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Abstract: (1) Background: Bicuspid aortic valve (BAV) is the most frequent congenital cardiac disease.
Alteration of ascending aorta diameter is a consequence of shear stress alterations due to haemody-
namic abnormalities developed from inadequate valve cusp coaptation. (2) Objective: This narrative
review aims to discuss anatomical, pathophysiological, genetical, ultrasound, and radiological as-
pects of BAV disease, focusing on BAV classification related to imaging patterns and flux models
involved in the onset and developing vessel dilatation. (3) Methods: A comprehensive search strategy
was implemented in PubMed from January to May 2022. English language articles were selected
independently by two authors and screened according to the following criteria. (4) Key Contents and
Findings: Ultrasound scan is the primary step in the diagnostic flowchart identifying structural and
doppler patterns of the valve. Computed tomography determines aortic vessel dimensions according
to the anatomo-pathology of the valve. Magnetic resonance identifies hemodynamic alterations. New
classifications and surgical indications derive from these diagnostic features. Currently, indications
correlate morphological results, dissection risk factors, and genetic alterations. Surgical options vary
from aortic valve and aortic vessel substitution to aortic valve repair according to the morphology
of the valve. In selected patients, transcatheter aortic valve replacement has an even more impact
on the treatment choice. (5) Conclusions: Different imaging approaches are an essential part of BAV
diagnosis. Morphological classifications influence the surgical outcome.

Keywords: bicuspid aortic valve; aortopathy; classification; diagnosis; treatment

1. Introduction

Bicuspid aortic valve (BAV) is the most frequent congenital cardiac pathology; has a
prevalence of 1–2% [1], a high incidence of adverse outcomes, especially aortic stenosis
(AS) and aortic regurgitation (MR) [2]; and is at least three times more common in males
than females [3].

Bicuspid aortopathy, reported in 50% of BAV patients, consists of the aorta enlarge-
ment starting from the aortic root and involving the aortic arch and depends on blood
flux turbulences characterized by power vectors directed against the aortic toot and the
convexity of the vessel [4–7]. Recently, micro-RNA (miRNA) has been studied regarding
post-transcriptional regulation of genes in aortopathy manifestation. [8,9]. This paper
aims to discuss the current knowledge about anatomical, pathophysiological, genetical,
ultrasound, and radiological aspects of BAV disease, focusing on BAV classification related
to imaging patterns and flux models involved in the onset of aortic dilatation and its de-
veloped process. We present the following article in accordance with the narrative review
reporting checklist.
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2. Methods

This narrative review was carried out from January 2022 to May 2022. The following
search strategy was implemented on PubMed: (BAV OR bicuspid aortopathy OR bicuspid
aortic valve) AND (ultrasound OR computed tomography OR magnetic resonance OR US
OR CT or MR). Published articles were evaluated from database inception up to search
date. Only articles in the English language were included. Details are reported in Table 1.

Table 1. Narrative review searching strategies.

Items Specification

Date of Search (specified to date, month and year) From January 2022 to May 2022
Databases and other sources searched PubMed

Search terms used (including MeSH and free text
search terms and filters)

(BAV OR bicuspid aortopathy OR bicuspid
aortic valve) AND (ultrasound OR
computed tomography OR magnetic
resonance OR US OR CT or MR)

Time frame Up to May 2022
Inclusion and exclusion criteria (study type,
language restrictions, etc.) English language

Selection process Two authors independently selected
articles after screening for duplicates.

3. Genetics and Molecular Biology

Estimating mutation genes and their inheritance patterns is challenging [7] because
locus 9q34.3 alteration causes mutations in regulators NOTCH1 with secondary pathologi-
cal aortic valve development [10,11]; gene damages on 18q, 5q, and 13q induces BAV [12];
and finally, damages to the smooth muscle alfa actine (ACTA 2) gene produce BAV and
aortic aneurysms [13].

There is a tight linkage between BAV expression and other congenital pathologies
such as the coarctation of the aorta. Concerning BAV phenotype, Shone’s syndrome with
a left-sided lesion that can cause inflow and outflow obstruction, Turner’s syndrome
with aortic coarctation, and William’s syndrome involving supravalvular stenosis may be
observed. Moreover, ventricular septal defect, atrial septal defect, patent ductus arteriosus,
and coronary vessels, which may mainly involve single coronary and reversal coronary
dominance, have been reported [14–16].

