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The brain anxiety network is composed of a number of interconnected cortical regions
that detect threats and execute appropriate defensive responses via projections to the
shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the
stria terminalis (BSTDL) and lateral region of the central nucleus of the amygdala (CeL).
The paraventricular nucleus of the thalamus (PVT) is anatomically positioned to integrate
threat- and arousal-related signals from cortex and hypothalamus and then relay
these signals to neural circuits in the NAcSh, BSTDL, and CeL that mediate defensive
responses. This review describes the anatomical connections of the PVT that support
the view that the PVT may be a critical node in the brain anxiety network. Experimental
findings are reviewed showing that the arousal peptides orexins (hypocretins) act at
the PVT to promote avoidance of potential threats especially following exposure of
rats to a single episode of footshocks. Recent anatomical and experimental findings
are discussed which show that neurons in the PVT provide divergent projections to
subcortical regions that mediate defensive behaviors and that the projection to the
NAcSh is critical for the enhanced social avoidance displayed in rats exposed to
footshocks. A theoretical model is proposed for how the PVT integrates cortical and
hypothalamic signals to modulate the behavioral responses associated with anxiety and
other challenging situations.
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INTRODUCTION

Anxiety is an ethologically advantageous emotion that maximizes survival because it promotes
avoidance of potential harm in situations where dangers can emerge quickly (Steimer, 2002;
Calhoon and Tye, 2015; LeDoux and Daw, 2018). It is characterized by a state of arousal and
hypervigilance in addition to excessive behavioral avoidance of potential threats. Unnecessary levels
of anxiety can cause significant distress and a better understanding of how neural circuits in the
brain control responses to threats and mediate anxiety is considered important for the development
of new treatments (Craske et al., 2017). It is generally accepted that anxiety results from genetic
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vulnerabilities combined with situational factors like stress and
exposure to fear-inducing situations (Nemeroff et al., 2006;
Craske and Stein, 2016). There are a number of comprehensive
reviews describing the components of the anxiety network
(Adhikari, 2014; Calhoon and Tye, 2015; Tovote et al., 2015;
LeDoux and Daw, 2018). The network involves a number of
interconnected cortical and subcortical regions that evaluate and
respond to potential threats (Steimer, 2002; Calhoon and Tye,
2015; LeDoux and Daw, 2018). How these regions function
together as a network is poorly understood and is of considerable
interest from preclinical and clinical perspectives (Shin and
Liberzon, 2010; Adhikari, 2014; Calhoon and Tye, 2015; Fox and
Shackman, 2017; Silva and McNaughton, 2019).

The present review presents evidence that the paraventricular
nucleus of the thalamus (PVT) may be a critical node in the
brain anxiety network. Anatomical details of how the PVT
is connected with many components of the brain’s anxiety
network are presented as well as recent evidence showing
that neurotransmission to the PVT from orexin neurons in
the hypothalamus contributes to stress-induced anxiety. The
review also discusses recent anatomical evidence that shows
that neurons in the PVT provide divergent projections to key
striatal-like subcortical regions involved in the various defensive
responses. Finally, a model is described that postulates that
the PVT integrates and amplifies cortical signals related to
threats and relays these signals to activate subcortical circuits
that modulate defensive responses including avoidance of
potential threats.

STRESS AND ANXIETY

Fear and anxiety are similar types of emotions (LeDoux, 2015;
LeDoux and Pine, 2016) that can be inferred in experimental
animals from the expression of stereotypical defensive behaviors
(LeDoux, 2015; LeDoux and Pine, 2016). Fear is triggered by
the presence of an impending threat and is often experimentally
defined in rodents as freezing to conditioned cues or contexts.
In contrast, anxiety is a response to potential threats and is
operationally defined as avoidance of potential risks involving
open spaces, bright lights, and novel conspecifics (Steimer, 2002;
LeDoux, 2015). An association between stress and anxiety is well-
established (Shin and Liberzon, 2010; Bystritsky and Kronemyer,
2014; Daviu et al., 2019) with stress being a contributing factor
for most anxiety disorders including social anxiety disorder and
posttraumatic stress disorder (PTSD) (Bystritsky and Kronemyer,
2014; Carvajal, 2018). The causal relationship between stress
and anxiety is most dramatically exemplified by PTSD where a
single but intensely stressful experience can lead to a long-lasting
anxiety state in susceptible individuals (Nemeroff et al., 2006;
Craske and Stein, 2016). The enduring effect of acute stress on
behavior is not unique to humans since exposure of rodents to a
single episode of footshocks produces enhanced levels of anxiety,
including heightened level of social avoidance that does not
appear to be directly dependent of the retrieval of a fear memory
(Louvart et al., 2005; Siegmund and Wotjak, 2007; Mikics et al.,
2008; Chen et al., 2012).

