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Epidemic control is of great importance for human society. Adjusting interacting partners is an effective
individualized control strategy. Intuitively, it is done either by shortening the interaction time between susceptible
and infected individuals or by increasing the opportunities for contact between susceptible individuals. Here, we
provide a comparative study on these two control strategies by establishing an epidemic model with nonuniform
stochastic interactions. It seems that the two strategies should be similar, since shortening the interaction time
between susceptible and infected individuals somehow increases the chances for contact between susceptible
individuals. However, analytical results indicate that the effectiveness of the former strategy sensitively depends
on the infectious intensity and the combinations of different interaction rates, whereas the latter one is quite
robust and efficient. Simulations are shown to verify our analytical predictions. Our work may shed light on the
strategic choice of disease control.

DOI: 10.1103/PhysRevE.94.062314

I. INTRODUCTION

Modeling the spreading of infectious diseases has a long
history [1–7]. Mathematical models not only deepen the
understanding of epidemic dynamics, but also shed light
on the control of diseases. In recent years, much attention
has been paid to epidemic control via social relationship
adjustment [8–10]. As a pioneering work, Gross et al.
proposed a susceptible-infected-susceptible (SIS) model on an
adaptive network. Therein the susceptible individual breaks
the link with the infected partner and rewire to another
randomly selected susceptible individual [11]. This rewiring
rule brings in highly complex dynamics (such as bistability
and oscillation) to the classical SIS model. The rewiring
dynamics then opens up the avenue on how individualized
partnership adjustment alters the epidemic dynamics. On the
one hand, besides the SIS model, typical epidemic models have
almost been investigated including the susceptible-infected-
recovered-susceptible (SIRS) model [12], the susceptible-
infected-recovered (SIR) model [13], and the susceptible-
infected-vaccinated (SIV) model [14]. On the other hand,
more realistic and complex link-rewiring rules are proposed.
In particular, generalizations of Gross et al.’s rewiring rule
are mainly twofold. For one thing, after the disconnection of
susceptible-infected (SI) link, the susceptible is assumed to
reconnect to a randomly selected member of the population
whether it is susceptible or not [15]. For another, the infected
is also allowed to switch its partnership from the susceptible
to a new randomly selected contact [16]. Besides the rewiring
rule which is dependent on the infection process, the rewiring
rule that is independent of the infection process was also
investigated [17,18]. In spite of different model assumptions,
all these models showed that the infection propagation can be
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greatly influenced by the dynamical networks. In particular,
the infection can be effectively suppressed by reducing the
interaction opportunities between susceptible and infected
individuals.

Besides the above-mentioned link-rewiring models, another
type of adaptive network is the link-activation-deactivation
model [19–21]. It assumes that a link can either be broken
or recreated on the basis of the infectious states of the two
end points of the link. In this model, only local information
is required, which could be more realistic [10]. In particular,
Guo et al. proposed an ASIS model, in which any SI link
can be broken (deactivated). After the disconnection of an
SI link, the two disconnected nodes can be reconnected
again once both of them become susceptible (activated) [21].
Despite seeming differences, the link-activation-deactivation
dynamics is similar to the rewiring dynamics. On the one
hand, Guo et al. showed that the ASIS model (initiated on
complete graphs) approximates the link-rewiring model [11].
On the other hand, the quasistationary (metastable) fraction
of infected individuals can be reduced by increasing the
effective breaking rate (proportional to the ratio of deactivating
rate to activating rate). This echoes the results based on
the link-rewiring models that the disease can be controlled
by reducing the contacts between susceptible and infected
individuals. Therefore, both types of linking dynamics in
epidemic control can be seen as decreasing the interaction
rate between susceptible and infected individuals (called SI
control). Furthermore, considering that the effective breaking
rate in [21] also depends on the activating rate between
susceptibles, their work reminds us of the significance of
susceptible-susceptible (SS) links in epidemic control.

Intuitively, increasing the interaction time between sus-
ceptibles can also be a control strategy (called SS control).
Yet it is seldom addressed, compared to the SI control that
has been intensively studied in previous literatures. It seems
that these two control strategies are two sides of the same
coin. Actually, this is true in Gross et al.’s model [11], since,
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based on their rewiring rule, the decrease of SI links directly
leads to the increase of SS links. However, this is no longer
valid in Risau-Gusmán and Zanette’s model [16], since the
disconnection of an SI link does not necessarily result in the
reconnection of an SS link. Therefore, the SS and SI control
strategies are not equivalent in general.

