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The de-Sitter metric is a special form of the non-static Friedmann metric, and appears to be genuinely
non-static since it describes the initial exponential expansion of the Big Bang universe. However, the de
Sitter metric appears to be perfectly static in the Schwarzschild frame where the vacuum fluid is supposed to
be in motion. Here we highlight the conflicts between the static and non-static versions of the de-Sitter
metric from a physical perspective. In particular, while the ‘‘Principle of Energy Conservation’’ is honored in
one case, the same is badly violated for the other. However, we offer a partial resolution of such conflicts by
deriving the static de Sitter metric by solving the relevant field equations. It is seen that, it is the very special
vacuum equation of state pressure 5 –density which results in the static form even when the vacuum fluid is
supposed to be in motion.

I
n general relativity, in principle, one is free to use arbitrary coordinates. Indeed for studying a spherically
symmetric fluid, one uses both the comoving coordinates, (r, t), as well as the curvature or Schwarzschild
coordinates (R, T); and the angular coordinates remain the same in both the cases. In the comoving frame, by

definition, a fluid element is at a fixed radial coordinate r and local 3-speed of the fluid v(r, t) 5 0. Though the
comoving coordinates stick to the fluid, the expansion or contraction of the fluid can be studied by considering the
motion of nearby fluid elements. In fact one can define a volume expansion scalar as the covariant divergence of
the fluid 4-velocity field ui1,2:

H~ui; i ð1Þ

to quantify the expansion/contraction in an invariant manner. Physically, the expansion scalar measures the
fractional rate at which the volume of a small ball of matter changes with respect to time as measured by a
comoving observer lying at the centre of the ball. On the other hand, by definition, in a non-comoving frame, for a
non-stationary case, the fluid element is in motion even with respect to an observer whose position momentarily
coincides with a certain fluid element. For instance, for a non-stationary situation, an observer sitting at a given
radial coordinate R finds the fluid to be flowing past it with a local 3-speed3:

v R,Tð Þ~ el=2dR

eg=2dT
, ð2Þ

where the Schwarzschild frame is described by the metric

ds2~eg R,Tð ÞdT2{el R,Tð ÞdR2{R2dV2, dV2~ dh2zsin2hdw2� �
ð3Þ

Incidentally, this Schwarzschild radial coordinate R is also called the ‘‘area coordinate’’ as 4pR2 represents the
invariant area of symmetric 2-spheres around the centre of symmetry. Thus the Schwarzschild radial coordinate
is actually a scalar/invariant quantity with an inherent spacelike character. This is so because, by initial definition,
the centre of symmetry corresponds to a point at R 5 0 possessing an invariant surface area 4pR2 5 0. Since a non-
comoving observer explicitly finds the fluid to be in motion unlike the comoving observer, the temporal depend-
ence of the pertinent physical quantities are expected to be more pronounced or complex. To appreciate this
consider a perfect fluid in its comoving frame in which the components of the matter energy momentum tensor
are (G 5 c 5 1):

T0
0 comð Þ~re r,tð Þ; T1

1 comð Þ~T2
2 comð Þ~T3

3 comð Þ~{pe r,tð Þ ð4Þ

and all other components of Ta
b are zero. Here
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re r,tð Þ~r r,tð ÞzL=8p ð5Þ

is the effective matter energy density and

pe r,tð Þ~p r,tð Þ{L=8p ð6Þ

is the effective isotropic pressure when cosmological constant L is
present. But the expressions for the components of the energy
momentum tensor in the Schwarzschild frame, obtained via a local
Lorentz transformation, are far more complex3:

T0
0 ncomð Þ~ rezpev2

1{v2
, ð7Þ

T1
1 ncomð Þ~T2

2 ncomð Þ~T3
3 ncomð Þ~{

pezrev2

1{v2
, ð8Þ

T1
0 ncomð Þ~ pezreð Þve g{lð Þ=2

1{v2
, ð9Þ

and T2
0 ncomð Þ~T3

0 ncomð Þ~0. Therefore, the solutions of the
Einstein equation

Gi
k~{8pTi

k, ð10Þ

must be far more complex in the non-comoving case because
Ti

k ncomð Þ (Eqs.[7–9]) is far more complex than Ti
k comð Þ (Eq.[4]).