BRIEF OVERVIEW OF THE PVT AND ITS
ROLE IN REGULATING BEHAVIOR

The PVT has received a considerable amount of attention because
of its connections with regions of the brain linked to the
regulation of emotional and motivated behavior (Groenewegen
et al., 1987; Berendse and Groenewegen, 1990, 1991; Berendse
et al., 1992; Wright and Groenewegen, 1995, 1996). Tracing
studies show that the PVT sends a robust excitatory projection
to a continuum in the basal forebrain that includes the shell
of the nucleus accumbens (NAcSh), dorsolateral region of the
bed nucleus of the stria terminalis (BSTDL) and lateral region
of the central nucleus of the amygdala (CeL) consisting of the
lateral and capsular subnuclei of the central nucleus of the
amygdala (Moga et al., 1995; Parsons et al., 2007; Li and Kirouac,
2008; Vertes and Hoover, 2008; Dong et al., 2017). The BSTDL
and CeL are part of a larger macrostructure called the central
extended amygdala (cEA) (Heimer and Alheid, 1991; Alheid
et al., 1995; de Olmos et al., 2004). The cEA contains striatal-
like projection neurons that send fibers to the hypothalamus and
brainstem. In addition, the cEA densely innervates the medial
extended amygdala (mEA), which consists of the medial regions
of the bed nucleus of the stria terminalis and the medial central
nucleus of the amygdala (Heimer and Alheid, 1991; Alheid
et al., 1995; de Olmos et al., 2004). The mEA is composed of
pallidal-like neurons that provide dense descending projections
to the somatomotor, visceromotor, and endocrine circuits in the
hypothalamus and brainstem known for producing some of the
physiological and behavioral responses that make up defensive
responses (Petrovich and Swanson, 1997; Cassell et al., 1999;
Swanson, 2000). The NAcSh of the ventral striatum is composed
of medium spiny neurons that provide fiber projections to the
ventral pallidum, lateral hypothalamus, and ventral tegmental
area (Heimer et al., 1991; Zahm and Brog, 1992; Zahm, 2006).
While the NAcSh is sometimes considered a transitional region
between the cEA and the rest of the striatum, it is also appropriate
to consider the NAcSh, BSTDL, and CeL as components of a large
striatal-like descending macrosystem involved in the regulation
of complex behavior (Swanson, 2000; Zahm, 2006). A notable
common anatomical feature of this striatal-like macrosystem is
an exceptionally dense plexus of PVT fibers (Li and Kirouac,
2008). It is also important to appreciate that PVT neurons
project weakly to cortical regions (i.e., prelimbic, infralimbic,
anterior insular cortices; ventral subiculum, and the basolateral
nucleus of the amygdala) that innervate the same areas of the
NAcSh, BSTDL, and CeL that receive fibers from the PVT
(Kirouac, 2015). This places the PVT in a position to influence
multiple levels of the cortico-subcotical circuits involved in
regulating behavior.

The sources of input to the PVT have also been examined
(Otake et al., 1995, 2002; Krout and Loewy, 2000a,b; Krout et al.,
2002) and a detailed comparative analysis of all afferents to the
PVT using retrograde tracing methods indicate that the major
sources of inputs originate from neurons in the prefrontal cortex
(infralimbic, prelimbic, insular) and the ventral subiculum of the
hippocampus (Li and Kirouac, 2012). The robustness of cortical
projections to the PVT has also been described using anterograde
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tracing methods (Sesack et al., 1989; Canteras and Swanson,
1992; Vertes, 2004). In addition, a number of functionally distinct
nuclei in the brainstem and hypothalamus known to modulate
behavioral states are also significant sources of afferents to the
PVT (Otake et al., 1995, 2002; Krout and Loewy, 2000a,b; Krout
et al., 2002), but the strength of these inputs often appear to
be eclipsed by the comparative strength of the cortical inputs
(Li and Kirouac, 2012).

It is also notable that the PVT is an area of the brain
consistently identified as being activated during states of
behavioral arousal (reviewed in Kirouac, 2015; Millan et al., 2017;
Barson et al., 2020; McGinty and Otis, 2020) including those
where sensory cues predict rewarding or aversive conditions
(Do-Monte et al., 2015; Zhu et al., 2018; Choi et al., 2019).
Recording of calcium signals or single unit activity in the PVT of
behaving animals exposed to stimuli associated with appetitive or
aversive outcomes indicates that PVT neurons respond robustly
to novel cues and that these neurons track the saliency of these
cues (Do-Monte et al., 2015, 2017; Choi and McNally, 2017;
Zhu et al., 2018; Otis et al., 2019). A considerable amount of
direct experimental evidence is also available demonstrating that
the PVT contributes to conditioned appetitive and defensive
behaviors in a projection specific manner (Do-Monte et al., 2015,
2017; Labouebe et al., 2016; Zhu et al., 2016, 2018; Choi and
McNally, 2017; Cheng et al., 2018; Choi et al., 2019). The critical
question of whether the PVT preferentially promotes appetitive
or aversive responses has not been unequivocally resolved (some
of the controversies and challenges in studying the role of the
PVT in behavior was recently reviewed in McGinty and Otis,
2020). Indeed, the type of influence the PVT has on behavior
studied in a laboratory setting may be in part dependent on
whether opto- or chemogenetic methods are targeted at a specific
projection system. For instance, some studies have shown that
PVT neurons that project to the CeL contribute to the behavioral
freezing associated with conditioned fear (Do-Monte et al., 2015;
Penzo et al., 2015) while others have shown that PVT neurons
that project to the NAcSh mediate conditioned sucrose seeking
(Labouebe et al., 2016; Cheng et al., 2018). This suggests that PVT
neurons that innervate the CeL mediate aversive responses while
those that project to the NAcSh mediate appetitive responses.
However, this is not supported by other evidence showing
that PVT neurons that project to the NAcSh mediate real-
time avoidance and conditioned place avoidance (Zhu et al.,
2016). It should be clear that our understanding of how the
PVT mediates valence-dependent responses is incomplete and is
further complicated by the fact that many neurons in the PVT
send bifurcating axons that innervate multiple target areas of the
forebrain (Unzai et al., 2015; Dong et al., 2017). Divergence of
projections from single neurons in the PVT implies that PVT
neurons may coordinate behavioral responses by simultaneously
engaging multiple subcortical circuits. Furthermore, more recent
evidence indicates that the type of influence the PVT has
on behavior may be dependent on the type of experimental
paradigm being studied and whether competing motivational
states are present (Choi and McNally, 2017; Do-Monte et al.,
2017; Choi et al., 2019; McGinty and Otis, 2020). Some of
the evidence and potential mechanisms by which the PVT