Micro-RNAs (MiRNAs) need to be considered in biochemical and molecular changes
in BAV and aorthopathy (Table 2). MiRNAs are small, single-stranded, noncoding RNA
molecules that determine the post-transcriptional regulation of gene expression. The
effects of miRNAs are the result of base pairing with complementary sequences within
mRNA molecules that are silenced by cleavage of the mRNA strand, destabilization of the
mRNA by shortening its tail, and less efficient translation into proteins by ribosomes [17].
MiRNA expression profiling studies show that the expression levels of certain miRNAs
change in diseased human hearts, suggesting their involvement in cardiomyopathies.
MiR-712 is a potential predictor of atherosclerosis, has blood flow-dependent expression,
and miR-712 is also upregulated in endothelial cells exposed to naturally occurring d-
flow in the greater curvature of the aortic arch [18]. Several studies have investigated
the cooperation of miRNA, metalloproteinases (MMP), and tissue inhibitor of matrix
metalloproteinases (TIMP) in aorthopathy secondary to morphological alteration of the
aortic valve. miRNAs related to dilation of the thoracic aorta (TA) are upregulated in
transcriptional and epigenetic ways: different levels of MMP-2, MMP-9, TIMP-1, and
TIMP-9 were observed [19]. A high level of MMP-2 and increased levels of miR-17 and
miRNAs with the same genetic features as miR-17 were found in a comparative study
involving patients with mild and severe aorta dilation, with a decreased level of TIMP -1,
TIMP-2, and TIMP-3, thus hypothesizing a continuous development of TA influenced by
BAV [20]. A recent study showed a relationship between miR-133a and TIMP-1 and TIMP-2
without reporting a statistically significant association between miR-143 and MMP-2 [21].
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Table 2. Gene expression involved in valve and aortic diseases. ACTA 2: alfa actine 2, AXIN: gene
encodes a cytoplasmic protein that contains a regulation of G-protein signaling (RGS) domain and a di-
sheveled and axin (DIX) domain, BAV: bicuspid aortic valve, ENG: Endoglin, FBN1: fibrillin 1, GATA
(sequence for transcription factors for zinc proteins’ binding DNA sequence), NOS3: nitric oxide
synthase 3, NOTCH1 (gene encoding transmembrane proteins), PDIA2: protein disulfide isomerase
family A member 2, PECAM-1: platelet endothelial cell adhesion molecule-1, TGF: transforming
growth factor, TIMP: tissue inhibitor of matrix metalloproteinases.

Gene Expression Pathology

miR-146-5p BAV, aortic aneuurysm (convex region)
miR-21-5p BAV, aortic aneuurysm (convex region)
miR-17 Aoritc anurysm
miR 21 Aortic aneurysm
miR-34 a Aortic aneurysm
miR-122 BAV
miR 130 a BAV
miR-133a TIMP1,TIMP2, aortic aneurysm
mi-R 143 Aortic aneurysm
mi-R 145 Aortic aneurysm
miR 146-5p Aortic aneurysm
miR-200 Endothelial-mesenchimal/epithelial mesenchimal
miR-423-5p BAV, aortic aneurysm

miR-424-3p downregulation Cell proliferation, apoptosis, endothelial cells
alterations, aortic anuerysm

miR-486 BAV
miR-494 PECAM
miR-712 Atherosclerosis, aortic aneurysm
miR-718 Aortic aneurysm
ACTA2 BAV. Aortic aneurysm
AXIN1-PDIA2 BAV
ENG BAV
FBN 1 BAV
GATA4/GATA5/GATA6 BAV
NOS3 BAV
NOTCH1 (9q34.3) BAV, outflow tract malformation
TGFb1/TGFb2 Sporadic BAV, Loeys-Dietz syndrome
18q BAV
5q BAV
13q BAV

Plasma exosomal miR-423-5p regulates TGF-β signaling by targeting “similar mothers
against decapentaplegic Drosophila gene” 2 (SMAD2), exerting functions in the initiation
and development of BAV disease and its complication, bicuspid aortopathy [22,23]. Cir-
culating miRNAs may reflect remodeling processes in the proximal aorta in patients with
bicuspid aortopathy, and a recent study found a significant association between miRNA
expression in peripheral blood and aortic tissue, as levels of miR-21, miR-133a, miR-143,
and miR-145 were associated with dilated aorta [24].

Since abnormalities in vascular smooth muscle cells (VSMCs) may influence the devel-
opment of TA dilation, primarily when contractile function converts to secretory function,
this molecular situation causes cell apoptosis, in which the role of miRNA regulation
may play a crucial role. Specifically, the convex part of ascending thoracic aorta (ATA)
in BAV has increased miR-146-5p and miR-21-5p and reduced miR-133a-3p levels [25];
miR-424-3p and miR-3688-3p are downregulated in Hippo, ErbB, and TGF-beta signalling
pathways, an epiphenomenon of cell proliferation and apoptosis [26]; and, finally, en-
dothelial cells may have alterations due to abnormal flux patterns and genetic factors.
This last alteration results in a less resistant vessel wall and can start a process of aortic
dilation. Moreover, miR-494 is associated with platelet endothelial cell adhesion molecule
(PECAM) and microparticles derived from endothelial cells [26], and the decreased ex-
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pression of the miR-200 group can determine the involvement of the miR-200 family in
endothelial–mesenchymal/epithelial–mesenchymal transition (EndMT/EMT) [27].

Observing the role of miRNAs as aortopathy biomarker of aortic dilation and in-
creasing aortic dilation, it has been observed that miR-133a has a special linkage with the
aneurysms’ incidence [28]; miR-122, miR-130a, and miR-486 are expressed in BAV; and
miR-718 is used to predict aneurysms [29] similar to miR-34a [30].

Fibrillin 1 (FBN1) mutations have been found in BAV and aortic dilation. This gene
encodes a glycoprotein of extracellular matrix (ECM), which manteins elastic fibers, and is
also involved in the linkage of epithelial cells to interstitial matrix. A downregualtion of this
gene has been associated with BAV [31]. GATA (sequence for transcription factors for zinc
proteins’ binding DNA sequence) variations are involved in BAV: a missense p. Arg202Gln
in GATA5 and three synonymous variants—p. Cys274 and p. His302 in GATA4, and p.
Asn458 in GATA6 [32]. Alterations in nitric oxide synthase 3 (NOS3) are also associated
with BAV. A single nucleotide polymorphism (SNP) is present in aneurysmal and non-
aneurysmal BAV [33]. A haplotype within the AXIN-1-protein disulfide isomerase family
A member 2 (AXIN1-PDIA2) locus and in the Endoglin (ENG) gene has been found to be
linked to BAV [34]. Cilia and excyst have a main role in regulate mitogen-activated protein
kinase (MAPK) signaling. An alteration of this mechanism is the cause of an activation of
MAPK and the formation of BAV and calcified aortic stenosis [35].