Naturally, in view of such complex nature of the energy momentum
tensor and explicit motion of the fluid, the non-comoving solutions
are expected to have more pronounced temporal dependence than
their comoving counterparts. And thus non-stationary GR problems
such as gravitational collapse or cosmology become mathematically
more tractable in terms of the comoving coordinates r, t than in
terms of R, T.

Here it may be helpful to briefly remind the reader about the
definitions of ‘‘Stationary’’ and ‘‘Static Metric’’. If there is a coord-
inate system for which none of the metric coefficients contain any
temporal dependence, then the metric is called ‘‘Stationary’’4. A
familiar example is the Kerr metric, and one expects the spactime
represented by the Kerr metric to be stationary irrespective of any
coordinate transformations it might be subjected to. And a static
metric is a sub-class of stationary metrics where there are, in addi-
tion, no spacetime cross-terms dx0dxa4. Thus when there is no space-
time cross term, the two terms ‘‘non-stationary’’ and ‘‘non-static’’
become synonymous. The most familiar spherically symmetric static
metric is the vacuum Schwarzschild metric:

ds2~ 1{2M=Rð ÞdT2{ 1{2M=Rð Þ{1dR2{R2dV2 ð11Þ

On the other hand, metrics associated with gravitational collapse or
evolving cosmology naturally correspond to non-stationary or non-
static ones though, of course, the respective final states, by definition,
should correspond to static metrics. The best example of such a non-
static metric is the Friedmann Robertson Walker (FRW) metric
which is the cornerstone of modern cosmology:

ds2~dt2{a2 tð Þ dr2

1{kr2
zr2dV2

� �
ð12Þ

where k 5 11, 0, 21 and a(t) is the scale factor. As is well known, this
form of the FRW metric corresponds to the comoving frame in which
the cosmic fluid is at rest (vcom 5 0)1,2. The metric is still non-static
because

grr~grr tð Þ~ a2 tð Þ
1{kr2

ð13Þ

However the form of the metric is still simple in the sense that g00 5 1
and grr(t) has a rather benign form. Though in principle, all comov-
ing metrics must be expressible in the Schwarzschild form, the fact is
that, even for this simple metric, a general Schwarzschild form is still
not known! The difficulty in having a Schwarzschild form of the

simple comoving metric, may be attributed to the complex form of
Ti

k ncomð Þ; i.e., Eqs.(7–9).
As already mentioned, there could be an invariant measure of the

volume expansion of the FRW fluid in terms of the volume expansion
scalar; and for the FRW metric, one finds1,2

H~3
_a
a

ð14Þ

where an overdot denotes differentiation by t. Clearly, the cosmic
fluid can be static in an invariant manner only if one would have a
static metric with _a=a~0; i.e., for Einstein’s static universe.

Now we consider a very special case of the FRW metric, namely the
de Sitter Metric:

ds2~dt2{e2Ht dr2zr2dV2� �
ð15Þ

In particular, for this FRW metric, one has
a tð Þ~eHt; k~0 ð16Þ

where the ‘‘Hubble Parameter’’