In this work, we provide a comparative study on the SI
control and the SS control by proposing a link-rewiring SIS
model. Unlike the models only allowing the breaking of SI
links, we allow all three types of links [SS, SI, and infected-
infected (II)] to be broken, equipped with three independent
parameters to characterize the breaking rates of SS, SI, and II
links. Actually, this assumption mimics the intrinsic nature of
human mobility [22,23], namely, people moving or changing
their social relationships due to a variety of reasons, even
without the consideration of avoiding infectious diseases. In
this way, SI links should not be the only type that is allowed
to be broken; both SS and II links can change. For example,
in acquired immune deficiency syndrome (AIDS) not only
are the susceptible individuals willing to avoid contact from
the infected individuals, but the susceptible-susceptible and
infected-infected relationships may also be broken up due to
unsatisfactory sexual experiences; i.e., the rewiring processes
can happen in SS and II links. Besides, we allow all the
individuals to be capable of adjusting any of their partners.
This mirrors the freedom of social life. It also excludes the
central control of epidemics, for example, via organizations.
In this way, we could concentrate on how the social partnership
adjustment strategies alone alter the fate of epidemics.

We demonstrate analytically that our model captures the
epidemic dynamics with nonuniform interaction rates under
fast linking dynamics. It is shown that sometimes the SS
control is more effective and robust than the SI control. In
particular, strengthening the closeness between susceptibles
(SS control) effectively eradicates the disease no matter how
infectious the disease is. However, the effectiveness of the SI
control sensitively depends on the infectious intensity and the
intrinsic mobility rate of the population. In other words, there
are cases such that the SI control cannot eliminate the disease
as efficiently as the SS control. Simulation results are also
shown for validating our theoretical predictions. Our findings
suggest that, besides the SI control, it is still of concern that
the SS control may serve as a better candidate for epidemic
control.

II. MODEL AND ANALYSIS

In this section, we propose the model of epidemic spreading
coupled with a simple stochastic link-rewiring dynamics. Then
we theoretically analyze the epidemic model with nonuniform
interaction rates based on the time scale separation.

A. Epidemic dynamics

We consider a structured population of N individuals. The
population is located on a connected network. We assume
that the average degree k is much smaller than the population
size N , i.e., k � N . Here nodes refer to individuals and links
represent social ties between individuals.

We adopt a standard SIS model to study the epidemic
spreading. The SIS model assumes that susceptible individuals
get infected with a probability proportional to the number
of their infected neighbors; infected individuals recover and
become susceptible with no immunity to the disease after a
period of recovery time. The SIS model has three features:
(i) the whole population size N is constant over time, (ii) the
transmission of disease only happens via the SI links, and (iii)
the recovery of infected individuals is independent of the status
of their neighbors.

Let It be the number of infected individuals at time t ;
therefore, the mean-field equation of the SIS model on the
structured population is given as follows:

dIt

dt
= λNSI − μIt . (1)

Here λ is the transmission rate and μ is the recovery rate.
All through the paper we assume that μ = 1 without loss of
generality, and NSI is the number of SI links.

B. Link-rewiring dynamics

The social relationships between individuals are not eternal
but are continuously coevolving. As a typical example,
susceptible individuals tend to avoid contacts with infected
ones by adjusting their local connections. It has served as the
most recognized prototype in the study of epidemic control
on dynamical networks. However, individuals may receive
miscellaneous information when making rewiring decisions;
thus, it is possible for all the individuals to adjust all of their
current social relationships. Such a rewiring process captures
mobilitylike human behavior.

Here we propose a simple link-rewiring dynamics by
extending the dynamical nature from SI links to all types
of links in the network. Each individual is either susceptible
(S) or infected (I). Thus, there are three types of links:
susceptible-susceptible (SS), susceptible-infected (SI), and
infected-infected (II) links. To characterize the fragilities of
different types of links, we define wXY (XY ∈ {SS,SI,II}) as
the probability with which an XY link breaks off in the process
of disconnection. In each rewiring step, a link XY is selected
randomly from the network. With probability wXY , the link is
broken; otherwise, the link remains connected. If it is broken,
X or Y is picked as the active individual, who is entitled
to reform a new link. Its new neighbor is randomly selected
from the individuals who are not in its current neighborhood.
Self-connections and double connections are thus not allowed
here.

In this way, the link-rewiring dynamics can be modeled
as a Markov chain in the state space of {SS,SI,II} [24–26].
Considering the transition probabilities between states, let us
take the transition from SI to SS as an example. This happens
only when SI is broken off and S is selected to reform a new link
to another susceptible individual. Note that the total population
size N is much larger than the average degree k, and the
transition probability QSI→SS is approximately given by wSI ×
1
2 × s, where s is the density of susceptibles at the moment.
Similarly, we calculate all the other transition probabilities,
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yielding the transition probability matrix

Q=

SS SI II

SS
SI
II

⎛
⎜⎝

swSS + (1 − wSS) iwSS 0
swSI

2 1 − wSI
2

iwSI
2

0 swII iwII + (1 − wII)

⎞
⎟⎠ ,

(2)

where i is the density of infected individuals. According to
the standard Markov chain theory [27], there exists a unique
limiting distribution � satisfying �Q = � provided Q is
irreducible and aperiodic. Namely, when wSSwSIwIIis �= 0,
Q has a unique stationary distribution

� = (πSS,πSI,πII) = 1

A(i)

(
s2

wSS
,
2si

wSI
,

i2

wII

)
, (3)

where A(i) = s2

wSS
+ 2si

wSI
+ i2

wII
is the normalization.