4. Classification and Nomenclature

Since 1970, several classifications of BAV, derived from pathology, US scan, CT scan,
and MR patterns (Table 3), have been proposed [36]. Recently, an international consensus
statement developed a classification based on the progression of cusps fusion and geometry
of commissurae [37], with particular attention to surgical indications and techniques.

Table 3. BAV classifications (adapted from Michelena HI et al./European Journal of cardio-thoracic
surgery). Abbreviations; BAV, bicuspid aortic valve; BAVCon, bicuspid aortic valve consortium; LN,
left non-coronary fusion; RL, right–left fusion; RN, right non-coronary fusion.

Author Nomenclature

Roberts [36] 1970
Anterior–posterior cusps
Right–left cusps
Presence of raphe

Brandenburg et al. [38] 1983

Clock-face nomenclature:
Commissures at 4–10 o’clock with raphe at 2
o’clock (R-L)
Commissures at 1–6 o’clock with raphe at 10
o’clock (RN)
Commissures at 3–9 o’clock without raphe (L-N)

Angelini et al. [39] 1989
Anterior–posterior cusps
Right–left cusps
Presence of raphe

Sabet et al. [40] 1999

RL
RN
LN
Presence of raphe

Sievers and Schmidtke [41] 2007

Type 0 (no raphe): anteroposterior or lateral
cusps (true BAV)
Type 1 (1 raphe):
R-L, RN, L-N
Type 2 (2 raphes): L-R, RN
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Table 3. Cont.

Author Nomenclature

Schaefer et al. [42] 2008

Type 1: RL
Type 2: RN
Type 3: LN
Presence of raphe
Aorta:
Type N: normal shape
Type E: sinus effacement
Type A: ascending aorta dilatation

Kang et al. [43] 2013

Anteroposterior orientation:
type 1: R-L with raphe type; 2: R-L without
raphe
Right–left orientation:
Type 3: RN with raphe
Type 4: L-N with raphe
Type 5: symmetrical cusps with 1 coronary
artery originating from each cusp
Aorta:
Type 0: normal
Type 1: dilated root
Type 2: dilated ascending aorta
Type 3: diffuse involvement of the ascending aorta
and arch

Michelena et al. [44] 2014

BAVCon nomenclature:
Type 1: R-L
Type 2: RN
Type 3: L-N
Presence of raphe

Jilaihawi et al. [45] 2016

Tricommissural: functional or acquired
bicuspidity of a trileaflet valve
Bicommissural with raphe
Bicommissural without raphe

Sun et al. [46] 2017
Dichotomous nomenclature:
R-L
Mixed: (RN or L-N)

Murphy et al. [47] 2017

Clock-face nomenclature:
Type 0: partial fusion/eccentric leaflet?
Type 1: RN, RL, LN
partial fusion/eccentric leaflet?
Type 2: RL and RN, RL and LN, RN and LN partial
fusion/eccentric leaflet?

From this consensus statement, three BAV patterns related to the fusion of cusps
and the number of sinuses may be observed. Every pattern should be considered like a
schematic-based US short-axis scan at the base of the heart; the ideal circumference of the
aortic valve is subdivided into parts like the face of a clock, in which the points over the
watch are the coordinates of the anatomical features of the BAV.

In normal cardiogenesis, endothelium-derived nitric oxide syntethase (eNOS) ex-
pression is related to endocardial cells and is dependent upon the shear stress [48,49].
Nitric oxide is the promotor of podokinesis. In this way, cardiac jelly is populated by
endocardil cells to make endocardil cushions [50]. In a study on mice, eNOS deficency
may cause an alteration of cell migration with impairment in the development of valvular
cushions, and an alteration of the function of cardiac neural crest cells has a role in this
pathogenetic pattern [7,51].

The first pattern related to embryological events is defined as the fused bicuspid aortic
valve (Figure 1) and diagnosed in 90–95% of cases [44] and presents three subtypes defined
according to the cusps involved.
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Figure 1. Fused bicuspid aortic valve. (A) Represents short-axis normal tricuspidal aortic pattern
with anatomical proximities. Cusps’ fusion patterns seen in short heart axis: right-left coronary fusion
(B), right-non coronary fusion (C). All BAVs have three sinuses. Raphe structure is between the
fused cusps. Non-fused cusp is prominent in respect to the fused ones. The commissure angle of the
non-fused cusp has a degree < 180◦. Abbreviations: LA, left atrium; LC, left cusp; LCA, left coronary
artery; MV, mitral valve; NC, non-coronary cusp; PA, pulmonary artery; RA, right atrium; RC, right
cusp; RCA, right coronary artery; RV, right ventricule; TV, tricuspidalic valve. Licenses Centre
Cardiologique du Nord; order date 8 September 2022; order number 5384080341542; publication
NEJM; Title: Mitral valve Repair for Mitral valve prolapse.