H~
_a
a
~

ffiffiffiffiffiffiffiffiffi
L=3

p
ð17Þ

It would be interesting to compare the de Sitter solution with
another well known FRW solution, namely, the Einstein de Sitter
dust solution1,2:

a tð Þ!t2=3; k~0 ð18Þ

or the solution for the radiation dominated era a(t) / t1/2.
Clearly, the temporal dependence of the de Sitter metric is far more

extreme as compared to the Einstein de Sitter metric or many other
FRW solutions. In particular, for the solution (18), the volume within
the particle horizon increases as Vph , t3 1,2. Even with this fast
increase of volume, at the epoch of de-coupling of matter and radi-
ation, it turns out that Vd

ph is only a tiny fraction 2.1025 of the volume
of the causally connected region. Then question arises, how could the
cosmic microwave background be so homogeneous despite the lack
of any causal connection amongst distant patches of the initial uni-
verse. This problem is known as the ‘‘Horizon Problem’’; and as is
well known, is remedied by postulating an exponentially expanding
‘‘inflationary phase’’ immediately after the ‘‘Big Bang’’1,2. The volume
of the universe is supposed to have blown up by a factor of , 1078

during this flash lasting between , 10236 – 10232 s. The ‘‘flatness’’
puzzle of the present universe is similarly removed by postulating the
same initial exponential inflationary phase. Clearly, any expectation
that the de Sitter phase should be intrinsically static in view of a fixed
vacuum energy density, re 5 L/8p, is not honored here.

Indeed, the invariant non-static nature of the inflationary or the de
Sitter phase can be gauged by finding the corresponding volume
expansion scalar:

H~3
_a
a
~3H~

ffiffiffiffiffiffi
3L
p

ð19Þ

It is clear that this inflationary expansion can appear to be invariantly
nonexistent only if one would have L 5 0. Further as already
explained, for a non-comoving case, the solutions are expected to
be more complex with likely more pronounced temporal depend-
ence. However, in a very surprising manner, this appears not to be the
case for the corresponding Schwarzschild observer:

The Schwarzschild observer does not at all perceive the temporal
variation of the scenario. This is so because, the Schwarzschild form
of this very special FRW metric is known, and it is a static one5,6

ds2~ 1{
LR2

3

� �
dT2{ 1{

LR2

3

� �{1

dR2{R2dV2 ð20Þ

and which may be also written as

ds2~ 1{H2R2
� �

dT2{ 1{H2R2
� �{1

dR2{R2dV2 ð21Þ
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To summarize, in the comoving frame where the fluid is at rest, vcom

5 0, the de Sitter solution has an extremely rapid temporal variation:
a(t) , eHt. On the other hand, in the non-comoving Schwarzschild
frame, where one would normally expect a more complex temporal
dependence, the metric is static! This static Schwarzschild form is
surprising for other reasons too:

Though it is an interior solution for the dark vacuum fluid, it looks
like the exterior vacuum Schwarzschild solution. To explore this
similarity further, consider a spherical fluid of uniform density r0

and having a radius Rb. The gravitational mass of this fluid is

M~
4p
3

r0R3
b ð22Þ

so that, at the exterior vacuum boundary, R 5 Rb, the corresponding
Schwarzschild metric becomes

ds2~ 1{A2R2
� �

dT2{ 1{A2R2
� �{1

dR2{R2dV2 ð23Þ

where

A2~
8p
3

r0 ð24Þ

Thus the exterior vacuum solution at R 5 Rb (23) would look exactly
similar to the interior de Sitter solution (21).

Recall that when de Sitter presented his metric in 1917, it was only
in this static form (20)7; and this was preceded by Einstein’s static
universe:

ds2~dT2{ 1{LR2
� �{1

dR2{R2dV2 ð25Þ

where both the dark fluid (L) and matter are at rest and strictly no
red/blue shift of ‘‘nebulae’’ is to be expected. Note de Sitter discovered
his static metric by intutitively extending this metric for Einstein’s
static universe5 on geometrical considerations and not by solving any
field equations in an independent manner.

In the de Sitter case, there was no matter and the vacuum fluid
appeared to be at rest. Indeed Tolman derived (20) by assuming v 5

06. Yet in order to explain the actual universe having ‘‘nebulae’’, it was
thought that the matter density was neglible in comparison to vacuum
density L/8p. The movement of an odd galaxy was considered to be
the motion of a test particle with negligible energy density in the
background of the static vacuum fluid5.

