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Volatile organic compounds (VOCs) are prevalent in daily life, yet the relationship between VOCs 
exposure and the atherogenic index of plasma (AIP) remains inadequately explored, especially in 
populations with high levels of exposure. This study aims to investigate the non-linear association 
between VOCs exposure and AIP in the U.S. adult population. Data from the National Health and 
Nutrition Examination Survey (NHANES) collected between 2011 and 2018 were analyzed. A range 
of statistical techniques, including Spearman’s correlation analysis, weighted quantile sum (WQS), 
multivariate logistic regression, restricted cubic splines (RCS), stratified threshold models, and 
bayesian kernel machine regression (BKMR), were systematically employed to assess the relationship 
between high-dose VOCs exposure and AIP in U.S. adults. The study included 6,027 participants, with 
an average age of 37 (18–59), and 50.46% were male. Of these, 3,011 had elevated AIP levels. The 
Mann-Whitney U test compared VOCs exposure across quartiles (Q1–Q4). Spearman models revealed 
strong joint exposure effects between VOCs like IPMA3 and HMPMA (ρ = 0.97). WQS regression showed 
a positive association between VOCs and total cholesterol (TC) (β = 5.45, 95% CI = 5.42–5.58, P = 0.04) 
and high-density lipoprotein cholesterol (HDL-C) (β = 1.07, 95% CI = 1.03–1.10, P = 0.02). After adjusting 
for confounders, logistic regression revealed that VOCs such as 3-4MHA, 34DMA, AAMA, ATCA, CYMA, 
HEMA, and SBMA were linked to higher AIP. RCS analysis indicated a nonlinear association between 
VOCs and AIP. Stratified modeling found that ATCA was significantly and positively associated with AIP 
(OR = 1.60, 95% CI = 1.20–2.14, p < 0.01), and that when ATCA levels exceeded 128.60 ng/mL, there was 
a 60% increased risk of elevated AIP. Higher urinary VOCs levels, particularly ATCA, are significantly 
associated with increased AIP, offering new insights into the potential link between VOCs exposure and 
cardiovascular disease.
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Abbreviations
VOCs  Volatile organic compounds
AIP  Atherogenic index of plasma
NHANES  National Health and Nutrition Examination Survey
WQS  Weighted Quantile Sum
RCS  Restricted cubic spline
BKMR  Bayesian kernel machine regression
2HPMA  N-acetyl-S-(2-hydroxypropyl)-l-cysteine
2MHA  2-methylhippuric acid
3-4MHAL  3- and 4-methylhippuric acid
3HPMA  N-acetyl-S-(3-hydroxypropyl)-l-cysteine
AAMA  N-acetyl-S-(2-carbamoylethyl)-l-cysteine
AMCC  N-acetyl-S-(N-methylcarbamoyl)-l-cysteine
ATCA  2-aminothiazoline-4-carboxylic acid
BPMA  N-acetyl-S-(n-propyl)-l-cysteine
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CEMA  N-acetyl-S-(2-carboxyethyl)-l-cysteine
CYMA  N-acetyl-S-(2-cyanoethyl)-l-cysteine
DHBMA  N-acetyl-S-(3,4-dihydroxybutyl)-l-cysteine
GAMA  N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine
HEMA  N-acetyl-S-(2-hydroxyethyl)-l-cysteine
HMPMA  N-acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine
MA  Mandelic acid
MHBMA3  N-acetyl-S-(4-hydroxy-2-butenyl)-l-cysteine
PGA  Phenylglyoxylic acid
PHEMA  N-acetyl-S-(phenyl-2-hydroxyethyl)-l-cysteine
SBMA  N-acetyl-S-(benzyl)-l-cysteine
TTCA  2-Thioxothiazolidine-4-carboxylic acid
BMI  Body Mass Index
TC  Total Cholesterol
TG  Triglyceride
LDL-C  Low Density Lipoprotein -Cholesterol
HDL-C  High Density Lipoprotein -Cholesterol

Cardiovascular disease (CVD) remains one of the leading causes of death worldwide, claiming approximately 
17.92 million lives annually1. Atherosclerosis, a major contributor to CVD, involves the buildup of lipids and 
other substances within the inner walls of arteries. This accumulation, along with the proliferation of smooth 
muscle cells and collagen fibers, forms plaques that harden the arterial walls2. The pathogenesis of atherosclerosis 
is complex, with established risk factors including hyperlipidemia, hypertension, smoking, diabetes, obesity, 
immune damage, and genetics3. Of particular interest is the association between elevated plasma triglycerides 
(TG) and an increased risk of atherosclerosis4.

