which sticker

valency and strength can make predictions about phase
behavior.22,23,69,76,77,79,80

Recent work has illustrated that sticker valence, strength,
and patterning are key determinants of phase separa-
tion.23,79,81,82 In this context, prion-like domains (PLDs)
have emerged as a convenient domain type for understanding
the molecular grammar of biological phase separa-
tion.14,22,23,28,32−34,39,43,83−89 PLDs make up a class of low-
complexity IDRs characterized by an enrichment of polar
residues and a depletion of charged residues.22,90,91 PLDs
undergo phase transitions both in vitro and in cells, where
aromatic residues are essential for their self-assembly, phase
separation, gelation, and recruitment to existing biomolecular
condensates.22,23,28,32,33,86,89,92 Because of their convenient
sequence architecture, PLDs have been examined through the
lens of the stickers-and-spacers framework, with aromatic
residues demarcated as stickers and the remaining low-
complexity polar context as spacers (Figure 1A). Evolutionary
analysis has argued that evenly distributed hydrophobic and/or
aromatic residues facilitate liquid-like condensates and prevent
aggregation.23,79,93,94 In support of this hypothesis, rationally
designed PLDs with clusters of aromatic or hydrophobic
residues experience retarded intracellular dynamics (in the case
of TDP-43) and undergo rapid aggregation in vitro (in the case
of hnRNPA1).23,94

PLDs from RNA binding proteins can undergo phase
separation in vitro and in cells to form dynamic, liquid-like
condensates.14,22,23,32,33,43,56,85,95−98 Given the various roles of
condensates with solid-like properties and our ability to
rationally design PLDs that form kinetically arrested
condensates, we wondered if examples of naturally occurring
PLDs that formed solids in a functionally interpretable context
existed. Conveniently, a counterexample to the liquid-like
condensates associated with many PLDs is condensates formed
by the Xenopus laevis protein Velo1.
Velo1 is responsible for scaffolding the Balbiani body, a

membraneless superorganelle in X. laevis.39 The Balbiani body
is characterized by a dense accumulation of mitochondria in
the cytoplasm of early oocytes and is observed in many species,
including humans and frogs.99,100 The Balbiani body has been
proposed to play a role in protecting mitochondria and RNA in
oocytes from damage,101 which is particularly important in
oocytes that can remain dormant for decades before being
activated and giving rise to a fertilizable egg. Velo1 undergoes
amyloid-like self-assembly to form the Balbiani body, thereby
providing the stable matrix for organelles to last in the Balbiani
body for the duration of dormancy.39,102 Velo1 contains an N-
terminal PLD (Velo1PLD) (Figure 1B) and forms superficially
irreversible amyloid-positive biomolecular condensates both in
vitro and in cells. Importantly, self-assembly is clearly driven by
Velo1PLD.39

Velo1PLD is an unusual and unexpected outlier. Prior work
by many groups has shown that PLDs taken from a wide range
of other proteins robustly form liquid-like condensates in vitro
and in vivo. In contrast, Velo1PLD self-assembles into a fibrous
networked assembly that lacks any of the hallmarks of a liquid
state. In fact, the self-assembled Velo1PLD is considered a
physiological amyloid, one of the most ordered structures in
protein biochemistry.102 This observation sets the stage for our
work: why does Velo1PLD form solid-like assemblies in vitro
and in vivo while a plethora of other PLDs drive LLPS?
To address this question, we combined proteome-wide

sequence analysis with coarse-grained simulations and in-cell

Figure 1. Stickers-and-spacers framework that can be used to describe
Velo1PLD. (A) The stickers-and-spacers framework subdivides
biomolecules into sticker regions and spacer regions, whereby stickers
contribute attractive interactions that drive phase transitions through
multivalent interactions. (B) The Velo1 sequence architecture
contains an N-terminal prion-like domain (Velo1PLD) and four
fragments (F1−F4) as originally defined by Böke et al.39 The
Velo1PLD sequence is shown explicitly with aromatic residues colored
orange and all other residues colored black. (C) Questions of interest
in this study are how sticker clustering (left) and spacer-related
interactions (right) can alter the formation and equilibrium state of
condensates formed by PLDs.
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experiments to identify, explore, and test the determinants of
liquid-like assembly in Velo1PLD (Figure 1C).

■ RESULTS

Proteome-wide Bioinformatic Analysis Reveals Velo1
PLD to Be Distinct from Previously Studied Prion-like
Domains. To understand why Velo1PLD is unlike other PLDs,
we undertook a systematic bioinformatics analysis. To couch
our analysis in the appropriate organismal context, we
identified the complete set of IDRs and PLDs across the X.
laevis proteome (Table S1). In comparison to all X. laevis IDRs,
Velo1PLD was enriched with aromatic residues (Figure 2A), a
result we interpreted to mean that like in many other PLDs,
aromatic residues may act as stickers.
We next considered the amino acid composition of a subset

of previously studied human PLDs that undergo phase
separation in vitro.103 On the basis of this analysis, Velo1PLD