In normal conditions, valve cushions are modelled by an excavation process resulting
in fusion of the cusps in case of process alteration [51–55]. It is possible to distinguish
three sinuses and the fusion of two of the three cusps. In contrast, the non-fused cusp
commissure has an angle of different degrees and generally is more prominent than the
fused cusps, as occurs for its sinus compared to the other two sinuses. A fibrous raphe,
a predictor of further development of AS [56] between the two fused cusps, has been
frequently observed [40,57]. The right–left cusp fusion, observed in 70–80% of patients [58]
and often associated with AS and aortic regurgitation (AR) [44], is derived from a mild
alteration in the outflow tract septation during embryogenesis and is linked to the formation
of aneurysms in every section of the aorta (aortic root, ascending aorta, aortic arch) and
frequently characterized by root dilation. An association has also been observed between
right–left cusp fusion and aortic coarctation. The right–left cusp fusion is common in
genetic syndromes, such as Turner’s one and Shone’s complex and people with Down
syndrome [59]. In 20–30% of BAV cases, a proper non-coronary cusp fusion is present, more
common among the Asian population [60] and frequently associated with AS in adults [56].

Moreover, it may be observed combined with an alteration of the process involved
in the formation of the endocardial cushion, an independent predictor of AR [61]. In
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children, this phenotype may induce a more rapid development of AS and AR [62,63]. Left
non-coronary cusp fusion is only present in 3–6% of patients [37].

The second type of BAV is referred to as the two sinuses BAV type (Figure 2).

Figure 2. Two-sinus bicuspid aortic valve. Figure represents two cusps’ non-fusion patterns seen
in the short heart axis. Aortic valves have two sinuses with two leaflets non-derived from fusion
mechanisms. (1) Coronary arteries originate from the two sinuses with two lateral leaflets. The
opened valve in systole phase has the oval-ball image. (2a) In this position, coronary arteries originate
from the anterior sinus (right coronary artery) and posterior sinus (common left stem). (2b) Right
coronary artery and common left stem both originate from anterior sinus. Abbreviations; A, anterior;
L, lateral P, posterior.

Its incidence ranges between 5 and 7% of cases [40,44,64]. In this pattern, it is possible
to identify two cusps corresponding to homologous sinuses, not depending upon fusion
but upon the abnormal embryological constitution. Typically, the cusps are the same in
size, a raphe is not present, and the aortic orifice is divided into two portions: laterolateral
(Figure 2(1)) and anteroposterior (Figure 2(2a,2b)). In the laterolateral pattern, coronary
setup is from each sinus; in the anteroposterior type, coronaries may originate from each
sinus or the anterior one. Embryological alteration involved in the laterolateral pattern is
secondary to abnormal endocardial cushion formation and positioning. The aetiology of the
anteroposterior model is due to abnormal outflow tract septation. The same mechanism in
the fused aortic bicuspid valve type is present in this second morphological pattern, but the
two-sinus valve may constitute a more severe embryological development alteration [37].

The third BAV type is a partial fusion bicuspid aortic valve (Figure 3), with an un-
known prevalence [65].

Morphological features are similar to a tricuspid valve with symmetry of the cusps,
and the aortic orifice area is less comprehensive than the normal surface. A raphe is
localized at the base of each commissure, causing a fixed portion of the cusp to the artic
wall. For this reason, this phenotype is also called form fruste aortic valve [66–68]. An
alteration of normal embryological processes may be identified. Therefore, it is assumed
that a mild defect in outflow tract septation and remodelling of aortic valve cushions
are present.
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Figure 3. Partial fusion aortic valve. Figure represents three cusps with partial leaflets fusion seen in
the short heart axis (left). In this case, the opened (right) aortic valve is similar to the normal valve
but with a more narrow area.

The above classifications (Table 3) have implications for daily clinical practice. Siever’s
classification is still the most important for diagnosis and surgical indication. The classifica-
tions with the determination of the leaflets and the fusion patterns of the commissures are
crucial for the development of aortic dilatation [69]. Even aortic valve morphology, flow
changes, and prognostic evaluation are well determined by models derived from fusion
pattern classification.

5. BAV Geometry Types and Surgical Implications

In every subtype of the previous classification, we can identify the BAV geometrical
pattern by evaluating the position of commissures related to the aortic orifice, their angle in
the coaptation zone, the presence of raphe, and the morphology and the area of the cusps.
In the fused BAV type, it is relevant to establish the relationships between the fused cusps
and non-fused cusp and the angle of the commissures of the non-fused cusps (Figure 4).

Figure 4. Symmetry of fused bicuspid aortic valve (adapted from Michelena HI et al./European
Journal of cardio-thoracic surgery). Figure represents the angles determined by aortic valve leaflets
fusion patterns. The length of raphe causes the retraction of fused leaflets and the non-physiological
coaptation of the non-fused leaflet with fused leaflets. The geometry of the three patterns can
be summarized as symmetrical, asymmetrical, and very asymmetrical The degree of the angle is
important for surgical technique.

When the two fused cusps are retracted over the raphe, AR may develop. Therefore,
the coaptation line and angle must be described mainly for surgical indications and practice.
The coaptation angle may vary from 180◦ to less than 150◦; to ensure a higher probability
of valve repair, the ideal angle should range between 180◦ and 160◦. When the angle ap-
proximates 140◦, valve sparing and repairing is more complex [70]. Pre-cardiopulmonary
bypass transoesophageal echocardiography establishes the coaptation model and commis-
sural angle.