Volatile organic compounds (VOCs) are a common class of air pollutants, primarily released through 
human activities and environmental processes. VOCs are known to possess mutagenic, neurotoxic, genotoxic, 
and carcinogenic properties5, and have been associated with various chronic diseases, including cardiovascular 
disease6, bronchitis7, and arthritis8. Jing et al. reported that exposure to benzene, ethylbenzene, and o-xylene 
significantly increased the incidence of nonfatal cardiovascular and cerebrovascular events in U.S. adults9. 
Exposure to VOCs affects the cardiovascular system through multiple mechanisms. Firstly, VOCs enter the 
body via the respiratory tract and quickly come into contact with the bloodstream, triggering oxidative stress 
responses that generate free radicals, leading to endothelial cell damage and impaired vascular function10. 
Endothelial dysfunction is an early pathological change in atherosclerosis, and oxidative stress is considered a 
key factor driving its progression. Additionally, VOCs can activate the immune system, increase inflammatory 
responses, and promote arterial wall thickening and plaque formation11. VOCs exposure also affects lipid 
metabolism, with long-term exposure to chemicals such as benzene, toluene, and ethylbenzene significantly 
increasing blood levels of triglycerides and low-density lipoprotein cholesterol (LDL-C)8. These lipid metabolism 
abnormalities may accelerate the progression of atherosclerosis, further exacerbating the risk of cardiovascular 
disease (CVD)6,12 (Fig. 1).

Recent epidemiological studies have identified links between VOCs exposure and an increased risk of 
cardiovascular disease13. For example, Chen et al. found that exposure to VOCs is associated with serum lipid 
levels, such as total cholesterol and triglycerides14. Dong et al. found that both single and mixed exposures to 
VOCs are positively correlated with metabolic syndrome15. Han et al. found a significant positive correlation 
between VOCs exposure and cardiovascular diseases, suggesting that VOCs may be an important risk factor 
for CVD16. However, the VOCs metabolites included in these studies were not comprehensive, and they only 
considered the effects of single or mixed exposures. Therefore, this study thoroughly examined 20 urinary VOCs 
metabolites and also determined the dose-response relationship of certain key VOCs exposures. The choice 

Fig. 1. Exposure to volatile organic compounds induces atherosclerosis in humans a research flowchart.
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of VOCs metabolites in urine as biomarkers is based on several advantages. VOCs metabolites in urine can 
persist for an extended period, allowing for easier long-term exposure monitoring and offering better stability 
compared to the rapid clearance of blood samples17. VOCs are widely present in the air, industrial emissions, 
and tobacco smoke, and after inhalation or absorption, they are excreted through urine, directly reflecting 
individual exposure levels18. Additionally, urine collection is non-invasive, simple, and well-suited for large-
scale epidemiological studies, making it convenient for sample storage and transport5.

Methods
Study population
This study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning 
seven consecutive years (2011–2012, 2013–2014, 2015–2016, and 2017–2018). The specific variable names 
in the database are as follows: Demographics data includes gender (RIAGENDR), age (RIDAGEYR), race 
(RIDRETH1), education level (DMDEDUC2), marital status (DMDMARTL), and ratio of family income 
to poverty (INDFMPIR); Examination data includes systolic (BPXSY1), diastolic (BPXDI1), and body mass 
index (BMXBMI); Laboratory data includes high-density lipoprotein (LBDHDDSI), low-density lipoprotein 
(LBDLDLSI), triglycerides (LBDTRSI), total cholesterol (LBDTCSI), cotinine (LBXCOT), hydroxycotinine 
(LBXHCT), and the 20 urinary volatile organic compound metabolites (URXHP2, URX2MH, URX34M, 
URXDHB, URXHPM, URXAAM, URXAMC, URXATC, URXBPM, URXCEM, URXCYM, URXGAM, 
URXHEM, URXPMM, URXMB3, URXMAD, URXPHG, URXPHE, URXBMA, URXTTC); Questionnaire 
data includes alcohol use (ALQ130), physical activity (PAQ605), and cigarette smoking (SMQ040). The dataset 
comprised a total of 44,270 participants. Initial exclusion of 15,664 participants due to missing or untested 
serum data reduced the sample to 28,606. An additional 22,579 participants were excluded due to missing or 
undetected volatile organic compounds (VOCs), leaving a final study population of 6,027 participant (Fig. 2).

The National Health and Nutrition Examination Survey (NHANES), conducted biennially by the National 
Center for Health Statistics (NCHS), provides comprehensive data on the health and nutritional status of 
children and adults in the United States. The survey utilizes stratified multistage sampling, encompassing 
demographic, socioeconomic, dietary, and health-related information, as well as physical exams, including 
medical and laboratory tests19. The study was approved by the Ethics Review Board of the National Center 
for Health Statistics (Approval No. Protocol #2011-17, Protocol #2018-01). All participants provided written 
informed consent, and the study adhered to the principles outlined in the Declaration of Helsinki20.

Detection of urinary VOCs metabolites
Urine samples were collected, processed, stored, and transported to the National Center for Environmental 
Health and the Centers for Disease Control and Prevention’s Division of Laboratory Sciences in Atlanta, GA, for 
analysis. The detection of VOCs metabolites was performed using ultra-performance liquid chromatography-
electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS)21. Use UPLC® HSS T3 column (1.8 μm 
× 2.1 mm × 150 mm, Part No. 186,003,540, Waters Inc.) was used for separation with a mobile phase of 15 
mM ammonium acetate and acetonitrile. The eluate was ionized using an electrospray interface to produce 
negative ions, which were then analyzed by mass spectrometry. Metabolite concentrations were determined by 

Fig. 2. Screening flowchart for inclusion in the population (n = 6027).
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comparing the relative response factors (ratios of natural analyte to stable isotope-labeled internal standards) to 
known standard concentrations.