C. Time scale separation

It is challenging to capture NSI due to the complexity of
real social networks [28–30]. This is already true in static
networks, and it becomes even more difficult taking into
account the dynamical nature of social networks [8]. Here we
overcome this problem by assuming the adiabatic elimination
of fast linking dynamics [27] (also called annealed adaptive
dynamics [10]); i.e., the adjustment of social ties is much more
frequent than the update of infection states. This assumption
implies time scale separation of the two coupled dynamics. In
other words, the disease is unlikely to spread until the social
configuration tends to the stationary regime. In this way, NSI

is approximated as

NSI ≈ Nk

2
πSI, (4)

where Nk/2 is the total number of the links in the network
and πSI is the fraction of SI links in the stationary regime. This
approximation greatly reduces the complexity of the coupled
dynamics. In light of this, the idea of time scale separation
has frequently been used in analyzing complex dynamics
on adaptive networks (epidemics [18,19,31] and evolutionary
games [24,32]).

By substituting Eq. (4) into Eq. (1) we have

dI

dt
= λNk

2
πSI − μI. (5)

Noting that i = I/N , s = S/N , and πSI = 2is
A(i)wSI

, Eq. (5) can
be transformed to

di

dt
= kλ

A(i)wSI
is − μi. (6)

In particular, when all the interaction rates are uniform and
positive (wSS = wSI = wII > 0), Eq. (6) reduces to

di

dt
= i

⎛
⎝ kλ︸︷︷︸

λe

s − μ

⎞
⎠. (7)

Equation (7) is nothing but the classical SIS model [2],
provided that λe = kλ is redefined as the effective transmission
rate. This implies that the population is as a well-mixed

population, if individuals break their partnerships with no
social bias. It should be pointed out that, when wSS = wSI =
wII = 0, the transition probability matrix Eq. (2) violates
the irreducible condition [33] that our analysis relies on. In
fact, this case resembles the static network, which has been
excluded from our analysis.

When the interactions are violated from above social
unbias, on the one hand, it results in nonuniform interactions
in the population [34]. Therefore, Eq. (6) extends the classical
SIS model from uniform interaction rates to nonuniform
interaction rates. Noteworthy is that this nonuniform extension
is an emergent property from microscopic stochastic linking
dynamics, which is not assumed in prior. On the other hand, if
we define �(i) = kλi

A(i)wSI
, our model also extends the classical

SIS model from density independent transmission rate to
density dependent transmission rate [15,35]. In other words,
the dynamical nature of social networks essentially acts as
a feedback mechanism on the SIS model. The feedback
mechanism, which is taken as the central idea of control, can
significantly alter the epidemic dynamics.

Noteworthy is that all the analyses above are based on the
time scale separation. Thus it suggests that the link-rewiring
event should happen with a sufficiently large probability
(close to 1) in each update. Furthermore, we give a more
precise lower bound for this probability based on pair
approximations: It is found that the time scale separation is
at work provided the likelihood of the linking dynamics is
greater than (see Appendix A)

k2

k2 + N
. (8)

For more general cases where the time scale separation is ab-
sent, the approximation based on the moment closure could be
applied to provide theoretical insights [36] (see Appendix A).

III. THEORETICAL RESULTS

Our main concern in this comparative study is epidemic
control via changing the interaction rates in different ways.
Based on Eq. (1), it is NSI that determines the spread of
infection. The more SI links there are, the more likely the
spread of infection. Generally, there are two ways to control
NSI. For one thing, it is natural to increase wSI for reducing
the interaction rate (1/wSI) between susceptible and infected
individuals (SI control). For another thing, decreasing wSS

can also reduce the exposure of susceptibles to infection (SS
control). Therefore, we investigate the control of epidemics via
these two strategies. More specifically, by taking the uniform
interaction rates (wSS = wSI = wII > 0) as the reference case,
we would like to provide a comparative study on both the
SI control (wSI > wSS = wII) and the SS control (wSS <

wSI = wII). In the following, we assume that the effective
transmission rate is always larger than the recovery rate, i.e.,
λe > 1, where the epidemic control is necessary.