influences motivated behavior have been discussed in recent
reviews and will not be considered in all of their intricate
details here (Kirouac, 2015; Do Monte et al., 2016; Millan
et al., 2017). While all neurons in the PVT are presumed to be
projection neurons that use excitatory amino acids as their main
neurotransmitter (Christie et al., 1987; Frassoni et al., 1997), it
is also important to appreciate that the PVT is not a uniform
structure (Kirouac, 2015). For example, the anterior (aPVT) and
posterior aspect of the PVT (pPVT) are composed of neurons
that have preferential efferent targets and different sources of
afferent inputs making these two broad regions of the PVT
potentially functionally different (Li and Kirouac, 2008, 2012;
Kirouac, 2015; Dong et al., 2019).

THE BRAIN ANXIETY NETWORK

Anxiety states and avoidance of threats are regulated by brain
circuits engaged in hierarchical control of defensive strategies
in what has been conceptualized as the brain anxiety network
(Adhikari, 2014; Calhoon and Tye, 2015; Tovote et al., 2015;
LeDoux and Daw, 2018). Potential threats are detected through
coordinated activity in a network of interconnected cortical areas
that include the basolateral nucleus of the amygdala, ventral
hippocampus, and prefrontal cortex (Adhikari, 2014; Calhoon
and Tye, 2015; Silva and McNaughton, 2019). It is postulated
that this cortical network evaluates potential risks and initiates
defensive responses via projections to the subcortical regions
associated with the selection of behavioral responses (Kim et al.,
2013; Adhikari, 2014; Duvarci and Pare, 2014; Calhoon and Tye,
2015; Fox et al., 2015; Fox and Shackman, 2017). The BSTDL
is the part of the cEA that has been most studied for its role in
anxiety (Walker et al., 2003, 2009; Kim et al., 2013; Pleil et al.,
2015; Normandeau et al., 2018). Optogenetic activation of the
BSTDL elicited anxiety in the elevated plus maze (EPM), whereas
inhibition has an anxiolytic effect (Kim et al., 2013). The neural
connections by which the BSTDL modulates anxiety appear to
involve connections to other regions of the bed nucleus of the
stria terminalis (i.e., mEA) which exert modulatory effects on
anxiety via descending projections to the lateral hypothalamus
and ventral tegmental area (Jennings et al., 2013; Kim et al.,
2013). The CeL has been primarily investigated for its role in
conditioned fear (Kalin et al., 2004; Cai et al., 2012; Ventura-
Silva et al., 2013), but recent evidence indicates that the CeL
also potentially contributes to anxiety via projections to the
BSTDL (Ahrens et al., 2018; Asok et al., 2018a). The NAcSh
has been mostly studied for its role in reward and appetitive
behaviors (Nicola, 2007; Floresco, 2015; Namburi et al., 2016).
However, there is ample evidence that the NAcSh regulates
defensive responses (Reynolds and Berridge, 2001, 2002, 2003,
2008; Newton et al., 2002; Barrot et al., 2005; Al-Hasani et al.,
2015; Ramirez et al., 2015; Zhu et al., 2016; Anderson et al., 2018;
Lee et al., 2018; Piantadosi et al., 2018) including anxiety
(Martinez et al., 2002; Lopes et al., 2007, 2012; da Cunha
et al., 2008). It is generally accepted that the striatum including
the NAcSh integrates cognitive and affective information from
the cortex and thalamus in a way that leads to the selection

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 627633

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-627633 February 18, 2021 Time: 19:4 # 4

Kirouac Paraventricular Nucleus of the Thalamus and Anxiety

or promotion of an appropriate behavioral response (Nicola,
2007; Floresco, 2015; Namburi et al., 2016) especially where
the outcome of an action is ambiguous (Namburi et al., 2016).
From this perspective, the NAcSh may contribute to avoidance
by biasing motivational/emotional responses in the defensive
direction in situations involving both benefits and threats (i.e.,
approach-avoidance conflicts). The NAcSh is also emerging
as an area of the brain critical for social interaction where
disruption of normal signaling contributes to social avoidance
(Aragona et al., 2006; Christoffel et al., 2011; Chaudhury et al.,
2013; Dolen et al., 2013; Gunaydin et al., 2014; Francis et al.,
2015; Resendez et al., 2016; Wook Koo et al., 2016; Rademacher
et al., 2017; Folkes et al., 2019; Steinman et al., 2019). Our
understanding of the neural mechanisms by which the NAcSh
mediates the avoidance induced by anxiety is incomplete but is
likely to involve projections to the ventral tegmental area and
the lateral hypothalamus (Zahm and Brog, 1992; Zahm, 1999,
2000, 2006; da Cunha et al., 2008; Al-Hasani et al., 2015; Zhu
et al., 2016) similar to how the BSTDL modulates anxiety-like
responses (Jennings et al., 2013; Kim et al., 2013).