Twenty VOCs metabolites were measured in this study, including: N-acetyl-S-(2-hydroxypropyl)-L-
cysteine (2HPMA), 2-methylhippuric acid (2MHA), 3- and 4-methylhippuric acid (3-4MHA), N-acetyl-
S-(3-hydroxypropyl)-L-cysteine (3HPMA), N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), 
N-acetyl-S-(N-methylcarbamoyl)-L-cysteine (AMCC), 2-aminothiazoline-4-carboxylic acid (ATCA), 
N-acetyl-S-(n-propyl)-L-cysteine (BPMA), N-acetyl-S-(2-carboxyethyl)-L-cysteine (CEMA), N-acetyl-
S-(2-cyanoethyl)-L-cysteine (CYMA), N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), N-acetyl-
S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA), N-acetyl-S-(2-hydroxyethyl)-L-cysteine (HEMA), 
N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine (HMPMA), mandelic acid (MA), N-acetyl-S-(4-hydroxy-2-
butenyl)-L-cysteine (MHBMA3), phenylglyoxylic acid (PGA), N-acetyl-S-(phenyl-2-hydroxyethyl)-L-cysteine 
(PHEMA), N-acetyl-S-(benzyl)-L-cysteine (SBMA), and 2-thioxothiazolidine-4-carboxylic acid (TTCA). 
Detailed information on the metabolites is provided in Table S1. Further experimental details are available in the 
NHANES laboratory data files (https://www.cdc.gov/nchs/nhanes/index.htm).

Atherosclerosis risk assessment
The atherogenic index of plasma (AIP) was selected for evaluating atherosclerosis risk in this study due to 
its simplicity and strong association with cardiovascular outcomes. AIP, defined as the logarithmic ratio of 
triglycerides (TG) to high-density lipoprotein cholesterol (HDL-C) (Eq. 1), has been shown to be a more effective 
predictor of atherosclerotic risk than individual lipid components like total cholesterol or LDL-C22. Elevated AIP 
values are linked to a higher risk of atherosclerosis and cardiovascular diseases, while lower values suggest a 
more favorable lipid profile. In addition, AIP has been widely used in clinical and epidemiological studies for 
its ability to predict atherosclerotic progression. These characteristics make AIP a reliable and clinically relevant 
marker for this study’s risk assessment.

 
AIP = log

T G

HDL − C
 (1)

Serum samples were collected, processed, stored, and transported to the Advanced Research and Diagnostic 
Laboratory (ARDL) at the University of Minnesota for analysis. Triglyceride levels were measured using a 
Roche Cobas 600 chemistry analyzer (USA 46250-0446)23. This method employs microbial lipoprotein lipase 
to rapidly hydrolyze triglycerides into glycerol, which is then oxidized into dihydroxyacetone phosphate and 
hydrogen peroxide. The hydrogen peroxide reacts with 4-aminophenazone and 4-chlorophenol in the presence 
of peroxidase, producing a red dye (Trinder’s reaction), the intensity of which is proportional to the triglyceride 
concentration and is measured photometrically. For further experimental details, please refer to the NHANES 
laboratory data file (https://www.cdc.gov/nchs/nhanes/index.htm).

Other covariates
In addition to VOCs exposure, several covariates known to influence atherosclerosis risk were considered in 
this study. These included sex (male, female), race/ethnicity (Mexican American, other Hispanic, non-Hispanic 
white, non-Hispanic black, other races), education level (incomplete elementary school, grades 9–11, high school 
graduate, AA degree, bachelor’s degree or higher), and marital status (married, widowed, divorced, unmarried, 
living with a partner). Other factors, including alcohol consumption (defined as the average number of alcoholic 
drinks consumed per day over the past 12 months, where one drink is equivalent to a 12 oz. serving of beer, a 
5 oz. glass of wine, or 1.5 oz. of distilled spirits), smoking status (every day, some days, not at all), and physical 
activity (yes, no), were also considered. Socioeconomic factors were assessed using the household poverty-to-
income ratio (PIR), categorized as low (PIR ≤ 1), medium (1 < PIR ≤ 3), and high (PIR > 3). Body mass index 
(BMI) was categorized as normal (18.5–23.9 kg/m²), overweight (25.0–29.9 kg/m²), or obese (≥ 30.0 kg/m²). 
Blood pressure (systolic and diastolic) and cotinine levels, a marker for tobacco exposure, were also measured. 
These covariates were included in the analysis to control for their potential effects on atherosclerosis risk.

Statistical analysis
Statistical analyses were performed using appropriate methods for the data types. Continuous variables were 
assessed using the Kruskal-Wallis test, with results presented as median and interquartile range [M (P25, P75)], 
as this non-parametric test is suitable for comparing distributions across multiple independent groups without 
assuming a normal distribution. Categorical variables were analyzed with the Chi-square test, presented as 
frequencies and percentages [n (%)], to test associations between categorical variables.