A. SI control: Decreasing the interaction rate between
susceptible and infected individuals

To decrease the interaction rate between susceptible and
infected individuals, it is equivalent to increase the breaking
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FIG. 1. SI control of epidemics, i.e., increasing the breaking probability between susceptible and infected individuals. For the uniform
interaction case (wSS = wSI = wII ), the model degenerates to the conventional SIS model. There is only one internal equilibrium and it is
stable provided λe > 1. Here we solely adjust wSI such that the duration time of SI links is shorter than the other two types of links, i.e.,
wSI > wII = wSS . The three panels show the phase diagrams in the (wSI ,λe)-plane. The quality of the SI control is sensitively dependent on
the reference uniform breaking probabilities. (a) When they are small (wSS = wII = 0.05), decreasing the interaction between susceptible and
infected individuals makes the phase diagram change from endemic state (red) to bistable state (yellow) and then to final extinct state (blue).
(b) When wSS = wII = 0.5, there is no bistable state (yellow) any more. It becomes harder to eradicate disease when the population is even
more mobile. (c) The right panel shows that the SI control is incapable of eradicating the disease provided the population is intrinsically highly
mobile (wSS = wII = 0.95).

probability wSI. Based on the uniform interaction as the
reference case, we are interested in how the epidemic dynamics
is changed by increasing wSI. Here the uniform interaction can
mimic the basic migration rate in the population. To illustrate
our main results, we consider three typical cases with different
initial values of the uniform interaction rates (see Appendix B
for technical details):

1. Small initial case [Fig. 1(a)]

In this case, we set initially the breaking probabilities for
all types of links to be 0.05. The disease can be controlled by
increasing wSI from 0.05 to 1. In particular, for small infectious
rate (i.e., λe � 2), there is a phase transition with the increase
of wSI. That is, the final state of epidemics turns from endemic
to extinction. For large λe (i.e., λe > 2), there is a small region
of bistability where the disease persists or dies out due to the
initial infected fraction. Compared to the single continuous
phase transition in the conventional (uniform) SIS model,
the nonuniform SIS model can give rise to multiple phase
transitions. The emergent bistability in adaptive SIS model has
already been reported in previous studies [11,15,37,38], but it
is quite difficult to approximate the conditions under which
bistability is present. For our model, we explicitly provide
those analytical conditions under which the bistability emerges
based on Eq. (6). In the case of SI control (wSI > wSS = wII),
it arises if and only if

(λe,w) ∈ (2, + ∞) ×
⎛
⎝λe,

λe +
√(

λ2
e + (λe − 2)2

)
2

⎞
⎠ (9)

(see Appendix B), where w = wSI/wSS.

2. Intermediate initial case [Fig. 1(b)]

In this case, increasing wSI is not as effective as that in the
above small initial case. For small λe, even though there still

exists a phase transition from endemic state to extinct state, the
marginal value of wSI that needs to cross the transition line is
large. More importantly, when λe is large enough, increasing
wSI is unable to eradicate the disease any more. The disease
will persist no matter how large the interaction rates between
susceptible and infected individuals are. Moreover, it is shown
in Fig. 2 that the endemic level is not sensitive to wSI. In
other words, by increasing wSI, the final fraction of infected
individuals declines very slowly. That is to say, the increase
of wSI can neither qualitatively change the final state of the
endemic nor quantitatively inhibit the final fraction of infected
individuals.

3. Large initial case [Fig. 1(c)]

In this case, the endemic state is always the global stable
state provided λe > 1. That is, the epidemics cannot be
eradicated by the SI control.

FIG. 2. Equilibrium position of infected fraction as a function
of wSI . Here wSS = wII = 0.5, and λe = 7. The disease cannot
be eradicated by the SI control, and the level of infection in the
equilibrium state declines very slowly (from 0.857 to 0.854) by
increasing wSI (from 0.5 to 1).
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FIG. 3. SS control, i.e., decreasing the breaking probability between susceptibles. We start from the uniform case wSS = wSI = wII . Here
the disease is solely controlled by increasing the duration time of the social ties between susceptibles, i.e., wSS < wII = wSI . These phase
diagrams are similar for all the reference uniform interaction rates: i) for small λe, the SS control makes the disease change from endemic state
(red) directly to extinction state (blue); ii) for large λe, the SS control can still eradicate the disease, but the phase diagram has to pass from
endemic (red) to bistable state (yellow) and finally to extinction (blue).

To summarize, the control efficiency via reducing the
interaction rate between susceptible and infected individuals
strongly depends on the reference breaking probabilities,
i.e., the intrinsic population mobility. The more likely the
population is mobile, the worse the SI control performs.

B. SS control: Increasing the interaction
rate between susceptibles

Unlike the SI control, increasing the interaction rate
between susceptibles is shown as an effective and robust
strategy for epidemic control. In fact, no matter what the
intrinsic mobility rate of the population is, the SS control
successfully eradicates the disease. To this end, we study the
three typical reference population mobility cases in the above
section (see Appendix B for technical details). Figure 3 shows
that the phase diagrams for the three cases are quite similar to
each other:

(i) For small λe (1 < λe � 2), by decreasing wSS, the
final state of disease is directly transformed from endemic
to extinction.