On the other hand, non-static fleld equations were invoked for the
first time by Alexander Friedmann in 1921. And later, as the FRW
metric got derived in a comprehensive manner, primarily on strong
symmetry arguments, most of the cosmologists started believing that
the universe was indeed expanding, and did not spare much attention
to either Einstein’s or de Sitter’s static metrics. On the other hand, the
comoving form of the de Sitter metric, as a special case of the FRW
metric, became familiar to all cosmologists. Though some books do
mention about the original static de Sitter metric, many of the present
day cosmologists or particle physicists many not be even aware that
non-static de Sitter metric studied by them had originally appeared
in a static form. And even when they may be recalling the original
static form of the de Sitter universe, their interest may remain
focused on geometrical peculiarities like the de Sitter hyperboloid
can be embedded in a flat 5-D Minkowski spacetime1.

But, we would like to highlight that, clearly, there is a physical or at
least interpretational self-contradiction between the original de Sitter
view and the present day non-static de Sitter view:

Suppose, one says that in view of the constant energy density re 5

L/8p, of the vacuum fluid, it is natural that de Sitter metric must be
static. In fact this was the original de Sitter view (that time, there was
hardly any notion of a non-stationary metric). In this original view,
the vacuum is static, v(R,T) 5 0, though a test particle with negligible
mass can move in this static background just like a test particle can
move around a static star described by the exterior vacuum Schwar-
zschild metric (11). So in the original de Sitter universe, one has

rmatter~0; v R,Tð Þ~0 for vacuum fluid ð26Þ

If one would like to explain this inherent staticity due to constancy of
vacuum energy density, then one should not expect the vacuum fluid
to be expanding in any frame, because, physically any expansion
should lead to a decrease of energy density.

However, as GR grew and non-stationary scenarios were encoun-
tered, the notion of ‘‘stationary’’ got linked not to the constancy or
non-constancy of energy density. On the other hand, as already
mentioned, a ‘‘stationary’’ metric would be one where none of the
coefficients have any temporal dependence. Further, once one would
find a metric to be ‘‘stationary’’, one would expect to remain so even
after a physically significant coordinate transformation. This is so
because, after all, a metric represents a physical view point and by
principle of covariance, the essential physical picture should not
depend on the choice of coordinates. For instance, as already men-
tioned, the vacuum Schwarzschild metric is supposed to represent an
inherently static physical picture irrespective of the coordinates used.
But as the focus shifted on the comoving version of the de Sitter
metric, it was considered to be actually non-static even though it
corresponds to a fixed energy density.

Obviously one cannot subscribe to both these views that the de
Sitter universe is both, naturally, ‘‘static’’ and ‘‘non-static’’ simply
because they are self-contradictory.

Further, after the development of the notion of the non-stationary
spacetime, the present day view is that in the non-comoving
Schwarzschild frame, the vacuum fluid is moving with a 3-speed

v R,Tð Þ~ 1{H2R2
� �{1dR

dT
ð27Þ

even though the corresponding metric (20) is static. This view gets
supported by the fact that H~

ffiffiffiffiffiffi
3L
p

=0 if L ? 0.
And of course, in the FRW picture galaxies are not mass-less test

particles, but, on the other hand they form the cosmic fluid. In this
view, the space; i.e., the vacuum expands and the galaxies just remain
embedded in this expanding space and partake of the expansion.
Further for the present LCDM cosmology, in the present epoch,

rmatter*rvac ð28Þ

Such glaring contradictions between the two versions of the de Sitter
picture, to the best knowledge of this author, have never been
brought out. And obviously there have not been any attempts for
physical resolution to reconcile them. To address at least part of such
questions, here we provide the maiden derivation of the static form of
the de Sitter metric by solving the field equations.

In particular, here we focus attention to the question: ‘‘Why does
the de Sitter metric appear to be perfectly static to an observer with
respect to whom the cosmic fluid is expanding rapidly?’’