ANATOMICAL CONNECTIONS BETWEEN
THE PVT AND THE ANXIETY NETWORK

Figure 1 illustrates the most prominent connections between the
PVT and components of the anxiety network. As shown, the PVT
is well-positioned to contribute to the selection of defensive
responses via a dense projection to the NAcSh, BSTDL, and CeL
(Moga et al., 1995; Parsons et al., 2007; Li and Kirouac, 2008;
Vertes and Hoover, 2008; Dong et al., 2017). These striatal-like
regions are in turn anatomically positioned to modulate defensive
circuits in the mEA, hypothalamus and brainstem. The PVT
is also suitably placed to relay arousal related signals to the
cortical network involved in threat detection. In addition to being
connected with the critical output components of the anxiety
network, the PVT is anatomically positioned to integrate and
relay a variety of signals known to contribute to anxiety. For
example, the prelimbic cortex is a major source of input to the
PVT (Sesack et al., 1989; Canteras and Swanson, 1992; Vertes,
2004; Li and Kirouac, 2012) and experimental evidence indicates
that the prelimbic cortex not only promotes conditioned fear
responses but also contributes to fear generalization and anxiety
(Jinks and McGregor, 1997; Lacroix et al., 2000; Sullivan and
Gratton, 2002; Shah and Treit, 2003, 2004; Adhikari et al., 2010,
2011; Lisboa et al., 2010; Sotres-Bayon and Quirk, 2010; Xu and
Sudhof, 2013; Rozeske et al., 2015; Yamada et al., 2015; Suzuki
et al., 2016; Shimizu et al., 2018). It is especially notable that a
projection from the prelimbic cortex to the PVT is critical for
retrieval of remote fear memories (Padilla-Coreano et al., 2012;
Do-Monte et al., 2015; Do Monte et al., 2016). The significance
of the latter findings is that fear memories generalize over time in
a way that is believe to contribute to the development of PTSD
(Liberzon and Abelson, 2016; Asok et al., 2018b). Consequently,
the prelimbic cortex may not only relay signals to the PVT
directly associated with a previously experienced threat but also
any cues that remotely resemble those present at the time of a

FIGURE 1 | Anatomical connections of the PVT with components of the
anxiety network. BLA, basolateral amygdala; BSTDL, dorsolateral region of
the bed nucleus of the stria terminalis; CeL, lateral region of the central
nucleus of the amygdala; LH, lateral hypothalamus; mEA, medial extended
amygdala; NAcSh, shell of the nucleus accumbens; OX, orexins; PFC,
prefrontal cortex; PVT, paraventricular nucleus of the thalamus; vHip, ventral
hippocampus; VP, ventral pallidum; VTA, ventral tegmental area.

fear inducing event. The PVT also receives strong input from the
infralimbic cortex, insular cortex and the ventral subiculum (Li
and Kirouac, 2012), which have been implicated in stress, anxiety
and fear generalization (O’Mara et al., 2009; Adhikari et al., 2010;
Bi et al., 2013; Berg et al., 2019; Shi et al., 2020).

The PVT receives afferents from many regions of the
hypothalamus including a significant input from the dorsomedial
nucleus of the hypothalamus (Li and Kirouac, 2012). The
dorsomedial nucleus of the hypothalamus has been shown to
contribute to arousal, stress and anxiety (Fontes et al., 2011;
Johnson and Shekhar, 2012) and signals from this region of
the hypothalamus to the PVT may be critical for promoting
anxiety. In addition, retrograde tracing studies have reported
that the PVT receives afferent input from neurons scattered in
numerous regions of the brainstem (Krout and Loewy, 2000a,b;
Krout et al., 2002). In our comparative analysis of all sources
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of input to the PVT, regions of the brainstem associated with
viscerosensory and motor functions including the periaqueductal
gray and parabrachial nucleus were found to be the most
prominent source of input to the PVT, whereas adrenergic
cell groups including those found in the locus ceruleus and
other regions of the brainstem were found to be comparatively
minor sources of afferents to the PVT (Kirouac et al.,
2006; Li and Kirouac, 2012; Li et al., 2014a). The PVT
also receives a relatively weak dopaminergic projection that
originates from neurons scattered in the hypothalamus and the
ventrolateral periaqueductal gray but not the ventral tegmental
area (Li et al., 2014a). It is notable that the PVT receives
afferents from neurons scattered in a variety of regions in the
hypothalamus and brainstem that can be broadly described
as having functions related to the modulation of behavioral
states in addition to the relay of viscerosensory and nociceptive
information (Li and Kirouac, 2012). It is also of interest that
many of the neurons in the brainstem and hypothalamus that
innervate the PVT produce neuropeptides that may be involved
in signaling states of arousal and stress (Freedman and Cassell,
1991; Battaglia et al., 1992; Otake and Nakamura, 1995; Haskell-
Luevano et al., 1999; Kirouac et al., 2005, 2006; Otake, 2005;
Clark et al., 2011; Hermes et al., 2013; Lee et al., 2015). For
example, orexin peptides have been shown to be involved in
the regulation of behavioral states (Peyron et al., 1998; Berridge
et al., 2010; Boutrel et al., 2010) including those involving aversive
and stressful events (Ida et al., 2000; Zhu et al., 2002; Espana
et al., 2003; Winsky-Sommerer et al., 2004; Furlong et al., 2009).
As previously reviewed, the bottom-up projections to the PVT
are postulated to form an ascending emotional arousal system
(van der Werf et al., 2002; Kirouac, 2015).