To explore potential co-exposure effects of volatile organic compounds (VOCs), Spearman rank correlation 
was employed, as it is ideal for assessing monotonic relationships between ordinal or non-normally distributed 
continuous variables24. Next, weighted quantile sum (WQS) regression models were applied to evaluate the 
combined exposure effects of the 20 VOCs across the groups. WQS regression is particularly useful for assessing 
the joint effects of correlated exposures, enabling the identification of their collective impact on health outcomes 
while accounting for inter-exposure correlations25. The association between VOCs and AIP was analyzed using 
multi-model logistic regression. In Model 1, odds ratios were calculated using univariate logistic regression 
as the baseline to assess the unadjusted effect of VOCs on AIP. Model 2 adjusted for potential confounders, 
including sex, age, race, marital status, education level, and poverty-to-income ratio, factors known to influence 
health outcomes. Model 3 further adjusted for physical activity, systolic and diastolic blood pressure, cigarette 
smoking, alcohol consumption, and cotinine levels, based on Model 2, to account for behavioral and physiological 
factors that may confound the VOCs-AIP relationship. Nonlinear relationships between VOCs and AIP were 
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examined using restricted cubic spline (RCS) analysis, which is effective for modeling nonlinear associations 
and uncovering more complex exposure-outcome relationships that may not follow a simple linear trend26. 
Finally, Bayesian kernel machine regression (BKMR) was employed to evaluate the overall effect of the 20 
VOCs in urine on AIP, utilizing 10,000 Markov chain Monte Carlo (MCMC) iterations27. BKMR is an advanced 
statistical method that enables flexible modeling of complex, high-dimensional relationships between multiple 
exposures and outcomes, particularly when interactions between exposures are uncertain or non-linear. This 
method provides robust estimates of the exposure-response relationship, while accounting for uncertainty and 
correlation between exposures.

Statistical analyses were performed by SPSS (version 27.00, https://www.ibm.com/spss, The IMB), R language 
and R package (version 4.4.1, http://www.R-project.org, The R Foundation) and OriginPro (version 2024b,  w w w 
. o r i g i n l a b . c o m     , The OriginLab). Differences were considered statistically significant at a two-sided significance 
level of P < 0.05.

Results
Demographic characteristics of the study population
Participants were divided into quartiles based on the atherosclerotic index of plasma (AIP): Q1 (0.11–0.43), 
Q2 (0.43–0.52), Q3 (0.52–0.63), and Q4 (0.63–1.17). Among the 6,027 participants in the study, the average 
age was 37 years (ranging from 18 to 59 years), with 3,041 (50.46%) identifying as male and 2,986 (49.54%) as 
female. Compared to those in Q1, participants in Q4 tended to be older, had a higher proportion of males, and 
were more likely to identify as non-Hispanic white and married. Additionally, individuals in Q4 exhibited lower 
education levels, higher rates of smoking and alcohol consumption, and less physical activity. They also had a 
higher body fat percentage and blood pressure, along with elevated levels of total cholesterol (TC), triglycerides 
(TG), and low-density lipoprotein cholesterol (LDL-C), while showing lower levels of high-density lipoprotein 
cholesterol (HDL-C) (P < 0.01). However, poverty rates did not differ significantly among the groups (P > 0.05) 
(Table 1).

Spearman correlation modeling between 20 VOCs
A Spearman correlation model was employed to illustrate the co-exposure effects among volatile organic 
compounds (VOCs) through heat maps. The analysis revealed strong correlations between several VOCs 
pairs: IPMA3 and HMPMA (ρ = 0.97), IPMA3 and 3HPMA (ρ = 0.97), and HMPMA and 3HPMA (ρ = 0.96). 
Additionally, other notable correlations included 3-4MHA and 2MHA (ρ = 0.96), PGA and MA (ρ = 0.96), 
CEMA and 3HPMA (ρ = 0.95), GAMA and AAMA (ρ = 0.95), HMPMA and CEMA (ρ = 0.94), as well as IPMA3 
and CYMA (ρ = 0.94). These findings indicate that many VOCs are interrelated, suggesting potential common 
sources of pollution that may affect human health. Furthermore, the co-exposure effects of VOCs were found to 
be generally consistent across the four subgroups (Fig. 3).

Differences in exposure dose of VOCs across the four subgroups
After transforming the doses of volatile organic compounds (VOCs) into logarithmic form, the differences 
in exposure doses across the four groups (Q1, Q2, Q3, and Q4) were assessed using the Kruskal-Wallis test 
(KW). The results indicated significant differences (P < 0.01) in 17 VOCs, including 2MHA, 34DMA, 3HPMA, 
AAMA, AMCC, ATCA, BPMA, CEMA, CYMA, HEMA, HMPMA, IPMA3, MA, PGA, PHEMA, 3-4MHA, 
and 2HPMA. However, no significant differences were observed for GAMA (P = 0.064), SBMA (P = 0.089), and 
TTCA (P = 0.136) (Fig. 4).