Results
Maiden Derivation of the Static Form of de Sitter Metric by Solving
Field Equations

In the Schwarzschild coordinate frame, one of the field equations
is3

8pT0
0 ~{e{l 1

R2
{

l0

R

� �
z

1
R2

ð29Þ

where a prime denotes partial derivative by R. By integrating this
equation, we obtain

e{l~1{
2Me

R
ð30Þ

where

Me~

ðR

0
4pT0

0 R2dR ð31Þ

www.nature.com/scientificreports
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For the vacuum equation of state (EOS), pe 5 2re, it is seen from
Eq.(7) that

T0
0 ~re~

L

8p
ð32Þ

Thus we find that

Me~

ðR

0
4p

L

8p
R2dR~

LR3

6
ð33Þ

So from Eqs.(30) and (33), we promptly obtain

e{l~1{
LR2

3
~1{H2R2 ð34Þ

for the de Sitter metric. Another relevant field equation here is3

8pT1
1 ~{e{l 1

R2
z

g0

R

� �
z

1
R2

ð35Þ

Again for pe 5 2re, we find from Eq.(8) that for the de Sitter case,

T1
1 ~{pe~

L

8p
ð36Þ

Now by feeding equations (34) and (36) back into (35), it is found
that

2
3

LRð Þ~{g0 1{LR2
	

3
� �

ð37Þ

And this has a solution

eg~K
LR2

3
{1

� �
ð38Þ

Now, by demanding that, eg 5 1 at R 5 0, we set the integration
constant, K 5 21, so that

eg~1{
LR2

3
~1{H2R2 ð39Þ

Thus, by combining equations (7), (34) and (39), we derived here the
de Sitter metric in the Schwarzschild frame, i.e., equations (20) and
(21), by directly solving the relevant field equations without assuming
v 5 0. And it is clear from this derivation, no EOS other than pe 5

2re would have yielded such a static view of the metric.

Discussions
The de Sitter metric is a very important aspect of modern cosmology.
It is also considered important for the present version of the super-
string theory because it invokes the Anti- de Sitter Conformal Field
Theory (AdS-CFT) correspondence. Essentially, it is conjectured
that there is an equivalence between a string theory and gravity
defined on one space, and a quantum field theory without gravity
defined on the conformal boundary of this space, whose dimension is
lower by one or more8,9.

Here we highlighted that there is a physical contradiction not only
between the static and non-static versions of the de Sitter metric, but
even between the old 1917 static interpretation and the present static
interpretation. In 1917, the de Sitter static metric was supposed to
describe a genuinely static background, v(R,T) 5 0, with a time
independent energy density re 5 L/8p; in those days there was no
concept of Raychoudhuri equation10 or expansion scalar1,2 or even a
proper notion of a non-stationary metric. But following the devel-
opments of GR, and in particular FRW cosmology, the de Sitter
metric is believed to be naturally non-static, and just a special form
of the non-static FRW metric.

The appearance of the static Schwarzschild form of the de Sitter
metric is considered as just a quirk coincidence. In particular, the
entire question of the static or non-static view is ascribed to the
peculiarites of the coordinate transformations relating the two forms:

t~Tz
1
H

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{H2R2
p

ð40Þ

and

r~
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{H2R2
p e{HT ; i:e:, R~reHt ð41Þ

Historically, it was Lanczos11 who first pointed out that the static de
Sitter metric can be given a non-static look by means of the above
coordinate transformations. This work was however ignored in the
literature and not mentioned in the comprehensive earlier books on
GR like3,5,6. In any case, coordinate transformations obtained by
mathematical trials and insights cannot offer physical explanation
for staticity for a metric which appears to result in most rapid expo-
nential time dependence in another frame.