THE PVT AS AN EMOTIONAL AROUSAL
AND STRESS RESPONSIVE REGION

Neurons that innervate the PVT originate from regions of
the brain that have functions that can be broadly defined as
being involved in mediating behavioral or emotional states.
For instance, the parabrachial nucleus is a major ascending
relay center for viscerosensory and nociceptive information
from the body to the forebrain including the PVT (Saper and
Loewy, 1980; Gauriau and Bernard, 2002). The hypothalamic
inputs originate from neurons located in many regions of
the hypothalamus with many of these neurons producing
neuropeptides linked to a variety of functions including food
intake, arousal, and stress (Freedman and Cassell, 1994; Li
and Kirouac, 2012; Colavito et al., 2015; Kirouac, 2015). This
suggests that the PVT integrates signals related to a variety of
behavioral states including those involved in physiological and
psychological challenges. Indeed, many studies have reported
that the PVT is activated by exposure of rats to stressful or
aversive conditions including restraint (Cullinan et al., 1995;
Bhatnagar and Dallman, 1998), tail pinch and footshocks
(Smith et al., 1997; Bubser and Deutch, 1999; Yasoshima et al.,
2007; Baisley et al., 2011), swimming stress (Cullinan et al.,
1995; Zhu et al., 2011), predator scent (Baisley et al., 2011),

ultrasonic vocalizations in the dysphoric range (Beckett et al.,
1997), aversive visceral stimulation (Yasoshima et al., 2007),
and exposure to a context and cues associated with aversive
experiences (Beck and Fibiger, 1995; Yasoshima et al., 2007;
Padilla-Coreano et al., 2012). Stress-induced activation of the
PVT appears to have functional implications since a number of
studies have shown that the PVT modulates the neuroendocrine
and behavioral responses to chronic stress (Bhatnagar and
Dallman, 1998; Bhatnagar et al., 2000, 2002). For example, the
pPVT has been shown to be necessary for both the habituation
and facilitation of the hypothalamic pituitary axis (HPA) to
chronic stress (Bhatnagar and Dallman, 1998, 1999; Bhatnagar
et al., 2000, 2002). The HPA response may be facilitated or
enhanced in a way that promotes anxiety when an organism
encounters novel challenges. In addition, the PVT has been
shown to contribute to learned behavioral responses of rodents
exposed to aversive and stressful conditions (Li et al., 2011;
Padilla-Coreano et al., 2012; Do-Monte et al., 2015; Zhu et al.,
2016). More recent evidence indicates that motivational conflicts
having both appetitive and aversive consequences selectively
activate projection specific neurons in the PVT in a way that
promotes a unique behavioral response (Choi and McNally,
2017; Choi et al., 2019). Furthermore, the frustration effect of
sucrose reward omission produces a change in how neurons
in the PVT that project to the NAcSh or CeL subsequently
influence further sucrose seeking (Do-Monte et al., 2017). In
summary, the PVT represents a brain region that is generally
active during states of high arousal including stressful and
aversive conditions as well as the cues previously associated
with these conditions (Kirouac, 2015; Do Monte et al., 2016;
Barson et al., 2020). This places the PVT in a position to
integrate and relay threat- and stress-related signals to the
NAcSh and cEA where modulation of local circuits may be
involved in the selection of appropriate defensive responses
via descending projections. Depending on the situation and
proximity of a potential threat, this could involve ceasing normal
behavioral activity including all appetitive behaviors, completely
stopping all movement (freezing), moving away, or hiding from
the perceived threat (Steimer, 2002; Calhoon and Tye, 2015;
LeDoux and Daw, 2018).

OREXIN NEUROTRANSMISSION TO
THE PVT AND STRESS-INDUCED
ANXIETY

The orexin (hypocretin) peptides are exclusively found in
neurons of the lateral and perifornical region of the posterior
hypothalamus (Peyron et al., 1998; Sakurai et al., 1998). The
bioactive orexin-A (OXA) and orexin-B (OXB) peptides are
produced by the cleavage of prepro-orexin (ppOX). Orexins act at
G protein-coupled receptors called the orexin-1 receptor (OX1R),
which is selective for OXA, and the orexin-2 receptor (OX2R),
which is non-selective for OXA and OXB (Sakurai et al., 1998;
de Lecea, 2012). Orexin neurons have widespread projections to
regions of the brain that regulate arousal and behavioral states
(Peyron et al., 1998; Berridge et al., 2010; Boutrel et al., 2010).
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The PVT contains an especially impressive plexus of orexin
fibers (Kirouac et al., 2005, 2006) where orexins act to promote
wakefulness (Ren et al., 2018); drug (Matzeu et al., 2014) and
food reward seeking (Choi et al., 2010; Meffre et al., 2019);
and attribution of salience to reward cues (Haight et al., 2020).
Orexin neurons become active when animals are exposed to
aversive conditions (Ida et al., 2000; Zhu et al., 2002; Espana
et al., 2003; Winsky-Sommerer et al., 2004; Furlong et al., 2009)
and experimental evidence indicates that orexins modulate the
physiological, hormonal and behavioral responses to stress via
action in the brain (Kayaba et al., 2003; Furlong et al., 2009; Zhang
et al., 2010; Heydendael et al., 2011; Grafe and Bhatnagar, 2018).