(ii) For large λe (λe > 2), the bistablilty arises in all
three cases. That is, no matter how large the initial uniform
interaction rates are, with the decrease of wSS, there is an
intermediate region where the disease persists or dies out
depending on the initial fraction of disease. Furthermore, we
analytically obtain that the bistable region is given by

(
λe,

1

w

)
∈ (2, + ∞) ×

(
4

4 + λ2
e

,
1

λe

)
. (10)

By comparison, the SS control is more effective than
the SI control in two ways. On the one hand, the control
of wSS is independent of the intrinsic population mobility,
i.e., robust control. On the other hand, decreasing wSS can
always effectively eradicate the disease regardless of infectious
intensity (Fig. 4 illustrates the position of equilibria as a
function of wSS in the bistable case).

IV. AGENT-BASED SIMULATIONS

In this section, we present agent-based simulations and
further discuss the efficiency of the time scale separation
method based on the comparison between the simulation
results and theoretical predictions.

A. Simulation procedures

The contact process [39] is adopted to model the epidemic
spreading on networks. Let α ∈ (0,1) be the probability
of epidemic spreading in each update. The simulation is
performed as follows:

(1) Initially, there are N individuals located on a regular
graph with degree k, where each individual has exactly k neigh-
bors. Then N0 infected individuals and N − N0 susceptible
individuals are randomly distributed.

FIG. 4. Equilibrium position of infected fraction as a function of
wSS . Here wSI = wII = 0.5, and λe = 7. Increasing the interaction
time between susceptibles (i.e. decreasing wSS) effectively eradicates
the disease. In particular, for 0.033 < wSS < 0.08 (bistability), the
disease dies out provided the initial infection is few in number. Even
when the initial number of infection is large, the final level of infection
is still lower than the case with 0.08 < wSS < 0.5. For wSS < 0.033,
the disease is eradicated no matter what the initial state is.
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FIG. 5. Extinction. The discrete points are obtained from simulations, and the red lines represent the analytical results based on time scale
separation. All of the four panels show that the disease dies out no matter how many infected individuals are present in the beginning. The
parameters in all the four panels are from the blue regions in Figs. 1 and 3. Thus they are consistent with the analytical predictions. (Common
parameters: λe = 1.5, N = 100, α = 0.01.)

(2) We generate a random number r ∈ (0,1). If r < α, we
perform the contact process. Otherwise (r � α), we perform
the linking dynamics.

(3) If the contact process occurs, an infected individual
(called Bob) is selected randomly. With probability μ

kBobλ+μ

Bob becomes susceptible, where kBob is the degree of Bob.
Otherwise a neighbor of Bob is selected at random. This
neighbor, namely Jack, is infected with probability λ

kBobλ+μ
.

It is noteworthy that Jack becomes infected if his status is
susceptible. However, this new infection event does not change
the state of Jack if Jack has been infected already. Then we
return to step 2.

(4) If the linking dynamics occurs, a link is selected
randomly. The type of this link is denoted as XY (XY ∈
{SS,SI,II}). With probability wXY , the link is broken; oth-
erwise the link remains connected. If it is broken, X or Y is
picked as the active individual, who is entitled to reform a
new link. The new neighbor is randomly selected from the
individuals who are not in its current neighborhood. Then we
return to step 2.

Each data point is averaged over 50 independent samples.
In each sample, we run a transient time of 106 generations,
and we set the mean value over time window of the last 103

generations to be the final fraction of infected individuals.
It should be pointed out that the simulation results are

robust for all initial connected graphs, provided the number
of infected individuals, N0, population size N , and the average
degree k are fixed. The regular graph here only serves as
a prototype for simulations. In fact, our linking dynamics

is a Markov chain, which is irreducible and aperiodic.
This yields that the limiting behavior is independent of the
initial configuration of the network [33]. Furthermore, the
assumption of time scale separation allows all the links to
converge to the stationary distribution. Therefore, all the links
would converge to the stationary distribution no matter what
type of graph it is initially.

B. Simulation results

With the coupled linking dynamics, the final fate of the
infection can be of three cases: die out no matter what the
initial fraction of the infected individuals is (called extinction),
stabilize at a nonzero fraction of infected individuals no matter
what the (positive) initial fraction of infected individuals
is (called endemicity), or stabilize at a nonzero fraction
of infected individuals if the initial fraction of infected
individuals exceeds a critical value and die out otherwise
(called bistability).

For the extinction cases, simulation results are found to be
in good agreement with the analytical predictions. This is true
for all the parameter regions predicting extinction for both SI
and SS controls (see Fig. 5).

For the endemic cases, Fig. 6 shows that the population
would end up with a constant fraction of infected individuals,
provided there are infected individuals initially. This is exactly
in line with the analytical predictions. Furthermore, the
inconsistency between the analytical and simulation results
is less than 10%, which is acceptable. Considering this
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FIG. 6. Endemic. The simulation results (discrete points) show that no matter what the initial fraction of infective individuals is (except for
the zero case which is an absorbing state of the agent-based model), the population would end up with a constant positive fraction of infected
individuals. However, the analytical predictions would somewhat overestimate the simulation results. This is mainly because the running time
for the simulation is beyond the quasistationary time scale of our theoretical analysis. Parameters are from the red regions in Figs. 1 and 3.
(Common parameters: N = 100, α = 0.01.)