WQS regression model of VOCs and AIP
A weighted quantile sum (WQS) regression model was developed using the R package “gWQS” to assess the 
combined effects of VOCs exposure on the atherogenic index of plasma (AIP), as illustrated in Fig.  4. The 
analysis indicated that participants in the Q4 group exhibited higher VOCs levels, demonstrating a positive 
correlation between VOCs and total cholesterol (TC) (β = 5.45, 95% CI = 5.42–5.58, P = 0.04) as well as high-
density lipoprotein cholesterol (HDL-C) (β = 1.07, 95% CI = 1.03–1.10, P = 0.02) (Fig. 5).

Within the TC analysis, the metabolites AMCC (w = 0.40), TTCA (w = 0.12), and 2MHA (w = 0.11) were 
identified as having the most significant weights. In the case of HDL-C, TTCA (w = 0.27), SBMA (w = 0.26), and 
ATCA (w = 0.21) also exhibited relatively high weights. Additionally, in the other three subgroups, TTCA and 
AMCC maintained their significance (Table S2).

Weighted multi-model logistic regression model for VOCs and AIP
The analysis of urinary volatile organic compounds (VOCs) and their association with the atherogenic index 
(AIP) was presented in Model 2, which adjusted for demographic variables, and Model 3, which utilized stepwise 
regression modeling (Fig. 6a-c).

After accounting for potential confounders such as sex, age, race, marital status, education, poverty-to-income 
ratio, physical activity, blood pressure levels, smoking status, alcohol consumption, and cotinine levels, several 
VOCs demonstrated a significant correlation with AIP. Specifically, 3-4MHA (OR = 1.36, 95% CI = 1.05–1.75, 
P = 0.02), 34DMA (OR = 1.93, 95% CI = 1.22–3.05, P < 0.01), AAMA (OR = 1.67, 95% CI = 1.24–2.26, P < 0.01), 
ATCA (OR = 1.47, 95% CI = 1.26–1.73, P < 0.01), CYMA (OR = 1.30, 95% CI = 1.12–1.51, P < 0.01), HEMA 
(OR = 1.55, 95% CI = 1.21–1.98, P < 0.01), and SBMA (OR = 1.43, 95% CI = 1.21–1.70, P < 0.01) were significantly 
associated with AIP. Conversely, although 2MHA, AMCC, BPMA, CEMA, and IPMA showed some statistical 
significance, their odds ratios were less than 1 (Table S3).

The dose-response relationship between specific VOCs and AIP was further analyzed using restricted cubic 
splines (RCS) (Fig.  6d). The analysis revealed that the inflection point for ATCA was 128.60 ng/mL. Above 
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this level, ATCA showed a significant positive association with AIP (OR = 1.60, 95% CI = 1.20–2.14, P < 0.01), 
indicating that when ATCA levels exceed 128.60 ng/mL, the risk of elevated AIP increases by 60%. Similarly, 
the inflection point for SBMA was 6.81 ng/mL, and above this level, the risk of elevated AIP increases by 36%. 
(OR = 1.36, 95% CI = 1.08–1.70, P < 0.01). However, no significant associations were found between 34DMA or 
AAMA and AIP (Table 2).

Subgroup analysis
To further investigate the variables that may contribute to an increased risk of atherosclerosis, subgroup analyses 
were conducted. In the age group analysis, high exposure was significantly positively associated with the 
occurrence of events in the 30–59 years group (OR = 1.55, P < 0.001), while no significant effects were observed 
in the 18–29 years and > 60 years groups (P = 0.153 and P = 0.370, respectively). Regarding gender differences, 
exposure was significantly associated with event occurrence in men (OR = 1.64, P < 0.001), but inversely related 
in women (OR = 0.81, P = 0.015). Racial analysis revealed significant associations between exposure and event 
occurrence in Mexican Americans and non-Hispanic Blacks (P < 0.001), while no significant differences were 

Variables
Q1
(n = 1503)

Q2
(n = 1513)

Q3
(n = 1508)

Q4
(n = 1503) Total (n = 6027) P-value

Age (years) 23 (12, 52) 30 (15, 57) 42 (22, 61) 46 (32, 60) 37 (18, 59) < 0.001**

Sex, n (%) < 0.001**

Men 702 (46.71) 657 (43.42) 753 (49.93) 929 (61.81) 3041 (50.46)

Women 801 (53.29) 856 (56.58) 755 (50.07) 574 (38.19) 2986 (49.54)

Race, n (%) < 0.001**

Mexican American 212 (14.11) 219 (14.47) 245 (16.25) 230 (15.3) 906 (15.03)

Other Hispanic 106 (7.05) 139 (9.19) 135 (8.95) 198 (13.17) 578 (9.59)

Non-Hispanic White 504 (33.53) 493 (32.58) 506 (33.55) 555 (36.93) 2058 (34.15)

Non-Hispanic Black 447 (29.74) 384 (25.38) 338 (22.41) 265 (17.63) 1434 (23.79)

Other Race 234 (15.57) 278 (18.37) 284 (18.83) 255 (16.97) 1051 (17.44)

Education, n (%) < 0.001**

Less than 9th grade 46 (3.06) 73 (4.82) 109 (7.23) 161 (10.71) 389 (6.45)