Experimental evidence indicates that orexins are involved
in fear and anxiety. For instance, systemic administration of a
non-specific orexin receptor antagonist reduces fear potentiated
startle and the increases in heart rate and blood pressure that
are produced when rats are placed in the context previously
associated with footshocks (Furlong et al., 2009; Steiner et al.,
2012). Research by our own group found that the level of ppOX
mRNA is increased in the hypothalamus of rats that developed
anxiety after a single exposure of inescapable footshocks (Chen
et al., 2014). The increase in mRNA lasted for a couple of
weeks and appeared to be related to an arousal-related increase
in orexin neuron activity (Chen et al., 2014). Our group also
reported that systemic injections of OX1R or OX2R antagonists
as well as a non-specific orexin antagonist in shocked rats reduced
contextual fear and the avoidance tendencies that resulted from
exposing rodents to inescapable footshocks (Chen et al., 2014;
Wang et al., 2017). There is also evidence that the orexin
system is critical for the expression of the autonomic and
behavioral changes associated with a CO2-panic provocation
model of panic anxiety (Bonaventure et al., 2017). Another
group has shown that administration of the OXA peptide in
the cerebral ventricles elicits anxiety-like behaviors in both
mice and rats (Suzuki et al., 2005). There is also preclinical
and clinical evidence that an enhanced level of orexin activity
may contribute to the higher incidence of anxiety in females
(Grafe and Bhatnagar, 2020).

The areas of the brain where the orexin peptides or antagonists
act to modulate anxiety and fear remained largely unexplored
until recently. Orexin fibers and receptors are found in many
of the regions of the anxiety network including the BSTDL and
CeL (Peyron et al., 1998; Marcus et al., 2001) and administrations
of orexins in these areas of the cEA were reported to produce
anxiety-like responses (Lungwitz et al., 2012; Avolio et al., 2014).
The PVT contains a relatively high density of orexin fibers
compared to what is present in the BSTDL and CeL (Li et al.,
2011) and orexin fibers make putative synaptic contacts with
neurons that project to the NAcSh (Kirouac et al., 2005; Parsons
et al., 2006). These anatomical observations led us to postulate
that orexins could modulate anxiety by acting on PVT neurons
that innervate the NAcSh and the rest of the cEA (Li and
Kirouac, 2008). In a series of investigations, our research group
investigated if orexins act at the PVT to modulate anxiety-like
behaviors in rats. First, we found that injections of the OXA
and OXB peptides in the pPVT region decreased locomotor
activity, increased bouts of immobility and avoidance of the

center of an open field (Li et al., 2009, 2010a). In another study,
we found that injections of the orexin peptides in the pPVT
resulted in avoidance of the open arms and increased ethological
behaviors in the EPM indicative of an anxiety state (Li et al.,
2010b). In contrast to these findings, injections of GABA agonists
in the pPVT was reported to decrease the time spent in the
open arm of the EPM (Barson and Leibowitz, 2015) indicating
that the PVT’s effect on anxiety may be complex and involves
multiple neurotransmitters or neuromodulators. We speculated
that activation of orexin receptors in the PVT enhances the
saliency of threats (e.g., open spaces, novel objects, and bright
lights). To further establish that endogenously released orexins
modulated anxiety by acting at the PVT, our research group
demonstrated that administrations of a specific OX2R antagonist
in the pPVT attenuate anxiety-like behaviors in rats that had
received footshocks 24 h prior to the EPM test (Li et al., 2010a).
It is notable that the anxiolytic effects of the orexin antagonist
were only observed in rats that had been previously shocked
indicating that anxiogenic effects of orexins are only present
in rats exposed to an acute fear-inducing situation. While the
pPVT is involved in conditioned fear to discrete auditory cues
(Li et al., 2014b; Do-Monte et al., 2015; Penzo et al., 2015),
administration of an non-specific orexin antagonist in the pPVT
during the fear expression test has no effect on freezing to
conditioned tones (Dong et al., 2015). Interestingly, contextual
fear expression was also not affected by blocking of orexin
receptors in the pPVT while the same treatment decreased
social avoidance and anxiety-like responses in the open field
(Dong et al., 2015).

In summary, stress and anxiety are complementary states
that engage many of the same neural circuits (Bystritsky and
Kronemyer, 2014). Orexin neurons are more active under
conditions of high arousal including exposure to stressful and
aversive situations. High levels of arousal are likely to activate
stress-responsive areas of the brain and promote anxiety by
increasing the saliency of emotionally relevant cues including
potential threats (Mahler et al., 2014). The effect of an acute
but intense stress event on orexin neurons has been shown to
last for days and up to several weeks (Chen et al., 2014). It is
also noteworthy that the actions of orexins on PVT neurons
in response to stressful situations or challenges may lead to
neuroplastic changes that may make the PVT more sensitive
to novel challenges (Heydendael et al., 2011). Accordingly,
stress may make orexin neurons more responsive to arousing
conditions leading to an enhanced sensitivity of the PVT neurons
to novelty and potential threats. The arousal- and threat-related
signals may increase the activity of PVT neurons that relay this
amplified signal to NAcSh, BSTDL, and CeL.