10% disagreement, the analytical predictions systematically
overestimate the simulation results. In fact, the agent-based
contact process is a Markov process with an absorbing state,
where no infected individual is present. In other words, the
disease would go extinct eventually if the system evolves over
a sufficiently long time. Our analytical results, however, are
in the quasistationary time scale [40,41]. The inconsistency
between the analytical and simulation results suggests that
the running time of 106 is beyond the quasistationary time
scale. Thus the system may evolve to the absorbing state with
non-negligible chances.

For the bistability cases, the simulation results show quali-
tative agreement with the analytical predictions. In particular,
the critical initial fraction of infected individuals, ensuring
a dramatic outbreak of epidemics, is consistent with the
unstable fixed point predicted by the analytical result (see
the blue dashed lines in Fig. 7). Disagreements, however,
are also present. For example, the theoretical results tend to
underestimate the final infection when the infection fraction
is rare initially. In fact, this bistable case bears two internal
equilibria lying at x∗

1 (unstable) and x∗
2 (stable) (x∗

1 < x∗
2 ). For

a small initial fraction of infected individuals, the deterministic
part of the system drives the infection to extinction based on the
analytical investigation. Yet by its intrinsic stochastic nature
of the epidemic spreading, the infection would increase in
number and be possibly trapped around the stable equilibria
from time to time. Even though it is a type of rare event, it
takes quite long to escape from this trap. Thus on average it

results in a relatively higher level of final fraction of infected
individuals given the running time of simulations (here 106

generations). In other words, it is the interplay between the
stochastic effect and stable equilibrium at zero that results in
such inconsistency. It is noteworthy, despite this quantitative
inconsistency, that the salient feature of the bistable dynamics
is still captured by the analytical predictions.

In Fig. 8, we investigate how the population size affects
the accuracy of the analytical approximation. Theoretically,
large population size inhibits the stochasticity arising from
the finite population effect, which is closer to the mean-field
approximation. Similar discussions can be found in [24].
Figure 8 shows the case with N = 100 still captures the
bistable dynamics as the case with N = 500 does.

V. DISCUSSIONS AND CONCLUSIONS

We have proposed a simple link-rewiring rule to model
social partnership adjustment. Therein all the links are about
to break, capturing the mobile nature of the population. This
simple model paves the way to compare different rewiring-
based epidemic control strategies.

We find that, for mild infectious disease, both SI and
SS control strategies can eradicate the disease. For strong
infectious disease, however, it is more efficient to adopt the SS
control than the SI control. This result is counterintuitive. Intu-
itively, reducing the contacts between susceptible and infected
individuals is believed to suppress the disease propagation.
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FIG. 7. Bistability. Discrete points represent simulation results. Dashed lines are via the analytical approximations: Red horizontal lines
represent the stable fixed points, whereas green vertical lines represent the unstable fixed point (critical value). By comparison, the simulation
results show qualitative agreement with the analytical predictions. In particular, the critical initial fraction of infected individuals, ensuring
a dramatic outbreak of epidemics, is consistent with the unstable fixed point predicted by the analytical result. However, disagreements are
present, where analytical results underestimate the final fraction of infective individuals when the infective individuals are rare initially. It is
noteworthy that, despite this quantitative inconsistency, the salient feature of the bistable dynamics is still captured by the analytical predictions.
Parameters are from the yellow regions in Figs. 1 and 3. (Common parameters: λe = 7, N = 100, α = 0.01.)

Moreover, it seems that decreasing the interaction rate of SI
links could naturally result in the increase of SS links [37].
How can these two strategies perform so differently? One
of the salient features of our model is the variability of II
links, which has seldom been addressed previously. Actually,
increasing wSI is equivalent to decreasing both wSS and wII.
In other words, the SI control is equivalent to simultaneously
strengthening SS links and II links. Similarly, the SS control
is equivalent to simultaneously reducing the closeness of

SI links and II links. Thus, the relation of the SI and SS
control strategies is not as straightforward as expected. To
illustrate the impact of II links on the epidemic dynamics,
we consider two examples: (1) wSI = 0.98, wSS = 0.2, and
wII = 0.2, and (2) wSI = 0.98, wSS = 0.2, and wII = 0.98.
The only difference between these two examples is the value
of wII. It is easy to show that in example 1 the disease becomes
extinct, whereas bistability arises in example 2 [based on
Eq. (10)].