is depleted of G and S, modestly enriched with aromatic and
aliphatic residues, and strongly enriched with cysteine (Figure
2B). The enrichment for hydrophobic residues explains the
depressed disorder prediction for parts of Velo1 F1 (Figure 1B
and Figure S5). Recent work has implicated the polar residues
glycine (G) and serine (S) as chemically neutral spacer

residues, in agreement with observations that (GS)n repeat
sequences behave as physical instantiations of ideal (Gaussian)
chains.22,79,104,105 Given the depletion of G and S (and modest
enrichment with aliphatic residues), we wondered if the spacer
amino acid composition might play a role in determining
Velo1PLD phase behavior.
We finally considered the distribution of aromatic residues

across Velo1PLD. The number and patterning of aromatic/
hydrophobic residues have been shown to influence the phase
behavior of prion-like domains.23,28,32,50,94 One of the
conclusions from this work was the discovery that sticker
patterning could influence the condensate material state.23,94

The authors suggested that there might be selection pressure
for evenly distributed aromatic residues to impede (presum-
ably) pathophysiological aggregation. Here, we wondered if
natural sequences might use aromatic clustering to drive solid-
like condensates. To identify sequences with well-clustered
aromatic residues and motivated by Yang et al., we applied a
metric that computes the average inverse distance among
aromatic residues, which we term aromatic clustering (Figure
2C; see Methods).106 Of relevance to our application, this
parameter is robust in the limit of small fractions of aromatic

Figure 2. Velo1PLD is enriched with aliphatic and aromatic residues and depleted of small polar residues and has highly clustered aromatic residues.
(A) Log2 of fractions of different amino acids in Velo1PLD divided by equivalent fractions of the same amino acid across all X. laevis IDRs. (B) Log2
of fractions of different amino acids in Velo1PLD divided by equivalent fractions of the same amino acid across human PLDs that undergo liquid−
liquid phase separation. (C) Graphical definition of the aromatic clustering parameter. (D) Assessment of aromatic clustering (y-axis) compared
with the fraction of aromatic or aliphatic residues (x-axis). Among those of X. laevis PLDs, the clustering score Velo1PLD (black diamond) is higher
than all but one, and among those of the PLDs from PhaseSepDB, the clustering score is higher than all but two.
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residues (<10%), a limit where other sequence patterning
metrics struggle.107

We compared the fraction of aliphatic and aromatic residues
versus aromatic clustering and found Velo1PLD among the
PLDs with the greatest aromatic clustering scores (Figure 2D).
This conclusion was true when compared against all Xenopus
PLDs, but also against a set of human PLDs shown to undergo
phase separation in vitro. As such, we wondered if this atypical
aromatic clustering might play a part in Velo1’s assembly.
In summary, our bioinformatic analysis identified several

features that may contribute to the anomalous behavior of
Velo1PLD. In the context of the stickers-and-spacers model,
these results can be considered in terms of altering the
spacer:spacer or sticker:spacer strength (loss of G and S, gain
of aliphatic hydrophobes) or altering the clustering or
patterning of stickers. To examine how these potential
sequence features might influence the thermodynamics,
diffusivity, and assembly organization, we turned to simple
coarse-grained simulations.
Sticker:Sticker and Sticker:Spacer Interactions Can

Dictate Phase Behavior. Previous work derived a simple
parameter set for aromatic stickers and polar-rich spacers.23

These parameters can be qualitatively transferred across
different PLDs.23 Using these same interaction parameters,23

we generated a simple 56-bead model heteropolymer with
uniformly distributed stickers (Figure 3A). We used this toy
system to explore how phase behavior was altered in response
to changes in the sticker:sticker and sticker:spacer interaction
strength (Figure 3A). To test this, we performed lattice-based
Monte Carlo simulations and systematically varied the
spacer:spacer and sticker:spacer interaction strengths at a
fixed sticker:sticker interaction strength, concentration, and
temperature (Figure 3B; see Methods).
Our results revealed a substantial change in the driving

forces for phase separation with fractional changes in both
sticker:sticker and sticker:spacer strengths (Figure 3C). We
varied sticker:spacer and spacer:spacer interaction strengths by
the same incremental step size (in units of sticker:sticker
interaction) to assess the relative impact of each type of bead.
We observed a symmetrical dependence on the driving forces
for assembly in terms of the change in sticker:spacer or
spacer:spacer interactions. As such, even though stickers are
the “drivers” of assembly, changes that uniformly affect spacers,