NEURAL PATHWAY FOR PVT
MODULATION OF ANXIETY

There is experimental evidence that the PVT mediates freezing
to conditioned tones as well as the immediate anxiogenic
effects of footshocks (Li et al., 2014b; Do-Monte et al., 2015;
Penzo et al., 2015; Pliota et al., 2018) via a projection to the CeL
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(Do-Monte et al., 2015; Penzo et al., 2015; Pliota et al., 2018).
The pPVT may have a greater influence on fear and anxiety
because this region of the PVT projects densely to the BSTDL
and CeL (Li and Kirouac, 2008). There is an implicit assumption
that a subpopulation of projection-specific neurons in the pPVT
may mediate the defensive responses. For example, a PVT-CeL
projection may mediate the behavioral freezing link to fear,
whereas projections to the NAcSh or BSTDL may mediate the
avoidance induced by potential threats. However, the idea that
subpopulations of projection-specific neurons mediate unique
defensive responses may be an oversimplification because recent
anatomical evidence shows that PVT neurons have axons that
bifurcate to innervate multiple targets (Unzai et al., 2015; Dong
et al., 2017). Indeed, a detailed analysis and mapping of projection
neurons in the PVT revealed that most neurons in the PVT
innervate the NAcSh and that many of these neurons issue
collaterals to the BSTDL and CeL (Dong et al., 2017). Neurons
that project to the NAcSh, BSTDL, and CeL are intermixed
throughout the aPVT and pPVT and do not form clusters of
unique subpopulations of projection specific neurons. One caveat
to this statement is that neurons that innervate the core of the
nucleus accumbens and the ventromedial region of the shell
(vmNAcSh) are located slightly more dorsally and laterally in
the PVT, respectively, than those innervating the dorsomedial
region of the shell (dmNAcSh). However, there are some notable
differences in terms of the number of neurons in the aPVT and
pPVT that project to various subcortical regions. As shown in

FIGURE 2 | Summary of the efferent projections of the PVT based on recent
retrograde tracing experiments involving various combinations of injections of
the tracer in subcortical targets of the PVT (Dong et al., 2017). Projections
appear to originate from two major population of intermixed neurons that
preferentially innervate the dmNAcSh (red) and vmNAcSh (green) along with
their collateral projections to other subcortical regions. The size of the arrow is
indicative of the strength of the projection based on the number of
retrograde-labeled neurons in the PVT from injections of cholera toxin B in the
central nucleus of the amygdala (CeL), dorsolateral region of the bed nucleus
of the stria terminalis (BSTDL), core of the nucleus accumbens (NacC),
dorsomedial aspect of the shell of the nucleus accumbens (dmNAcSh), and
ventromedial aspect of the shell of the nucleus accumbens (vmNAcSh). aPVT,
anterior aspect of the paraventricular nucleus of the thalamus; pPVT, posterior
aspect of the paraventricular nucleus of the thalamus.

Figure 2, neurons that project to the vmNAcSh and core of the
nucleus accumbens are more likely to originate from the pPVT.
These pPVT neurons are also more likely to send collaterals
that innervate the BSTDL and CeL. In contrast, neurons that
innervate the dmNAcSh are more likely to originate in the
aPVT and are less likely to project to the BSTDL and CeL. This
points to the possibility that PVT neurons that innervate the
vmNAcSh along with their collaterals to the BSTDL and CeL
may form a projection system that may be involved in mediating
aversive or defensive responses. Our group recently tested this
hypothesis by examining if chemogenetic inhibition of PVT
neurons that project to the vmNAcSh interfered with the lasting
behavioral changes produced by exposing rats to a single episode
of inescapable foothocks (Dong et al., 2020). An intersectional
chemogenetic approach was used to demonstrate that inhibition
of PVT neurons that project to the vmNAcSh attenuates the
lasting social avoidance that develops following exposure of
rats to footshock stress. Interestingly, anxiety-like behaviors in
the open field and contextual fear expression were unaffected
by the same manipulation. Evidence that the projection to the
vmNAcSh was involved was provided by showing that injections
in the vmNAcSh of the agonist for a designer receptor exclusively
activated by a designer drug (DREADD) had the same effect as
systemic injections of the agonist. Furthermore, expression of
the immediate early gene cFos was use to show that these effects
were mediated by neurons in the NAcSh that contain the opioid
peptide dynorphin (Dong et al., 2020). Dynorphin containing
medium spiny neurons in the NAcSh have been shown to mediate
the aversive effects of stress on behavior (Newton et al., 2002;
Barrot et al., 2005; Bruchas et al., 2008; Land et al., 2008; Al-
Hasani et al., 2015). The exact region of the NAcSh critical for
social avoidance remains unknown because the intersectional
DREADDs approach resulted in fibers being transduced in much
of the medial NAcSh (Dong et al., 2020). Another unresolved
question is whether the anxiety-like behaviors in the open field
and/or the freezing associated with contextual fear expression
are mediated by fiber collaterals to the BSTDL and CeL that
originate from the same PVT-vmNAcSh projection neurons
that mediate social avoidance. Indeed, PVT-NAcSh projecting
neurons that contribute to social avoidance could also mediate
decreases in exploratory behavior and freezing via collaterals to
the BSTDL and CeL depending on the situational factors present
during the test condition (i.e., presence of a social target, open
areas, or shock context). A population of PVT neurons that
send divergent projections to the NAcSh, BSTDL, and CeL could
provide signals that help coordinate the selection or expression of
different defensive responses.