But now, having solved for this original de Sitter metric, we can see
that the static form is a result of the very special equation of state
(EOS) of the vacuum fluid pe 5 2re. With this EOS, the first two
diagonal components of the effective energy momentum tensor
remain the same in both the comoving and the noncomoving frames:

T0
0 comð Þ~T0

0 ncomð Þ~ L

8p
ð42Þ

and

T1
1 comð Þ~T1

1 nomð Þ~ L

8p
ð43Þ

Finally recall that in the non-comoving Schwarzschild frame, appar-
ently, there should be a flow of mass energy even in the absence of
heat/radiation flow because the fluid is in motion3. But with this
special EOS, the non-comoving observer sees no mass-energy flux:

T1
0 ~

pezreð Þve g{lð Þ=2

1{v2
~0; even if v=0 ð44Þ

Essentially the vacuum energy momentum tensor is Lorentz invari-
ant and looks static to all observers. Many books and articles do
mention that the de Sitter metric which is supposed to be non-static
(in the comoving frame) appears to be static in the Schwarzschild
frame. And there are of course very elaborate discussions on the
geometry associated with de Sitter as well as anti de Sitter space-time
geometries. But such discussions must not be confused with the
explanation as to why precisely the exponentially expanding de
Sitter metric can look static.

And now we highlight Energy Conservation Anomaly in the Two
Frames:

We have already emphasized the fact, by definition, both the
comoving and non-comoving de Sitter observer must measure the
same value of the expansion scalar. But this assertion itself does not
not eliminate the various other conflicts between the two observers
discussed here. Note, though in GR one can use arbitrary coordinate
systems and have different viewpoints, such as different observers
being able to measure different values for the components of Ti

k, it is
expected that the basic physics results should be unchanged. Thus
indeed, various observers must not only measure the same values of
physical scalars but should arrive at the same physical results. From
such a viewpoint, one would expect all de Sitter observers to obey the
‘‘Principle of Energy Conservation’’ even though they are bound to
measure different values of total energy; i.e., E(com) ? E(ncom).

Before we start on this topic, first recall that, while the local energy
momentum conservation in GR is ensured by Ta

b;b~0, the question of
global energy momentum conservation is a tricky one. One of the
basic reasons for the ambiguity in even definiting a global energy is
that the gravitational field can be made to vanish at any given space-
time point if one would use the local inertial frame. This problem is
usually handled by recalling that, after all, there is no global inertial
frame in the presence of mass-energy so that there should be a non-
zero global total energy. Indeed, for an asymptotically flat spacetime,

www.nature.com/scientificreports
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one can nicely define the ‘‘ADM Mass’’ as the global energy inclusive
of matter and gravitation12. However if one would attempt to cal-
culate the total energy using say an appropriate pseudo-tensor, it is
seen that the calculated global energy depends on the coordinate
system used. For example, if one would use Einstein’s canonical
pseudo-tensor, the total energy of a Minkowski vacuum would
appear to blow up if spherical polar coordinates would be used. On
the other hand, Cartesian coordinates indeed lead to zero total energy
for the same spacetime. This only shows that energy measurements
have meaning only with respect to a given ‘‘background reference
spacetime’’ and probably Cartesian coordinates provide the most
natural background. Thus starting from Einstein, all authors
use the Cartesian coordinates for evaluating quatities involving
pseudo-tensors13. Further, there could be many choices of pseudo-
tensors and in certain cases, the global energy computed using dif-
ferent pseudo-tensors may differ. And such differences can arise for
various quasilocal definitions of global energies too. It is found that
‘‘pseudotensor corresponds to a Hamiltonian boundary term. Hence,
they are quasilocal and acceptable; each is the energy-momentum
density for a definite physical situation with certain boundary con-
ditions.’’14. Further, Einstein’s canonical pseudo-tensor, calculated
using Cartesian coordinates, appears to be highly physically signifi-
cant because at least for an isolated object, the expression for total
mass energy obtained using this pseudo-tensor matches with the
corresponding Landau-Lifshitz expression3 (essentially the ADM
mass) obtained without using any pseudo-tensor13.