Figure 3. Sticker:spacer and spacer:spacer interaction strengths play a key role in determining the driving forces for phase separation. (A) Overview
of the polymer models used in simulations. A 56-bead model is used (12 sticker beads, 44 spacer beads). Three parameters define the system:
sticker:sticker, sticker:spacer, and spacer:spacer strength. (B) Summary of relative parameter ranges examined. The sticker:sticker strength is held
fixed, and sticker:spacer and spacer:spacer interaction strengths are varied. (C) Simulations reveal that at a fixed starting volume fraction (ϕ) of
0.0168 the emergence of a two-phase regime is symmetrically dependent on the sticker:spacer and spacer:spacer interaction strength. As the
interaction strength increases, ϕsat decreases, and in parallel ϕden (the concentration inside the droplet) increases. (D) Varying interaction strengths
can be recast as modulating the effective Flory χ parameters or rescaling the critical temperature. As such, we can project the spacer:spacer
interaction strength in the background of a fixed sticker:spacer interaction strength into a Flory−Huggins fit to analytically capture the interaction
strength-dependent phase behavior. Points are simulation data, while lines are fits of data to Flory−Huggins theory. (E) Analogous analysis as in
panel D but with a variable sticker:spacer strength in the background of a fixed spacer:spacer strength. Points are simulation data, while lines are fits
of simulation data to Flory−Huggins theory.
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even by a small amount, can dramatically influence phase
behavior.
To aid in the interpretation, we recast the interaction

strength dependence of the phase behavior in terms of phase
diagrams in the volume fraction and interaction strength plane.
In doing this, we fit our data to Flory−Huggins theory to
illustrate the validity of this approach and to guide the eye.
Figure 3D reports how the driving force for assembly changes
as a function spacer:spacer interaction strength (y-axis), while
the sticker:spacer interaction strength is held fixed. Figure 3E
reports the opposite of this, how phase behavior is altered
when sticker:spacer interactions are varied at fixed space-
r:spacer interactions.
The major takeaway from these simulations is that small

changes in spacer:spacer or sticker:spacer interaction strengths
can have substantial changes in the driving force for phase
separation. Specifically, small changes can alter the saturation
volume fraction (ϕsat) by several orders of magnitude and
change the intradroplet density from 0.5 to >0.9. In the context
of Velo1PLD, our results suggest that the depletion of G and S
and modest enrichment with other aliphatic residues could
have a substantial effect on the driving forces for phase
separation, driving tighter interactions.
Intracondensate Self-Diffusion of Polymers Is Deter-

mined by the Droplet Volume Fraction. We took
advantage of the ability to obtain an apparent diffusion
constant (Dapp) for self-diffusion of polymers inside the
droplets formed in our system (see Methods). Dapp provides
a proxy for how easily polymers inside the droplet reorient
themselves as a function of Monte Carlo step, offering a
readout of the apparent intracondensate diffusivity (Figure
4A).
As sticker:spacer and spacer:spacer interactions become

stronger, we observed a decrease in Dapp (Figure 4B). This
reduction is symmetrical across the sticker:spacer and
spacer:spacer interaction dimensions. A correlation of the
droplet density with the apparent diffusion constant yields a
linear master curve that extrapolates back to a Dapp of 0 when
the volume fraction is 1.0 (Figure 4C). As such, these results
suggest that for chains with an evenly distributed sticker-and-
spacer architecture, changes in spacer interaction strength lead
to predictable changes in material state. When cast in terms of
a phase diagram, this shows the unsurprising relationship that
distance from an apparent critical point tracks with decreasing
condensate dynamics. In short, in this simple limiting model,
the stronger the driving force for phase separation, the more
solid-like a condensate is expected to appear.
Sticker Clustering Shifts Phase Boundaries, Tunes

Intradroplet Self-Diffusion, and Alters Intradroplet
Organization. Previous experimental and theoretical work
has shown that sticker patterning can determine the saturation
concentration.25,36,37,81,108−111 In addition, repatterning of
naturally occurring PLDs that undergo liquid−liquid phase
separation revealed changes in assembly state or condensate
dynamics.23,94 In agreement with this observation, recent
theoretical work has shown that asymmetric sticker patterning
can determine the balance between liquid−liquid phase
separation and aggregation.82 To examine the interplay
between sticker patterning/clustering and spacer-mediated
interactions, we determined assembly behavior as a function
of sticker:sticker strength, sticker:spacer strength, and sticker
clustering (Figure 5A). All simulations were performed at three

different temperatures to ensure that a reasonable dynamic
range of behavior was observed.
In agreement with prior work, sticker clustering reduces the

ϕsat and enhances the driving force for phase separation
(Figure 5B, top). The impact clustering has on ϕsat depends on
the sticker:spacer interaction strength; as the sticker:spacer
interaction strength increases, the impact of clustering is
diminished. This behavior is also manifest in the fraction of
chains found in the largest cluster (Figure 5C), where an
asymmetry for the high-clustering variant is found as a function
of sticker:sticker and sticker:spacer interaction strength.
Finally, we also observe the same trends when ϕsat is examined
across all possible combinations as opposed to just the subset
shown in Figure 5B (see Figure 5D). In summary, when
spacer:spacer interaction is (relatively) strong but sticker:-
spacer interaction is (relatively) weak, we observe the most