The two-cusp fusion model, more frequent in AS, has the two cusps/two sinuses
feature, and the commissural angle is nearly close to 180◦ [37]. In partial fusion, the
commissural angle resembles the one present in the normal aortic valve.
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Surgical valve-preserving techniques are indicated by the commissural geometry of
the aortic valve, as mentioned by a recent paper that also considers the relationship of the
aortic root from the virtual basal ring (VBR) to the sinitubular junction [71].

6. Pathophysiology

Histological and hemodynamic features have a critical role in understanding BAV
development. Histological changes in the aortic wall structure may be ascribed to cystic
medial necrosis. The process involved in smooth muscle cells’ regulatory pathways is
well known. Extracellular matrix fibrillin 1, abnormally processed by smooth muscle
cells, causes the separation of smooth muscle cells from the extracellular matrix layer.
After that, MMPs are activated with consequences on the fragmentation of elastin and
cellular apoptosis, and the media tunica becomes less prone to flexibility than normal
aortic wall [72–74].

Hemodynamic implications cooperate with histological patterns in developing aor-
topathy in BAV. Biophysics may significantly confirm pathological evidence, given the
relationship between hemodynamic and histological patterns. Analysis of the flux, espe-
cially in fused bicuspid valves, helps understand the way of aortic dilation, remembering
that even a normofunctioning bicuspid valve may cause a flux alteration. A notable con-
tribution to these aspects is due to cineMR of the heart and ascending thoracic aorta [75]:
assessing the development of aortic dilation and its complications, such as the dissection,
allows for considering flux modification rather than the normal one. For this purpose,
the Wall Shear Stress (WSS), peak velocity, normalized flow displacement, and in-plane
rotational flow (IPRF) should be observed (Figure 5).

Figure 5. (A,B). Representation of morphologic chacteristic of the bicuspid aortic valve influencing
the pattern of aortopathy. The fusion pattern of the aortic valve cusps is responsible for changes
due to shear stress on the aortic wall and in the resulting flow pattern. (A) In the right–left fu-
sion model, the jet is directed towards the right anterior wall of the ascending aorta, where it
moves in a right-hand helical direction to promote dilation predominantly of the ascending aorta.
(B) In contrast, in the model characterized by a fusion of the right and non-coronary cusps, the jet is
directed towards the posterior wall of the aorta, so the model of shear stress of the wall it causes can
favor aortic expansion at the internal proximal arch. Licenses Centre Cardiologique du Nord; order
date 27 July 2022; order number 5357160571198; publication NEJM; Title: Aortic Dilatation in Patients
with Bicuspid Aortic Valve.

Given that the morphology of BAV influences WSS, this should be evaluated consider-
ing its two main axial and circumferential components. Especially in fused patterns and a
particular portion of the aorta, WSS may be incidental in aortic dilation (Figure 5). In this
case, two distinct models of aortic dilation may be identified: the tubular aortic dilation
and the root dilation. The R-L fusion type (Figure 5A) causes more WSS to the root and
the outer curvature of the proximal part of the ascending aorta with a lower influence
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upon the upper tubular portion of the aorta itself; instead, R non-cusp fusion (Figure 5B)
exerts a stronger WSS on the convexity of ascending aorta with involvement of the aortic
arch [76,77]. Moreover, WSS is also dependent on the degree of AS, given its contribution
to a more abnormal flux pattern and the consequent possibility of developing hybrid forms
of aortic dilation.

Root aneurysms may be associated with tubular aortic and arch enlargement. This
type of aortic dilation is called root phenotype extended [37,78]. Root phenotype is more
frequently associated with aortic dissection, especially in patients who have previously
undergone aortic valve replacement (AVR). This is determined by WSS and genetic fac-
tors [79]. The ascending phenotype is determined from WSS and the significant curvature
of the tubular portion, which can determine a more substantial power of WSS [80,81]. In
this context, Sigovan et al. described how the flow jet angle (FJA) and normalized flow dis-
placement (NFD) might act upon the aortic wall, causing dilation [82]. In-plane rotational
flow (IPRF), determined in MR imaging, is valuable for measuring rotation flow through a
surface. In this sense, the vorticity (ω) and circulation (Γ) are calculated by the integral of
vorticity related to a sectional area [83]. Flow volumes are registered as the time integral
of forward and backward flow measurements through the aortic surface, thus allowing
for the calculation of the systolic flow reversal ratio (SFRR) [84]. Together with biophysical
considerations, these parameters are instrumental for a deep CT and RM imaging reading.
They may be used during patients’ follow-up, especially in those for whom stratifying the
risk of developing and increasing an abnormal aortic diameter is needed. Combining these
features with risk factors control and pharmacological approach may be helpful in primary
and secondary prophylaxis of aortic dilation.

7. Imaging Diagnostic
7.1. Echocardiographic Imaging

The role of transesophageal echocardiography (TTE) in diagnosing BAV and its se-
quelae is well known [38,85–87] and mandatory in particular conditions such as AS. It has
been estimated that TTE has a sensitivity of 78%, a specificity of 96%, and an accuracy of
93% [38]. In patients with AS, ECG-gated CT is recommended.

TTE determines the morphology of the valve, the connected hemorheology, the
anatomical features of the root system, the diameter and the wall alteration of ascend-
ing aorta, and conditions like the aortic coarctation associated with BAV. In aortic root
determination, TTE allows for measuring the sinotubular junction (STJ), especially in some
aortopathy related to BAV (Figure 6).