FIG. 8. The effect of the population size on the accuracy of the analytical approximation. Population size with N = 100 is enough to capture
the salient feature of the bistability, compared with N = 500. (Common parameters: λe = 7, wSS = 0.04, wSI = wII = 0.5 and α = 0.01.)
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Another feature of our reconnection rule is nonselectivity.
In other words, individuals are allowed to rewire to a randomly
selected member no matter if it is susceptible or not. Compared
to the selective rule in [11], individuals in our model do not
necessarily know who gets infected currently, which is more
realistic. Actually, the nonselective rule increases the exposure
of the susceptible individuals to the infected individuals.
This is very likely in the beginning of an epidemic season,
where the information on infection status is unaccessible. In
particular, even though the SI control increases the breaking
possibility of each SI link, a new SI link may be generated
again due to the nonselective rule. By contrast, the SS control
makes a straightforward intervention during the process of
disconnection. That is, by strengthening the closeness between
susceptible individuals, the SS strategy reduces the possibility
of SI connection effectively. In this way, the nonselective rule
has a relatively small impact on the SS control. Therefore,
in the framework of the nonselective rewiring rule, the SS
strategy is more efficient than the SI strategy.

Concentrating on the relation between the lifespan of
each type of links and epidemic spreading, our model does
not account for other features that are also considerable in
capturing the epidemic dynamics of real world networks. For
example, (1) our linking dynamics does not take into account
the social interactions with memory, such as friendship and
working partners, in which individuals preserve the contacts
that they used to make [20,21], and (2) the link-rewiring
process is a strong simplification of real adaptive networked
human behavior. It is not necessarily realistic for individuals
who break up a relationship to have a new partner immediately.
However, it probably mimics the dynamics of networks in
AIDS to some extent: The susceptible individuals break up
their (mostly sexual) relationships with their infected partners
and switch to other perceived healthy individuals. Moreover,
the infected individuals may also rewire their links to other
infected individuals.

To sum up, our result captures the causation between the
link fragility and the disease control. Furthermore, this model
might serve as a starting point to compare different rewiring
control strategies for more general models closer to reality.
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APPENDIX A: ANOTHER ANALYTICAL
APPROXIMATION

Our model couples the linking dynamics and the epidemic
dynamics. While the method in the main text is analytically

insightful, it requires the time scales of the two dynamics
to be separated. In other words, individuals should adjust
their partners much faster than the spread of epidemics to
make this method applicable. This is, however, not the case in
general. We propose another analytical method to overcome
this restriction. The method is based on pair approximation and
rate equations [36]. Here we concentrate on how the method
helps us estimate the condition under which the time scale
separation is valid.

Let 〈I〉 and 〈S〉 be the global frequencies of infected
and susceptible individuals, i.e., i and s in Eq. (6); and let
〈XY 〉 = NXY /N be the frequencies of XY pairs, where XY ∈
{II,SI,SS}. Thus 〈I〉 + 〈S〉 = 1 and 〈II〉 + 〈SI〉 + 〈SS〉 = 1
hold. The system thus is determined by three independent
variables: 〈I〉, 〈SI〉, and 〈II〉. The crucial assumption for pair
approximation is that a higher order of moments can be
captured by moments of pairs. In the following, we write down
the rate equations of the three variables under the assumption
of pair approximation.

For the evolution of a fraction of the infected, it is only
determined by the epidemic dynamics. In this case, the number
of infected individuals increases or decreases by one, or
stays the same in one time step. By the Kolmogorov forward
equation, we have that

�〈I〉 = Prob

(
�〈I〉 = 1

N

)
1

N
− Prob

(
�〈I〉 = − 1

N

)
1

N
.

(A1)

In particular, the probability that infected individuals increase
by one in number happens when (1) the epidemic spreading
is ongoing (with probability α), or (2) a susceptible individual
is selected (with probability 〈S〉), and it is infected by one of
its infected neighbors. The fraction of the infected individuals
around a susceptible individual is 〈SI〉

〈S〉 based on pair approx-

imation. Thus there are on average k〈SI〉
〈S〉 infected neighbors

around the selected susceptible individual, where k is the
average degree of the entire network. Therefore, the infection
probability of the susceptible individual within a small time
interval �t is λ

k〈SI〉
〈S〉 �t . Thus Prob(�〈I〉 = 1

N
) = αλk〈SI〉�t .

Similarly, we have Prob(�〈I〉 = − 1
N

) = αμ〈I〉�t .
Let us rescale the time interval �t = 1/N . For large

population size N , dividing �t on both sides of Eq. (A1) yields

˙〈I〉 = α

N
(λk〈SI〉 − μ〈I〉). (A2)

This equation is identical to the mean-field SIS model, Eq. (1),
up to a rescaling factor.