9-11th grade 98 (6.52) 101 (6.68) 145 (9.62) 185 (12.31) 529 (8.78)

High school graduate 180 (11.98) 212 (14.01) 251 (16.64) 325 (21.62) 968 (16.06)

AA degree 940 (62.54) 849 (56.11) 720 (47.75) 551 (36.66) 3060 (50.77)

College graduate or above 239 (15.9) 278 (18.37) 283 (18.77) 281 (18.70) 1081 (17.94)

Marital status, n (%) < 0.001**

Married 355 (23.62) 469 (31) 626 (41.51) 714 (47.5) 2164 (35.91)

Widowed 68 (4.52) 85 (5.62) 80 (5.31) 77 (5.12) 310 (5.14)

Divorced 92 (6.12) 103 (6.81) 115 (7.63) 161 (10.71) 471 (7.81)

Never married 918 (61.08) 787 (52.02) 599 (39.72) 428 (28.48) 2732 (45.33)

Living with partner 70 (4.66) 69 (4.56) 88 (5.84) 123 (8.18) 350 (5.81)

Drinking (cup) 2 (1, 3) 2 (1, 3) 2 (1, 3) 2 (1, 4) 2 (1, 3) 0.008**

Smoking, n (%) < 0.001**

Every day 451 (30.01) 497 (32.85) 559 (37.07) 671 (44.64) 2178 (36.14)

Some days 41 (2.73) 45 (2.97) 44 (2.92) 41 (2.73) 171 (2.84)

Not at all 1011 (67.27) 971 (64.18) 905 (60.01) 791 (52.63) 3678 (61.03)

Vigorous work activity, n (%) < 0.001**

Yes 585 (38.92) 549 (36.29) 426 (28.25) 365 (24.28) 1925 (31.94)

No 917 (61.01) 964 (63.71) 1082 (71.75) 1139 (75.78) 4102 (68.06)

Poverty to income ratio 2.01 (1.04, 4.03) 2.18 (1.08, 4.07) 1.82 (1.06, 3.65) 1.71 (0.97, 3.40) 1.88 (1.02, 3.82) 0.779

BMI (Kg/m2) 23.3 (20.5, 27.2) 25.60 (22.10, 30.10) 28.20 (24.70, 33.50) 29.80 (26.40, 34.98) 26.20 (21.75, 31.30) < 0.001**

Systolic pressure (mmHg) 114 (104, 126) 116 (106, 128) 122 (112, 134) 122 (112, 134) 116 (106, 130) < 0.001**

Diastolic pressure (mmHg) 66 (58, 74) 68 (60, 74) 70 (62, 78) 72 (66, 80) 68 (60, 76) < 0.001**

TC (mmol/L) 3.96 (3.44, 4.53) 4.34 (3.80, 5.02) 4.78 (4.24, 5.38) 5.48 (4.84, 6.10) 4.55 (3.90, 5.30) < 0.001**

TG (mmol/L) 0.62 (0.47, 0.84) 0.86 (0.64, 1.12) 1.14 (0.86, 1.51) 1.67 (1.23, 2.25) 1.03 (0.69, 1.52) < 0.001**

LDL-C (mmol/L) 1.97 (1.60, 2.33) 2.48 (2.12, 2.92) 2.95 (2.53, 3.44) 3.54 (3.01, 4.14) 2.72 (2.12, 3.36) < 0.001**

HDL-C (mmol/L) 1.68 (1.47, 1.94) 1.42 (1.27, 1.63) 1.27 (1.11, 1.45) 1.06 (0.96, 1.22) 1.32 (1.11, 1.58) < 0.001**

Cotinine (ng/mL) 0.04 (0.01, 2.13) 0.03 (0.01, 0.25) 0.04 (0.01, 1.08) 0.05 (0.01, 79.38) 0.04 (0.01,0.81) < 0.001**

Table 1. Baseline characteristics of the study population. aBMI, Body Mass Index; TC, Total Cholesterol; TG, 
Triglyceride; LDL-C, Low Density Lipoprotein -Cholesterol; HDL-C, High Density Lipoprotein -Cholesterol. 
*P < 0.05, **P < 0.01.
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observed in other racial groups. In the body mass index (BMI) analysis, exposure was positively correlated with 
event occurrence in individuals with a BMI < 25 (OR = 1.51, P < 0.001), whereas no significant correlation was 
found in those with a BMI > 25. Smoking status also significantly influenced the relationship between exposure 
and event occurrence, with smokers showing an OR of 2.70 (P = 0.002), while no significant association was 
observed in non-smokers (OR = 1.08, P = 0.525). The high exposure group in smokers showed a significantly 

Fig. 3. Co-exposure effects between VOCs. (a) total exposure effect; (b) Q1 group exposure effect; (c) Q2 
group exposure effect; (d) Q3 group exposure effect; (e) Q4 group exposure effect.
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increased risk of atherosclerosis (OR = 2.70, P = 0.002), whereas no significant change was observed in non-
smokers (OR = 1.08, P = 0.525) (Table 3).