Figure 4. Apparent diffusion coefficient scales with droplet density.
(A) Overview of the analysis approach as applied to the polymer
architecture defined in Figure 3. Individual polymers are followed as
they “diffuse” within a droplet and fit to extract the diffusive scaling
exponent (α) and the apparent diffusion constant (Dapp). Dapp is
determined only where simple Brownian diffusion is observed (i.e., α
= 1), which occurs in almost all cases (see Figures S1−S3). (B) Dapp

as a function of sticker:spacer and spacer:spacer strength. (C)
Graphical representation of how density and Dapp relate to one
another (left) and all data from panel B plotted as a single master
curve of Dapp vs dense-phase volume fraction (ϕden). The linear fit to
guide the eye leads to an apparent diffusion constant of 0 when the
volume fraction is 1, reflecting the limit in which every lattice site is
occupied such that no free sites are available for polymers to move
into.
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substantial influence of clustering (Figure 5D, left column).
This effect becomes weaker as the overall strength of all
interactions decreases [i.e., at a higher temperature (Figure 5D,
right column)].
This sticker dependence on the impact of clustering can be

rationalized by recognizing that there are several extreme limits
of these parameters (Figure 5D). When all three interaction
strengths (sticker:sticker, sticker:spacer, and spacer:spacer) are
equivalent, then sticker clustering is irrelevant; the chain is a
homopolymer. As these three values become divergent,
clustering effects are more strongly felt, where the stick-
er:spacer interaction strength acts as an effective miscibility
parameter for the two residue types.

Consistent with our dependence of sticker:spacer strength
on the driving force for assembly, Dapp is also influenced by
sticker clustering. More clustered stickers leads to a slowing of
intracondensate polymer diffusion (Figure 6), although the
magnitude of this effect depends on the sticker:spacer and
spacer:spacer interactions. For example, when the sticker:-
spacer strength is 0.14 and the spacer:spacer strength is 0.29,
we observe a large value for Dapp in the chain with weak sticker
clustering (Figure 6, left) but a dramatically reduced value for
the chain with strong sticker clustering (Figure 6, right). If
interpreted naively, these results suggest that sticker clustering
can suppress liquid-like condensate dynamics for equivalently
weak molecular interaction strengths.

Figure 5. Impact of sticker clustering can be altered by sticker:spacer strength. (A) Three polymers of equal length with equal composition but
alternative sticker clustering. (B) Saturation concentration as a function of sticker clustering (x-axis) and sticker:spacer strength (top to bottom).
These specific comparisons are shown also in panel D. (C) Fraction of chains in the largest cluster shown as a function of sticker:spacer,
spacer:spacer, sticker clustering (top to bottom), and system temperature (left to right). (D) Saturation concentration as a function of
sticker:spacer, spacer:spacer, sticker clustering (top to bottom), and system temperature (left to right). Numbers reflect the systems examined in
panel B. (E) The spacer:spacer and spacer:sticker interaction strengths can determine the impact of sticker:spacer patterning by rescaling the
definition of a sticker and spacer. Spacer strength here reflects the simultaneous titration of spacer:spacer and sticker:spacer interaction strength to
match that of sticker:sticker strength.
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Finally, we wondered how altering sticker clustering might
impact the intradroplet organization. To formally evaluate the
intradroplet organization, we used the measure of assortativity
to describe the spatial demixing of sticker beads and spacer
beads (Figure 7). An assortativity value of 1 means stickers are
in contact with only other stickers, while an assortativity value
of 0 means stickers are in contact with spacers and stickers an
equal amount. This analysis revealed that highly clustered
sequences showed assortativity values of ≫0, revealing
complex (yet labile) interdroplet organization driven by the
relative strengths of stickers and spacers.
In summary, our simulations imply several general principles

that we wanted to examine in the context of Velo1PLD. First,
spacer-mediated interactions can tune droplet density and

hence material state and molecular rearrangement. Moreover,
for polymers with evenly spaced stickers, energetically
equivalent changes in sticker:spacer and spacer:spacer
interactions lead to approximately equivalent changes in the
driving force for assembly. Second, sticker clustering can tune
the driving force for assembly, intradroplet organization, and
(naively interpreted) condensate dynamics, where the impact
of sticker clustering is itself determined by spacer-mediated
interactions or, analogously, the strength of sticker:sticker
interactions.

The Rational Design of Velo1PLD Allows Us to Test the
Importance of Distinct Features in the Condensate
Assembly and State. While our simulations implicated
several parameters in the context of determining condensate

Figure 6. Dependence of intracondensate polymer apparent diffusion on spacer-mediated interactions that depends on sticker clustering. As the
level of sticker clustering increases for polymers with a strong spacer:spacer interaction, there is little to no dependence of Dapp on sticker:spacer
interactions. This suggests that in the limit of (relatively) strong spacer:spacer interactions, molecular rearrangement is dominated by spacer:spacer
and sticker:sticker interactions.