Figure 6. TTE shows enlargement of the sinotubular junction related to R-L cusp fusion.
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It is performed using a parasternal short-axis and subcostal short-axis 2D scan, in
which the first parameter helps detect two aortic valve cusps. A long axis may be used to
investigate the doming in the systolic phase of the fused cusps.

To describe patterns in BAV classification, a short-axis 2D scan is the best US view
because it allows for detecting all the aortic orifices and characterizing cusps fusion and
position. It is helpful to determine the presence of raphe and the calcification of the
structures related to the components of the aortic valve. Furthermore, TTE, combined with
a TC scan, supports determining the relations between cusps, or the angle of commissures,
which is important for surgical methods and the width of the sinuses (Figure 7).

Figure 7. (A) TTE. Right non-coronary cusps fusion. (B) In the picture from operation theater, it is
possible to appreciate the fusion between the right cusp and the non-coronary cusp. Three sinuses
are still viewed. Commissural geometrical juxtaposition forms a 180-degree angle.

Deeping the role of the US in determining BAV features, the evaluation of the symmetry
of the fused cusps related to non-fused cusps is fundamental. Generally, the fused cusps
form a new structure that is greater and asymmetrical than the non-fused cusp, while the
sinus corresponding to the non-fused cusp is larger than the other two sinuses [88].

The valvular function should be well established since flux alterations are present in
BAV patterns. Normal functioning valves have to be studied, considering that many of
them may evolve into stenosis or regurgitation. Recognizing valves with systolic relevant
bending strain, systolic flow models [89], and transaortic fluximetry (peak velocity Doppler)
is mandatory. The left ventricular outflow tract (LVOT) is studied with a continuous
equation and generally has a larger surface than normal valves. Guidelines recommend
employing the peak systolic velocity and mean gradient where the normal ejection fraction
is registered [90].

In AR, every part of the aortic valve and STJ may be investigated. Prolapse of one
or both cusps may be observed, usually associated with dilation of the annulus and root
system [91]. TTE may contribute to determining the mechanism of regurgitation and
establishing if the valve may be repaired or not; in case of positive indication, TTE supports
the identification of repair measurements. To obtain a coaptation zone without residual
insufficiency, the commissure angle should reach not less than 160◦. It is also relevant to
determine the presence of calcification and the mobility of the cusps [86].

Furthermore, through the parasternal long-axis and short-axis images derived by TTE,
it is possible to measure the diameter of the ascending aorta segments. In particular, the
parasternal long axis may not represent the actual diameter of the aorta correctly [92],
but, since aortic diameters are orthogonal to blood flow and X-rays form a 90◦ angle with
vectors of blood flow, the CT scan is valuable in determining every single diameter in
aortic segments. Furthermore, TTE registers aortic wall measurements at the end-diastolic
phase, taking them from the leading edge to the leading edge. This technique allows for
identifying aortic enlargement related to the single patterns of BAV.
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Since there is an agreement of no greater than 2 mm between echocardiography and
CT or MR measurements (difference not more than 2 mm), TTE has a primary role during
follow-up. It may be performed every 3–5 years if the diameter is normal, every 12 months
if the diameter is 40–49 mm, and every 24 months if the stability should be assessed. In the
presence of a diameter ranging from 50 to 54 mm, TTE must be repeated every 12 months.
The function of the aortic valve should be considered for indication of surgery [93].

7.2. Cardiac Computed Tomography

Cardiac computed tomography (CCT) complements US scans in BAV diagnosis. It is
relevant in determining aortic dilation, the anatomical edges and correlation with closer
structures, and discovering other pathologies correlated with BAV, such as aortic coarctation.
Therefore, the radiological protocol is scheduled to determine those features useful for
surgeons in the act of choosing traditional surgical approach or transcatheter aortic valve
replacement (TAVR) [94] (Figure 8).

Figure 8. (A,B). CT scan in R-L cusp fusion. (A) Three sinuses are represented. (B). Opening
mechanism in fusion pattern. Abbreviations; R, right coronary cusp; L, left coronary cusp; NC,
non-coronary cusp.

In order to diagnose BAV, a 64-slice CT with a venous infusion of 50–100 mL of
iodine contrast medium is usually performed. It is helpful to evaluate both systolic and
diastolic ECG gating phases, and in the case of BAV, a true commissure or a raphe should
be determined [95]. The systolic phase shows the opening pattern of the valve and helps
to register the size of the annulus and the leaflets. In the diastolic phase, the edges of the
leaflets, their hinge to the aortic wall, the way they close the left ventricle outflow, and the
presence of calcifications on their surfaces may be evaluated; coronaries’ imaging should
also be evaluated keeping a strict monitoring of heart rate. The role of CCT in determining
coronary origin in BAV deserves special mention. Eccentricity of the ostium of the right
coronary artery is more frequent (> 20◦) than the origin of the left coronary artery. In 95.5%
of BAV patients, the obstruction of the right coronary artery is located at the border between
the right cusp and the non-coronary cusp. It is also possible to assess the right and left
cusps and the right and left coronary midlines. In 97% of BAV patients, the right and left
cusps are slightly displaced from the commissure. In 93% of BAV patients, a displacement
of less than 20◦ was noted between the right and left coronary cusps and between the right
and left coronary arteries as centered lines [96].