Robustness test
A Bayesian kernel machine regression (BKMR) model was developed using the R package “bkmr” to evaluate 
the combined effects of volatile organic compound (VOCs) exposure on the atherogenic index (AIP). The model 
analyzed the dose levels of 20 VOCs in urine in relation to total cholesterol (TC) and high-density lipoprotein 
cholesterol (HDL-C). The results indicated a positive correlation between VOCs exposure and TC among 
participants at the 50th percentile level. Conversely, a negative correlation was observed for HDL-C in the same 
group. Furthermore, a relationship between VOCs and AIP was confirmed, with sensitivity test results aligning 
with the main analysis findings (Fig. 7).

Discussion
In this study, we investigated the potential association between volatile organic compounds (VOCs) and the 
plasma atherogenic index (AIP), with a particular focus on the effect of 2-aminothiazoline-4-carboxylic acid 
(ATCA) on atherosclerosis risk. Utilizing data from the NHANES database (2011–2018), our findings indicate 
that long-term exposure to VOCs, especially ATCA, may elevate the risk of atherosclerosis, providing new 
evidence linking VOCs to cardiovascular disease.

Initially, Spearman’s correlation analysis demonstrated a joint exposure effect among different VOCs, 
revealing a significant correlation between IPMA3 and HMPMA (ρ = 0.97). This suggests that co-exposure 

Fig. 4. Between-group dose differences in VOCs.

 

Scientific Reports |         (2025) 15:9024 8| https://doi.org/10.1038/s41598-025-93833-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


to multiple VOCs may have a synergistic impact on atherosclerosis development. Further analysis through 
weighted quantile sum (WQS) regression modeling identified significant positive correlations between VOCs 
and total cholesterol (TC) as well as high-density lipoprotein cholesterol (HDL-C), indicating their potential 
influence on lipid metabolism. These findings are consistent with previous studies and reinforce the hypothesis 
that VOCs are a risk factor for cardiovascular disease28.

Notably, our stratified threshold model indicated a significant increase in the risk of elevated AIP when 
ATCA levels exceeded 128.60 ng/mL (OR = 1.60). This finding has important clinical implications, suggesting 
that ATCA may be a key risk factor for atherosclerosis. As a biomarker of cyanide metabolism, ATCA may 
contribute to atherogenesis through oxidative stress and inflammatory mechanisms29. Prior research has 
established a link between cyanide exposure and cardiovascular disease and our study reveals, the specific role 
ATCA may play in this pathological process.

Fig. 5. WQS regression modeling reveals the weighting of VOCs dose in blood TG, HDL-C. (a) WQS 
regression for group Q1; (b) WQS regression for group Q2; (c) WQS regression for group Q3; (d) WQS 
regression for group Q4.
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Fig. 6. Weighted Multimodal Logistic Regression Models of VOCs and AIP with RCS Analysis. (a) Model 
1: Multimodal Logistic Regression of VOCs and AIP; (b) Model 2: Multimodal Logistic Regression of VOCs 
and AIP with additional corrections for sex, age, race, marital status, educational attainment, and poverty-to-
income ratio; (c) Multimodal Logistic Regression of VOCs with AIP, additionally adjusted for physical activity, 
systolic blood pressure, diastolic blood pressure, smoking, alcohol consumption, and cotinine levels; (d) 
Nonlinear trends in 34DMA, AAMA, SBMA, ATCA.
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Fig. 7. BKMR model fitting of urinary VOCs dose to AIP. (a) VOCs & TC; (b) VOCs & HDL-C.

 

Subgroup n (%) Low exposure (Events/Total) High exposure (Events/Total) OR (95%CI) P-value Pinteraction

Age (years) < 0.001**

18–29 2514 (41.71) 649/709 1682/1805 1.26 (0.92–1.74) 0.153

30–59 2158 (35.81) 483/943 444/1215 1.55 (0.96–1.65) < 0.001**

> 60 1355 (22.48) 303/697 302/658 1.10 (0.89–1.37) 0.370

Sex < 0.001**

Men 3041 (50.46) 766/1393 1099/1648 1.64 (1.41–1.90) < 0.001**

Women 2986 (49.54) 669/956 1329/2030 0.81 (0.69–0.96) 0.015*

Race 0.671

Mexican American 906 (15.03) 159/288 449/618 2.16 (1.61–2.89) < 0.001**

Other Hispanic 578 (9.59) 133/215 241/363 1.22 (0.86–1.73) 0.271

Non-Hispanic White 2058 (34.15) 558/967 661/1091 1.13 (0.94–1.34) 0.184

Non-Hispanic Black 1434 (23.79) 389/537 704/897 1.39 (1.08–1.78) 0.009**

Other Race 1051 (17.44) 196/342 373/709 0.83 (0.64–1.07) 0.152

Body mass index (kg/m2) 0.432

< 25 2586 (42.91) 582/823 1383/1763 1.51 (1.25–1.82) < 0.001

25–30 1609 (26.70) 359/716 441/893 0.98 (0.80–1.20) 0.879

> 30 1832 (30.39) 468/800 578/1032 0.90 (0.75–1.09) 0.285

Smoking 0.007**

Yes 2349 (55.09) 359/1034 992/1315 2.70 (1.43–3.07) 0.002**

No 2707 (44.91) 207/1011 410/1696 1.08 (0.86–1.35) 0.525

Table 3. Subgroup analysis of covariates influencing atherosclerosis risk across different exposure levels. aOR, 
Odds ratio; 95%CI, Odds ratio. *P < 0.05, **P < 0.01.