Figure 7. Sticker clustering tunes intradroplet organization. (A) Assortativity, a measure of the spatial mixing between stickers and spacers, is
measured for the entire system as a function of sticker strength, spacer strength, and sticker clustering. For each system, the phase boundary is
shown as a dashed line for reference. For the well-clustered sequences, significant deviations from a value of 0 are observed. (B) To understand the
origins of these large assortativity values, we generated snapshots from distinct regions in panel A (orange beads are stickers, and black beads
spacers). These revealed the intradroplet organization of stickers into local clusters and subdomains. For sequences with the most well-clustered
stickers, we observe an assortativity of >0 at subsaturating concentrations due to the presence of small labile clusters.
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properties, our bioinformatic analysis provides a lens through
which those insights can be translated into interpretable
signatures in the context of protein sequence. In particular,
sticker composition and clustering emerge as parameters we
predict should substantially alter condensate dynamics. We
took a rational design approach to test these predictions,
whereby we made targeted mutations to Velo1PLD to alter
these sequence features.
We focused on the F1 fragment of Velo1 (residues 1−150),

which contains the PLD (Figures 1 and 8A). This subregion
was studied extensively in previous work and sets a consistent
and comparable baseline against which our rational designs can
be compared.39 As such, our designs focus on this 150-residue
disordered region as a model system to understand the
sequence determinants of the assembly and material state.

We isolated oocytes from X. laevis ovaries as described
previously and injected these with mRNAs encoding our
designs of Velo1 followed by GFP.39 After overnight
incubation, oocytes were imaged with confocal microscopy.
In agreement with previous work, wild type fragment F1
localizes to the Balbiani body and has a very slow recovery rate
after photobleaching, indicating its solid-like material status39

(Figure 9A,B,D). We previously showed that disrupting
Velo1PLD causes the F1 mutants to be soluble in the cytoplasm
and recover much faster after photobleaching in the Balbiani
body, which suggests that Velo1PLD mutants are soluble
proteins.39 Thus, we used these two properties, namely, the
ability of the newly translated protein to self-assemble with the
endogenous Velo1 (i.e., localization to the Balbiani body) and
the recovery time after photobleaching (i.e., forming solid- or

Figure 8. Architecture of Velo1 and amino acid sequences of F1 fragment variants. (A) Relative position of the F1 fragment. (B) Amino acid
sequence of the wild type sequence and rationally designed F1 variants tested.
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Figure 9. Rationally designed Velo1 designs tune cellular localization and material state. (A) mRNAs encoding Velo1 designs and wild type Velo1
fragment F1 (Figure 8) fused to GFP were microinjected into stage I X. laevis oocytes. Oocytes were left to recover and express injected mRNAs
overnight and imaged the next day. The cell membrane and nucleus are outlined in a white dashed line. (B) Internal rearrangement of fluorescent
wild type or redesigned Velo1 (F1-GFP) particles after photobleaching in the Balbiani body. Note that Velo1Ali2S/Repat did not localize to the
Balbiani body. (C) Overview, DIC image, and schematic of the oocyte with its Balbiani body in the Ali2S design. (D) Internal rearrangement of
fluorescent redesigned Velo1 (F1-GFP) particles after photobleaching in the nucleus. Note that Velo1WT does not localize to the nucleus. (E) The
fluorescent recoveries of the photobleached Velo1WT or redesigned Velo1 (F1-GFP) particles in Balbiani bodies in panel B and two other biological
replicates were quantified over time. (F) The fluorescent recoveries of photobleached Velo1 designs in nuclei in panel C and two other biological
replicates were quantified over time. For panels D and E, the fluorescence in the bleached region was quantified over time and normalized by an
unbleached neighboring region. At least three oocytes per biological replicate were plotted. Scale bars are as indicated in the figure.
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liquid-like assemblies), to test the material properties of new
designs of Velo1.
Velo1 Cysteine Residues Do Not Dictate Solid-like

Properties. We first wondered if Velo1’s solid-like material
state was a consequence of its high cysteine content. In
principle, the reducing environment of the cell should impede
disulfide bond formation. However, the chemical state within a
condensate is poorly defined and could plausibly offer a
microenvironment in which disulfide bond formation can
occur. We generated a variant of Velo1 in which all three
cysteines (C) were converted to serines (S) (Velo1C2S) (Figure
8B). Condensates formed from Velo1C2S were wild type-like in
terms of morphology and dynamics (Figure 9A,B,E). As such,
we conclude that intracondensate covalent cross-links formed
by C do not underlie the material state of Velo1PLD in this
experimental assay.
The Hydrophobicity of Velo1 Spacer Regions Can

Tune the Material State. We next asked whether Velo1’s
solid-like material state was a consequence of the amino acid
composition of the spacer residues. If we treat aromatic
residues as stickers and other residues as spacers, our
bioinformatic analysis implies that Velo1PLD spacer regions
are depleted of small polar amino acids (S and G) and
modestly enriched with large aliphatic residues (L and I)
(Figure 2). Moreover, our simulations show that tuning spacer
interaction strength can alter the saturation concentration and
the dynamics of intracondensate molecules (Figures 3 and 4).
To test if the presence of aliphatic hydrophobic residues
strengthened spacer-mediated attractive interactions, we
generated a variant in which all large aliphatic side chain-
containing residues (L, M, V, and I) were converted to S
(Velo1Ali2S) and all C’s to S (Figure 8B).
Intriguingly, we observed that Velo1Ali2S shows two different

types of condensate-associated behavior in oocytes: liquid-like
recovery in condensates in the nucleus, which had spherical
shapes and recovered within seconds after photobleaching, and
recruitment to the Balbiani body (Figure 9A−C). We also
noted that Velo1Ali2S was more soluble in the cytoplasm than
the wild type, implying a reduction in the driving force for
assembly. After photobleaching, Velo1Ali2S associated with the
Balbiani body recovered much faster than the wild type (Figure
9E), suggesting Velo1Ali2S is more fluid than the wild type
protein. Thus, we conclude that aliphatic side chains
contribute to the solid-like material properties of Velo1.
Aromatic Clustering Fundamentally Changes the