To cut a long and involved story short, there is an unanimity that,
at least for a spherically symmetric spacetime, global energy
momentum is very much definable and Einstein’s pseudotensor is
very reliable. For a stationary system with timelike Killing vectors
such a global energy must obviously be conserved. However, note
that the question of non-conservation of global energy arises only for
a system which has a boundary through which there could be incom-
ing or outgoing flux of energy momentum. But, by definition, for the
‘‘universe’’, there is no external boundary. Thus for the special case
of the universe, the global energy is expected to be conserved13.
Accordingly, the global energy associated with the non-comoving
de Sitter metric was reliably found to be13

EdS comð Þ~L

6
r3a3 tð Þ~L

6
r3e

ffiffiffiffiffi
3L
p

t ð45Þ

To cross-check this, one can recall that, the total mass-energy of a
spherically symmetric comoving fluid inclusive of gravitation is also
given by the Misner-Sharp mass which is actually related to an

invariant associated with the Riemann tensorRab
cd : M~

1
2

R3Rhw
hw

15.

Further the definition of Misner-Sharp mass coincides with that of
several quasi-local energies and is the best measure of global energy
for a spherically symmetric case16. With the inclusion of L, the
expression for Misner-Sharp mass is

Me r,tð Þ~
ðr

0
4preR2 LR=Lrð Þdr ð46Þ

And for the de Sitter case, with,

R r,tð Þ~a tð Þr ð47Þ

one finds

Me r,tð Þ~L

6
r3a3 tð Þ~L

6
r3e

ffiffiffiffiffi
3L
p

t ð48Þ

It is interesting to see that we obtain the same expression for the total
energy associated with the non-static de Sitter metric from two dif-
ferent and most reliable directions:

EdS comð Þ~Me~
L

6
r3eHt ð49Þ

It is quite easy to physically verify the correctness of the above
expression. The negative self-gravitational/binding energy of stars
and other self-gravitating objects occur for systems with positive
spatial curvature. And for the spatially flat de Sitter model, there is
no negative self-gravitational energy. Even for supposed k 5 11, 21
vacuum solutions, there should not be any negative self-gravitational
energy because the vacuum cannot self-gravitate. Therefore, the glo-
bal energy of the de Sitter spacetime solely arises from positive con-
tributions of L. And since L does not decrease with expansion/
contraction, one must have

EdS comð Þ~ L

8p
|V ð50Þ

where V is the proper spatial volume. Further, for spatially flat case, V
5 coordinate volume.

Therefore, clearly, from the perspective of the comoving frame, the
principle of energy conservation is badly violated for the de Sitter
universe if indeed L ? 0.

In contrast, the static form of the de Sitter metric has a timelike
Killing vector and obviously obeys this golden physical principle of
energy conservation.

Thus the total energy of the de Sitter model increases in an expo-
nential manner; such a bad violation of the ‘‘Principle of Con-
servation of Energy’’ in the comoving frame is in sharp contrast with
the corresponding nice behaviour in the Schwarzschild frame.

To remind again, the expansion scalar H~
ffiffiffiffiffiffi
3L
p

=0 if indeed L ?
0. Then, physically it is puzzling how can the de Sitter metric look
static to any observer.

Indeed, at this moment, we have no answer to such pertinent
questions. Prima-facie, all such conflicts would vanish if one would
set the unknown ad-hoc constant L 5 0 in accordance with
Einsteins’s alleged self-proclaimation that the invention of a cos-
mological constant was his ‘‘biggest blunder’’. Also, in a future pub-
lication, we would attempt to address such issues. But, as of now, we
have at least explained that the static form of the de Sitter metric is a
result of very special vacuum EOS p 5 2r.

One may also wonder, if indeed there is no mass energy flow
for the vacuum fluid with respect to any observer, then how can
physically this vacuum look to be exponentially expanding to some
observer.
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