Virtual Basal Ring (VBR) software estimates the size and anatomical features [95],
especially the anatomical region between the plane passing across the ventricle outflow
where this muscular structure encounters leaflets nadir and STJ. The cylindrical geometrical
figure can be developed into a rectangular shape, where it is possible to identify hinge
regions, sines, and interleaflet triangles. This multiplanar reconstruction (MPR) is particu-
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larly significant for surgical technical choices. To have a correct profile of the entire valve,
aortic wall measurements should be taken by tracing curved lines in the inner surface of
the aorta.

Every BAV pattern may be localized through a CT scan given the capacity to determine
the exact anatomical coordinates as in the echocardiography. The valve orifice may be
divided into parts like a clock face, while coronary cusps and non-coronary cusps have the
same place as in the TTE.

Fusion patterns, the presence of raphe, leaflets coaptation, and commissure angles
may be identified according to the general classification [37].

A recent radiological classification considering a morphological and geometrical
approach derived from the valve, commissural orientation, and the aortic annulus shape
was developed with the help of a CT scan [97]. The elliptical index of the annulus is
measured related to the angle formed by commissure coaptation. Using this approach,
three pattern types can be identified. The first type has a low elliptical index (more circular
than the others) with a coaptation angle of 160◦–180◦. The second pattern has a moderate
ellipse eccentricity with a coaptation angle estimated between 140◦ and 159◦. Finally, the
third type has a very elliptical annulus and a commissural orientation angle of 120◦–139◦.

According to the BAV classification, aneurysm phenotypes may be identified on
CCT. The RL cusps’ fusion pattern is better linked to root dilation and the initial portion
of the tubular thoracic ascending aorta. RN cusp fusion is involved in the dilation of
ascending aorta and aortic arch. CCT enables to measure the diameter of the thoracic aorta
at different levels, the structure of the aortic wall, the presence of other aortic pathologies,
and aortic wall destabilization/intramural hematomas/dissections. The diameter should
be measured from the inner wall to the inner wall in the diastolic phase to correctly estimate
the magnitude of ascending aorta.

7.3. Magnetic Resonance

The contribution of the MR is relevant in those cases in which the echocardiography
cannot estimate the morphology of the aortic valve and root and the diameter of ascending
aorta and arch (Figure 9). It also has a complementary role in determining the aortic
wall structure and the viability of myocardial muscle. It has a main role in determining
scarry zones inside a healthy myocardium and the efficiency of cardiac chambers. EF may
be estimate with this technique. These features should be matched with other decision
elements derived from other imaging techniques to identify the proper surgical indication
and forecast the patients’ prognosis. These factors make MR more useful in clinical practice
than CT scan regarding functional evaluation [98] (Figure 9).

For hemorheological aspects secondary to BAV, MR is crucial. Time-resolved three-
dimensional phase-contrast cardiovascular magnetic resonance (CMR 4D-flow) is necessary
for optimal investigation. It allows us to study peak velocity, jet angle, normalized flow
displacement, and in-plane rotational flow [75].

Velocity measured through the plane passing along the aortic valve may be associated
with its vector figure. Ideally, the angle between the velocity vector and the valve plane
is approximately equal to 90◦. However, in the presence of BAV, this condition is altered.
Therefore, it is necessary to investigate how the velocity vector and the power vector
determined by the left ventricular ejection effort influence the blood flux and, consequently,
the impact on the aortic wall. This biophysical model considers two particular BAV patterns:
The R-L fusion causes a displacement of power against the root portion and to the convex
line of the aorta. In contrast, the R-non cusp model shows vector forces directed in the
posterior part of the ascending aorta. Interestingly, these power lines are modified in
pathological patterns relating to the normal aortic valve, assuming a wider spectrum of
action in the CMR 4D flow phase.
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Figure 9. Calcific bicuspid aorta Sievert Type 2 with fusion of the two coronary cusps for a raphe
(red arrow). The patient had a transvalvular gradient of 40 mmHg. The ascending thoracic aorta is
dilated above the Valsalva sinuses with a maximum diameter of 53 mm measured at the intersection
with the right pulmonary artery (yellow arrow).

MR also contributes to evaluating IPRF and SFRR [75] through a right-handed circular
model that describes the geometry of the flux in BAV. IPRF seems higher in R-N-cusp
than in the R-L pattern in mid and distal sections of ascending aorta [75,99–102] and has a
higher value even in BAV with the dilated aorta. Higher IPRF values in ascending aortic
aneurysm pattern than in the root pattern have also been observed. Rotational flux impacts
the circular WSS because it may be possible, in this case, for the conjunction of powers with
power vectors effort in double action on the aortic wall. SFRR has higher values in the BAV
pattern than healthy persons without no difference between R-L and RN cusp patterns.
SFRR levels are higher in ascending thoracic aorta than in the root pattern. In IPRF and
SFRR, alterations of effort vectors with alteration of WSS may be observed.

MR imaging helps determine the geometrical and biophysical ascending aorta (AA)
features. So far, the morphology of AA is connected to the diameter measure. A retrospec-
tive study [103] presented an AA segmentation from the aortic annulus to the emerging of
the brachio-cephalic vessel-specific using a 3D segmentation MR software platform to relate
the aortic vessel to an idealized cylinder. MR values in every segment were added to repro-
duce a volume pattern, and the volumetric growth index was determined by comparing
baseline and follow-up measurements.