Dynamics and Localization of Velo1. Velo1 emerged as
the PLD with the highly clustered aromatic residues in our
bioinformatics analysis (Figure 2D). Our simulations also
implicated sticker patterning as a critical determinant of
condensate formation, material state, and intracondensate
organization (Figures 5 and 6). To test if aromatic clustering
mattered for intracellular solid-like condensate assembly, we
generated a repatterned variant in which all aromatics were
evenly spaced (i.e., minimally clustered, reducing the clustering
score from 1.8 to 0.8), which we named Velo1repat.
Much like Velo1Ali2S, Velo1repat displayed two kinds of

condensate-associated behavior, with assembly into liquid-like
spherical nuclear condensates and recruitment to the Balbiani
body where Velo1repat dynamics are slower (Figure 9).
However, the Balbiani body-localized Velo1repat recovered
much faster than either the wild type or Velo1Ali2S after
photobleaching, displaying rapid internal dynamics (Figure
9A,B,E). This suggests that aromatic clustering (i.e., sticker

patterning) plays an important role in defining the material
state of Velo1, and only shuffling aromatic residues without
affecting the rest of the protein makes Velo1 more dynamic
and soluble.

Sticker Clustering and Spacer Composition Are
Orthogonal Parameters through Which the Material
State Can Be Tuned. Our simulations implied that sticker
clustering and spacer interaction strength should be partially
independent of one another; i.e., a design that reduced spacer
interaction strength and sticker clustering would be more
liquid-like than either separately. To test this, we generated a
combination design that combined the features introduced in
Velo1Ali2S and Velo1Repat to generate a new design,
Velo1Ali2SRepat. In agreement with our expectations, Ve-
lo1Ali2SRepat fails to localize to Balbiani bodies and forms highly
dynamic nuclear condensates that show the fastest recovery of
all designs examined (Figure 9A,C,F). It is also the most
soluble of the designs, implying the weakest driving forces for
assembly.

■ DISCUSSION
The stickers-and-spacers framework is a conceptually simple
model through which the assembly of biomolecules can be
rationally interpreted. Here, we combined bioinformatics and
simple coarse-grained simulations to motivate distinct axes
upon which the material state of condensates can be tuned.
Using a model system that naturally forms solid-like
condensates, we found that the molecular dynamics of
Velo1PLD can be tuned by varying the composition of spacer
residues, the patterning of sticker residues, or both. As such, we
tentatively suggest our results provide an additional set of
principles through which the material state and driving force
for assembly of designer condensates could be encoded.17

The material state of a biomolecular condensate dictates the
molecular motion and temporal progression of components
enclosed within that assembly. For dynamic liquid-like
condensates, there is generally a rapid exchange of molecules
between the dense and dilute phases. As a result of this rapid
exchange and the ability of the condensate composition to be
tuned by the total concentration of components, liquid-like
assemblies have been proposed to offer a means by which cells
can coordinate complex stimulus-responsive func-
tion.1−3,112,113

In contrast to liquid-like condensates, in the context of
protection and tolerance from abiotic stress (e.g., heat,
desiccation, etc.), solid-like gels or glasses have emerged as
the de facto mechanism through which molecular protection is
arrived at across many kingdoms of life.114−117 Given that the
Balbiani body must lie in a dormant oocyte for long periods, a
speculative role for the solid-like material state of Velo1-
derived assemblies is one in which the molecular motion
within Balbiani bodies is sufficiently retarded that from the
frame of reference of components therein time effectively slows
down. In this way, upon disassembly, components can be
released in a relatively unaged state. Given Velo1PLD emerges
as an outlier with respect to sequence features we have shown
to play a role in its material state (Figures 2 and 8), we
speculate this may reflect an evolutionarily selected set of
sequence features.
We applied simple stickers-and-spacers simulations to

motivate the redesign of Velo1PLD. We emphasize that our
stickers-and-spacers model represents a convenient tool that
translates between emergent properties and molecule features
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but should not be taken as a literal description of the
underlying physical chemistry that determines condensate
assembly and properties.69,76 For example, we focused here on
hydrophobic residues and aromatic clustering, but undoubt-
edly, additional layers of regulatory biology may be encoded by
other residue types, PTMs, or solution-dependent ef-
fects.35,68,118 As such, far from representing the “end” in our
understanding of how sequence-encoded emergent properties
arise, a stickers-and-spacers description can be treated as the
“null model”. Deviations from the simple expected behavior are
hallmarks of more complex physical chemistry. This does not
prevent the stickers-and-spacers model from offering a
predictive framework, but it in parallel should be taken as a
simplified model that is coarse-grained along the principle axes
that determine the phase boundary(s) of a system.22,23,80,119