MODEL FOR HOW THE PVT
CONTRIBUTES TO ANXIETY

Neurons in the NAcSh and cEA integrate signals from a number
of sources including the thalamus, cortex and other areas of the
brain resulting in the selection and expression of appropriate
behavioral responses via activation of multisynaptic descending
pathways (Pennartz et al., 1994; Cardinal et al., 2002; Zahm, 2006;
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Nicola, 2007; Humphries and Prescott, 2010; Floresco, 2015).
This canonical view of the corticostriatal circuits posits that
striatal neurons integrate signals and select appropriate responses
based on previous learning contingencies and the behavioral
state of the organism. An intriguing possibility is that the
PVT’s divergent projections could contribute to different types
of defensive responses based on situational factors present as
well as the emotional or behavioral state of the organism. For
example, activation of PVT fibers in the NAcSh could promote
social avoidance if a social contact is present, activation of fibers
to the BSTDL could support avoidance of open spaces and
decrease foraging behavior, whereas activation of PVT fibers to
the CeL could support freezing to cues and contexts previously
associated with an aversive event. We know from studies using
the expression of cFos that PVT neurons are active during
states of high arousal including exposure to stressful/aversive
conditions and presentation of cues/contexts signaling potential
threats (Silveira et al., 2001; Linden et al., 2003, 2005; Salome
et al., 2004; Hale et al., 2008; Galvis-Alonso et al., 2010; Kirouac,
2015). As shown in Figure 1, the PVT receives afferents from a
number of brain regions involved in arousal and threat detection.
Prefrontal cortical areas may relay threat-related signals to the
PVT since these cortical areas have been shown to be involved
in contextual fear, fear generalization and anxiety (Bermudez-
Rattoni et al., 1997; Corcoran and Quirk, 2007; Laurent and
Westbrook, 2008; Biedenkapp and Rudy, 2009; Stevenson, 2011;
Alves et al., 2013; Kheirbek et al., 2013; Jiang et al., 2014; Rozeske
et al., 2015; Wang et al., 2015; Zhang et al., 2015). The prelimbic
cortex may be especially critical since it is activated by anxiogenic
conditions (Linden et al., 2003, 2005; Hale et al., 2008; Wall et al.,
2012) and has been shown to play a role in generating anxiety-
like responses (Jinks and McGregor, 1997; Lacroix et al., 2000;
Sullivan and Gratton, 2002; Shah and Treit, 2003, 2004; Lisboa
et al., 2010; Yamada et al., 2015; Suzuki et al., 2016; Shimizu et al.,
2018). The dorsomedial nucleus of the hypothalamus projects
significantly to the PVT (Thompson et al., 1996; Li and Kirouac,
2012) and is another potential source of anxiety-related signals
because activation of this hypothalamic nucleus has been shown
to generate panic and anxiety (Fontes et al., 2011; Johnson and
Shekhar, 2012). Finally, the PVT contains a variety of peptidergic
fibers that originate from neurons in the hypothalamus and
brainstem (Freedman and Cassell, 1994; Otake and Nakamura,
1995; Kirouac et al., 2005, 2006; Otake, 2005). These peptides
could signal emotional and behavioral states similar to what has
been shown for the orexins (Li et al., 2010a,b; Dong et al., 2015).

SUMMARY AND FUTURE DIRECTIONS

The model emphasizes the hypothesis that the PVT integrates
top-down signals related to potential threats with bottom-up
signals related to emotional and behavioral states to energize
defensive responses by activating descending pathways in
the NAcSh and cEA. Cortical areas where the memory of
aversive experience is processed and stored would provide the
key signals that trigger striatal neurons to generate defensive
response. The model advances the view that the PVT receives

and integrates threat-related signals from the cortex along with
behavioral or emotional state signals from the hypothalamus and
brainstem. In this model, the PVT serves to integrate threat
and situational information in a way that promotes appropriate
defensive responses via its divergent projections to the NAcSh
and cEA. The model also proposes that the PVT serves to
promote or amplify the influence of the cortex on subcortical
regions. The proposed model is focused on how the PVT
regulates defensive behaviors. Nonetheless, the model is also
pertinent for understanding how the PVT mediates appetitive
behaviors. For example, recent evidence shows that signals from
orexin and prelimbic cortical neurons converge and act at the
PVT to modulate reward seeking responses to cues in a manner
similar to what is predicted by the model (Otis et al., 2017, 2019;
Campus et al., 2019).

Going forward it will be important to design experiments in
which the contribution of the PVT on complex behavior can
be examined in experimental situations where both appetitive
and aversive outcomes are possible as recently done by some
research groups (Do-Monte et al., 2015; Zhu et al., 2018; Choi
et al., 2019). It would also be of interest to know if neurons
in the PVT affect the behavior produced in the Vogel or the
Geller and Seifter conflict tests of anxiety where rodents are
punished by electrical shocks when trying to consume food or
water (Millan, 2003). It will also be essential for future studies to
consider how simultaneous activation of PVT fibers to multiple
subcortical target regions affects behavior. This could involve
determining how synchronized modulation of different collateral
terminal sites affects behavioral responses driven by complex
contingencies or behavioral states. A combination of opto- and
chemogenetic approaches might be useful despite the technical
challenges involved. It will also be of importance to determine
how cortical inputs interact with PVT inputs at subcortical levels.
For example, are signals from the prefrontal cortex amplified by
the PVT in a manner that enhances the threat response driven
by activity from the prefrontal cortex to the NAcSh, BSTDL, and
CeL? It is clear that there are many challenges in studying the
PVT especially when we consider the complexity of the PVT’s
connections and the multitude of factors that modulate behavior.
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