 

Variable β S.E Z OR (95%CI) P-value

34DMA < 321.75 ng/mL -0.19 0.09 -2.05 0.83 (0.69–0.99) 0.040*

34DMA ≥ 321.75 ng/mL -0.12 0.17 -0.68 0.89 (0.64–1.24) 0.497

AAMA < 50.77 ng/mL -0.36 0.14 -2.69 0.69 (0.53–0.91) 0.007**

AAMA ≥ 50.77 ng/mL 0.10 0.13 0.78 1.11 (0.86–1.43) 0.535

SBMA < 6.81 ng/mL -0.16 0.14 -1.21 0.85 (0.65–1.11) 0.225

SBMA ≥ 6.81 ng/mL 0.30 0.12 2.63 1.36 (1.08–1.70) 0.009**

ATCA < 128.60 ng/mL 0.18 0.12 1.44 1.20 (0.94–1.53) 0.050*

ATCA ≥ 128.60 ng/mL 0.47 0.15 3.16 1.60 (1.20–2.14) 0.002**

Table 2. Segmented binary logistic regression model for dose-response effect. aβ, Ratio; S.E, Standard Error; Z, 
Z-score; OR, Odds ratio; 95%CI, Odds ratio. *P < 0.05, **P < 0.01.
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While previous studies have shown that VOCs are common air pollutants associated with conditions such 
as diabetes30, obesity31, decreased lung function32, and autoimmune diseases33, the exact mechanisms through 
which VOCs affect cardiovascular health remain unclear34. Smoking is known to increase the concentration 
of various VOCs in urine and blood35,36, which can subsequently affect blood lipid levels37. A substantial body 
of research has explored the relationship between smoking, VOCs metabolites, and serum lipids. Smoking has 
been shown to significantly impact lipid metabolism, influencing both the respiratory system and systemic 
metabolism through the release of harmful VOCs38. Studies indicate that smoking not only increases serum 
levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), but is also closely associated 
with a decrease in high-density lipoprotein cholesterol (HDL-C) levels39. Moreover, oxidative stress induced 
by smoking may exacerbate lipid metabolic abnormalities, thus increasing the risk of cardiovascular diseases 
(CVD)40. Volatile organic compounds, as major metabolic products of smoking, have been identified as 
important biomarkers for revealing the metabolic effects of smoking41. Kampa and Marilena suggested that 
exposure to high levels of air pollutants, including VOCs, may lead to chronic inflammation, thereby increasing 
the incidence of atherosclerosis and other cardiovascular conditions42. Additionally, research by Chen et al. 
indicated that chronic exposure to VOCs significantly elevates plasma LDL-C levels, promoting the development 
of atherosclerosis14.

ATCA, as a product of cyanide metabolism, is closely related to oxidative stress and cardiovascular health. 
Cyanide is a well-known environmental toxin, and its detrimental effects on the cardiovascular system have been 
documented, particularly among smokers and industrial workers43. For example, Lin et al. showed that ATCA, 
a biomarker of cyanide exposure, may reflect the significant effect of long-term low-dose cyanide exposure on 
atherogenesis44. These studies support our finding of a positive correlation between ATCA and AIP.

This study systematically evaluated the complex association between VOCs and AIP using multiple statistical 
models (e.g., WQS, RCS, BKMR). The findings not only underscore the potential role of ATCA as a risk factor 
for atherosclerosis but also provide a theoretical basis for developing public health policies. Given the impact 
of environmental exposures on cardiovascular health, future research should focus on interventions to reduce 
VOCs exposure and their potential benefits in mitigating cardiovascular disease risk.

However, this study has several limitations. First, as a cross-sectional investigation, we were unable to 
establish a causal relationship between VOCs and AIP. Second, while multiple confounders were adjusted for, 
certain variables (e.g., diet, genetic susceptibility) were not considered, which may have influenced the results. 
Additionally, a single measurement of VOCs in urine may not accurately reflect long-term exposure. Future 
studies should aim for longer follow-up periods to validate these findings further. Furthermore, this study 
excluded participants for whom VOCs metabolites were not detected, which may have resulted in unclear 
classification of the study sample and potentially affected the generalizability of the results. Therefore, future 
research should consider more comprehensive sample collection and analysis to enhance the representativeness 
of the data.

Conclusion
In summary, elevated levels of volatile organic compounds (VOCs) in urine, particularly 2-aminothiazoline-
4-carboxylic acid (ATCA), were significantly and positively correlated with an increase in the plasma 
atherogenic index (AIP). This suggests that higher exposure to VOCs may be associated with an increased risk 
of atherosclerosis, offering important insights for further investigation into the relationship between VOCs and 
cardiovascular diseases.

Data availability
All data have been included in the article and supplementary information, and all data are available on the open 
database NHANES: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx.
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