Our results suggest sticker clustering can alter condensate
dynamics and that this contribution can be tuned by spacer-
mediated interactions. This conclusion is in line with recent
theoretical work, which similarly has suggested that the
patterning of sticker residues can determine molecular
rearrangement and condensate viscosity.81,119 We note that
while our simulations imply an ∼4-fold change in diffusion,
FRAP experiments imply an even greater dependence on
sticker clustering. We speculate that this discrepancy reflects
the fact that Velo1 can also form amyloids. Although our
designs do not inherently impede condensate formation, they
may disrupt amyloid formation, which we anticipate may be a
process physically distinct from the interactions that (at least
initially) drive condensate formation.
Given the prior observation that many low-complexity

domains possess evenly spaced aromatic residues, it seems
plausible this may reflect selection against sequences primed to
undergo kinetic arrest upon self-assembly. Indeed, slow
condensate dynamics can emerge either as an equilibrium
phenomenon driven by a high density of molecular
components (Figure 4) or through kinetic arrest of frustrated
systems that become trapped, as shown in the context of prior
work examining protein:RNA assemblies.40 Distinguishing
between these two origins in living cells is challenging given
both can be suppressed through active (energy-dependent)
processes, although the two are inherently coupled, and from
the perspective of biological selection, the physical basis may
be irrelevant.
In summary, our results implicate both sticker clustering and

spacer composition as determinants of the condensate material
state and the driving forces for assembly through both
simulations and live cell imaging. Although these results
implicate a possible layer of sequence-encoded regulatory
control of condensate material properties, our study is not
without limitations. The stickers-and-spacers model is
extremely simple and should be viewed as a numerical
instantiation of analytical theory with finite-size effects directly
captured, as opposed to a true representation of protein
physical chemistry. As such, the relative contributions of
stickers and/or spacers uncovered here may be different in the
context of real proteins. Furthermore, additional sequence
features (e.g., charged residues) are likely to also contribute
and may dominate hydrophobic interactions. Finally, our live
cell imaging reveals the recruitment of Velo1 and its associated
designs to the Balbiani body or to nuclear condensates. In the
case of nuclear assemblies, we cannot exclude the possibility
that we are observing recruitment to an existing nuclear
condensate. This does not fundamentally alter our conclusions

but may suggest that our variants have substantially weaker
driving forces for self-assembly (but stronger driving forces for
heterotypic recruitment). In short, while these limitations do
not undermine our general conclusions, they should be taken
into consideration when future studies are considered and
designed.

■ METHODS
Reproducibility. All code, sequence information, and

bioinformatics data are provided at https://github.com/
holehouse-lab/supportingdata/tree/master/2021/Holehouse_
velo1_2021.

Bioinformatics. Prion-like domains were identified using
the PLAAC with default settings.90 Disorder was predicted
using metapredict.120 The X. laevis proteome (UP000186698)
was obtained in May 2021.
The aromatic clustering parameter was inspired by an

approach developed to cluster surface residues in the context
of structural analysis.106 Similar to an inverse distance weight,
functionally aromatic clustering is calculated by first summing
the inverse distance between all pairs of aromatic residues for
each residue. To obtain a single parameter for the sequence of
interest, an average across all of the aromatic positions is taken.
The result is a value that directly compares the positioning of
aromatic residues relative to one another. The higher the
aromatic clustering score, the more clustered the aromatics are
in the sequence.

Simulations. All simulations were performed using the
PIMMS simulation engine with 300 separate polymers on a
100 × 100 × 100 cubic lattice.23 Three independent
simulations were run for every system, with a total of (on
average) 3 × 1010 MC steps per simulation. All keyfiles,
parameter files, and setup scripts for running all simulations are
prov ided a t h t tp s ://g i thub . com/ho lehouse - l ab/
supportingdata/tree/master/2021/Holehouse_velo1_2021.
The fraction of chains in the largest cluster was defined on

the basis of the connected network, i.e., the set of chains in
direct physical contact with one another, as described
previously.23,40

The saturation concentrations were computed by taking the
fraction of chains not in the largest cluster as a function of total
volume, as described previously.23 In all simulations, chains
partitioned into either one large cluster or monomeric/small
oligomers.
The interdroplet density (Figure 3) was computed by

generating radial density profiles and averaging over the central
core, as described previously.23 For an example of this analysis
across three independent simulations for the same system, see
Figure S4.
The evolution of the intracondensate polymer position is

determined by reptation-based Monte Carlo moves where each
chain is perturbed an equal number of times. As such, while we
do not obtain a time scale in seconds, the ability to fit the
polymer mean square displacement (MSD) to the Monte
Carlo step and obtain a normal diffusivity exponent (α = 1.0)
reflects our ability to analyze molecular rearrangement as a
proxy for bona f ide molecular kinetics. In all cases, Dapp is
obtained only in the limit when simple apparent diffusion is
observed. Details (including every MSD vs τ fit for every
simulation) and additional analyses are provided at https://
github.com/holehouse-lab/supportingdata/tree/master/2021/
Holehouse_velo1_2021. This approach is appropriate for
identically sized symmetrical polymers with identical movesets,