For the evolution of the links, it can be caused both by
the linking dynamics and the epidemic spreading. Taking the
change of 〈II〉 as an example, when the linking dynamics
happens (with probability 1 − α), II links would increase
by one if an SI link is selected, then broken, and the
infected individual of the SI link is selected, and it switches
to another infected individual (with probability 〈I〉〈SI〉wSI

2 ); II
links would decrease by one if an II link is selected, then
broken, and the selected infected individual switches to a
susceptible individual (with probability 〈S〉〈II〉wII). When
the epidemic spreading happens (with probability α), for
the recovery event, an infected individual is selected (with
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probability 〈I〉), and it recovers with probability μ�t . If the
selected I individual has q (0 � q � k) infected neighbors
[with probability

(
k

q

)
( 〈II〉

〈I〉 )q(1 − 〈II〉
〈I〉 )k−q], the change of II

links is −q. For the infection event, a susceptible individual
is selected (with probability 〈S〉) if it has h (0 � h � k)
infected neighbors [with probability

(
k

h

)
( 〈SI〉

〈S〉 )h(1 − 〈SI〉
〈S〉 )k−h];

the infection happens with probability hλ�t , and the change of
II links in this case is h. Taking into account the formula of the
expectation and the variance of the binomial distribution yields

˙〈II〉 = (1 − α)

{ 〈I〉〈SI〉wSI

2
− (1 − 〈I〉)〈II〉wII

}
2

k

+ 2α

N

{
μ〈II〉 + λ〈SI〉 + λ(k − 1)

〈SI〉2

1 − 〈I〉
}
. (A3)

With similar arguments we have

˙〈IS〉 = 2(1 − α)

k

{
〈II〉wII(1 − 〈I〉) + (1 − 〈II〉 − 〈IS〉)wSS〈I〉

− 1

2
wIS〈IS〉

}
+ 2αμ

N

(
2〈II〉 − 〈I〉

k

)

+ 2α(k − 1)λ

N
〈SI〉

(
1 + 〈SI〉

1 − 〈I〉
)

. (A4)

Finally we obtain the equations of moments with closed
forms, i.e., Eqs. (A2)–(A4). This method has been used in both
evolutionary game theory [42] and epidemic dynamics [10,36]
before. These equations can be employed to investigate the
coupled dynamics of links and epidemics for any time scales.

Furthermore, the dynamics of 〈SI 〉 and 〈II 〉 can help us
figure out the condition under which the time scale separation
is valid. The time scale separation requires that the evolution
of links is mainly determined by the link-rewiring process.
It implies that 2α(k−1)λ

N
� 2(1−α)

k
and 2αμ

N
� 2(1−α)

k
based on

Eqs. (A3) and (A4). Let us assume that both the infection
rate λ and the recovery rate μ are of order 1. Then the two
inequalities imply

α �
(

k2

N
+ 1

)−1

. (A5)

This necessary condition is a more precise criterion compared
with α � 1 to ensure the time scale separation. It suggests
that the condition for the time scale separation would be more
demanding with the increasing of the average degree k. This
also supports our assumption in the main text that k should be
much smaller than N .

APPENDIX B: DYNAMICAL ANALYSIS

Here we give a rigorous dynamical analysis of Eq. (6), based
on which the main results in Sec. III are obtained. Rewriting

Eq. (6) leads to

di

dt
= 1

A(i)
f (i), (B1)

where the cubic polynomial f (i) is given by

(2wSSwII − wSIwII − wSSwSI)i
3 + (2wSIwII

− (2 + λe)wSSwII)i
2 + (λewSSwII − wSIwII)i. (B2)

The asymptotic properties of Eq. (6) are totally determined
by f (i), since A(i) is positive. Note that f (0) = 0, i = 0 is a
fixed point.

When 2wSSwII − wSIwII − wSSwSI = 0,

f (i) = iwII[(2wSI − (2 + λe)wSS)i + (λewSS − wSI)].

If λewSS − wSI � 0, i = 0 is the only stable fixed point; the
infection will finally die out. If λewSS − wSI > 0, i = 0 is an
unstable fixed point, and

i = wSI − λewSS

2wSI − (2 + λe)wSS

becomes the only stable fixed point, corresponding to endemic
infection.

It is shown that there exists a phase transition at λe =
wSI/wSS, which is quite similar to the conventional SIS model
in which the critical point is located at λ = 1.

When 2wSSwII − wSIwII − wSSwSI �= 0, it is possible for
the model to give rise to bistability. Letting w = wSI/wSS, we
have the following:

(a) If wSS = wII, bistable ⇔ (λe,w) ∈ (2, + ∞) × (λe,
λe+

√
λ2

e+(λe−2)2

2 ).
(b) If wSI = wII, bistable ⇔ (λe,

1
w

) ∈ (2,+∞)×( 4
4+λ2

e
, 1
λe

).
To show how we get the above results, we take the case

wSS = wII as an example. In this case,

f (i) = 2w2
SSi [(1 − w)i2 + (2w − (2 + λe))i + (λe − w)]︸ ︷︷ ︸

g(i)

,

and its discriminant is denoted as � = (2w − (2 + λe))2 −
4(1 − w)(λe − w); then the sufficient and necessary condition
for bistability is given by

g(0) < 0,

g(1) < 0,

� > 0,

0 < −2w − (2 + λe)

2(1 − w)
< 1. (B3)

By solving the above set of inequalities, we obtain that

(λe,w) ∈ (2,+∞) × (λe,
λe+

√
λ2

e+(λe−2)2

2 ). Similarly, we get the
result for the case wSI = wII.
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