Biochemistry pubs.acs.org/biochemistry Article

https://doi.org/10.1021/acs.biochem.1c00465
Biochemistry 2021, 60, 3566−3581

3576

https://github.com/holehouse-lab/supportingdata/tree/master/2021/Holehouse_velo1_2021
https://github.com/holehouse-lab/supportingdata/tree/master/2021/Holehouse_velo1_2021
https://github.com/holehouse-lab/supportingdata/tree/master/2021/Holehouse_velo1_2021
https://github.com/holehouse-lab/supportingdata/tree/master/2021/Holehouse_velo1_2021
https://github.com/holehouse-lab/supportingdata/tree/master/2021/Holehouse_velo1_2021
https://pubs.acs.org/doi/suppl/10.1021/acs.biochem.1c00465/suppl_file/bi1c00465_si_001.pdf
https://github.com/holehouse-lab/supportingdata/tree/master/2021/Holehouse_velo1_2021
https://github.com/holehouse-lab/supportingdata/tree/master/2021/Holehouse_velo1_2021
https://github.com/holehouse-lab/supportingdata/tree/master/2021/Holehouse_velo1_2021
pubs.acs.org/biochemistry?ref=pdf
https://doi.org/10.1021/acs.biochem.1c00465?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


but we urge caution when interpreting Monte Carlo-derived
molecular rearrangement through the lens of dynamics.
We used assortativity121 to quantify the propensity of

polymers in our coarse-grained system to form sticker:sticker
and spacer:spacer interactions versus sticker:spacer interac-
tions. For a given frame of the simulation, we made every bead
its own node in a graph using the Python package
NetworkX.122 Every pair of adjacent beads in the lattice
(that were not immediately next to one another on the same
polymer) was considered to be an edge between nodes. We
then calculated the assortativity coefficient of this graph using
NetworkX’s assortativity algorithm. A perfectly assortative
network (i.e., stickers interact with only stickers, and spacers
with only spacers) has a coefficient value of 1. Disassortative
networks have a negative coefficient, and randomly distributed
networks have coefficients near zero. For each simulation, we
computed and averaged the assortativity coefficients across 20
frames sampled uniformly across the last 400 frames of the
simulation. The average assortativity was computed for each
replica, and the average across three replicas taken. The
standard error of the mean for these calculations is shown in
Figure S6.
Fits of the data to Flory−Huggins theory were performed as

described previously, with the three-body interaction coef-
ficient set to zero for the sake of simplicity.23

Animal Work. X. laevis adult females were purchased from
Nasco and maintained in the animal facility of the Barcelona
Biomedical Research Park (PRBB, Barcelona, Spain) in water
tanks with the following controlled conditions: 18−21 °C, pH
6.8−7.5, 4−20 ppm O2, conductivity of 500−1500 μs, and
<0.1 ppm ammonia. All animals were sacrificed by accredited
animal facility personnel before their ovaries were extracted.
Isolation, Injection, and Culturing of Oocytes. Xenopus

oocytes were isolated with slight modifications to the method
described in ref 39. Briefly, ovaries were digested using
Collagenase IA (Sigma, C9891-1G) in MMR by gentle
rocking, until most oocytes were dissociated. After several
washes in MMR to remove the collagenase, stage I oocytes
were separated from the rest by passing the oocyte mixture
through two sets of filter meshes (Spectra/Mesh, 146424 and
146426). Later, stage I oocytes were stripped of accompanying
granulosa cells by being treated with 10 mg/mL trypsin for 1
min and cultured in OCM.123

Oocytes were injected with mRNAs encoding the indicated
proteins in the text by using a Femtojet Microinjector
equipped with an Injectman micromanipulator (Eppendorf)
such that 100 pL would be delivered in each injection. Injected
oocytes were left to recover overnight and imaged the next day.
DNA and RNA Constructs. Velo1 designs were ordered

from Integrated DNA Technologies in the form of gblocks and
cloned into pCS2-EGFP vectors. The resulting plasmids were
sequenced before any downstream application. Plasmids were
linearized by NotI digestion and gel-purified before being used
as templates for in vitro mRNA transcription (mMessage
mMachine SP6 transcription kit, Thermo). mRNAs were
cleaned via lithium acetate precipitation and suspended in
RNase free water.
Confocal Live Cell Imaging. Oocytes were imaged using

a 40× water immersion objective (NA 1.10, Leica, 506357) in
OCM at room temperature and atmospheric air using a Leica
TCS SP8 microscope with the Leica Application Suite X (LAS
X) software.
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Full sequence comparison (PDF)

Accession Codes
The UniProt accession number for Velo1 is Q7T226. This is
not the canonical isoform as defined in the reference X. laevis
proteome (which is B7ZQY0), although these two sequences
differ by a single N569D sequence difference that falls outside
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