Interestingly results highlighted a difference between diameter measure and volume
calculation. In this latter case, the growth index of the aorta was greater than diame-
ter enhancement. Volume representation is more helpful in achieving information from
every segment of the aorta than diameter measure, giving a synchronic vision of the
idealized cylinder.

AA segmentation by 4D flow MR is a unique technique employed to investigate
biophysical aortic features, such as flow rate, distensibility, local strain, and stiffness [104].
Pulse wave velocity (PWV) is determined in aortic regions from Valsalva’s sinuses to the
descending aorta (DA). The flow rate is obtained by multiplying the average velocity by the
area of a single aortic section. PWV is influenced by diameter expansion, Young’s elastic
module, and reduced elasticity (E). PWV decreases when the diameter is larger than a
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normal aorta diameter and changes when stiffness is greater in pathological patterns than
in normal situations.

8. Assessment and Treatment

The patterns of aortic involvement guide the surgical choice, and it can be classified
into three types (Figure 10).

Figure 10. (A–D). Depict patterns of bicuspid aortopathy revealing the biologic features of the aorta
and the three types of bicuspid aortopathy. The three morphological types reported provide a substan-
tial contribution to the best surgical procedure to be used for the treatment of the bicuspid aortopathy.
Licenses Centre Cardiologique du Nord; order date 27 July 2022; order number 5357160571198;
publication NEJM; title: Aortic Dilatation in Patients with Bicuspid Aortic Valve.

Type 1 (B) is the most common type involving dilatation of the tubular ascending aorta
with particular regard along its convexity, associated by varying degrees of aortic-root
dilatation. Patients who develop this type of morphology have an older age at diagnosis
(>50 years). Valvular stenosis and a preferentially RL fusion pattern are disclosed [6,90–92].
Type 2 (C) offers as typical feature an isolated involvement of the tubular ascending aorta
associated to a relative sparing of the aortic root. Frequently, the morphological type 2 can
be extended into the transverse aortic arch, and it has been associated with the presence of
the RN fusion pattern [6,63,90–92]. Finally, type 3, due to its substantial characteristics, is
called the root phenotype, and involves an isolated dilation of the aortic root (D). Its rarity
is to be underlined as well as the frequent manifestation in a younger age at diagnosis
(<40 years), in the male sex, and the occurrence of aortic regurgitation. Morphological type
3 has been referred to as the form of bicuspid aortopathy that is most likely to be associated
with a genetic cause [6,58,64].

An early diagnosis of bicuspid aortopathy is likely offered by the use of TTE [42,105–108].
Although TTE is substantially a method for assessing the morphology of the aortic root and
proximal ascending aorta, it is known that the correct visualization of the mid-distal portion
of ascending aorta and the arch may present some difficulty in adults. In these cases, both
computed tomographic (CT) and MR investigation may be offered a better visualization
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with a global evaluation of the ascending aorta. In patients who have contraindications
to CT or MR, a TTE is suitable for reaching the diagnosis [43,105,109,110]. Likewise, in
scheduling serial surveillance, it is more convenient to use MR than CT since it avoids
extensive radiation exposure. (Figure 11)

Figure 11. (A–C). Depicts representative findings on echocardiography and computed tomography
(CT). In (A), the transthoracic echocardiogram shows normal dimensions of the sinuses of Valsalva
(arrow) and a dilated ascending aorta. Ascending aorta denotes proximal ascending aorta, and LV
denotes left ventricle. In (B,C), the CT images reveal dilatation of the aortic root and dilatation of
the ascending aorta and proximal arch, respectively. Licenses Centre Cardiologique du Nord; order
date 27 July 2022; order number 5357160571198; publication NEJM; Title: Aortic Dilatation in Patients
with Bicuspid Aortic Valve.

8.1. Decision-Making Algorithm for Treatment Option

In patients suffering from bicuspid aortopathy, some risk factors, such as smoking and
hypertension, require crucial attention. From a pharmacological point of view, the recent
ACC/AHA guidelines recommend using antihypertensive drugs such as beta-adrenergic
blockers, angiotensin-converting enzyme inhibitors, and angiotensin-receptor blockers. The
use of beta-adrenergic blockers may offer the theoretical advantage of reducing the shear
stress phenomenon of the aortic wall, thus avoiding the risk of rupture [111]. Conversely,
angiotensin-receptor blockers favor decreasing the aortic growth rate in patients with
Marfan syndrome [112].

Scheduling a continuous evaluation of the aorta diameter may be indicated in patients
with bicuspid aortopathy. If the size of the aortic or ascending root aorta reaches a diameter
between 45 and 48 mm, a CT or an MR scan is recommended [43,105,108]. It is important
to emphasize that if concomitant indications exist to perform aortic valve correction or as-
sociated CABG surgery, a personalized surgical approach is evaluated considering rigorous
parameters such as the pattern of aortopathy, the perioperative risk, the skill of the surgeon,
and the experience of the referral center [109,113]. In patients in whom the lesion assumes
the main characteristic of dilation of the tubular ascending aorta, the various surgical
options are directed towards a more or less aggressive approach. The surgeon may choose
between isolated supracoronary replacement of the ascending aorta or, in patients with a
substantial aortic valve dysfunction associated with aortic root dilation, a replacement of
the aortic valve, aortic root, or ascending aorta [114–122]. The surgical approach differs
substantially in those patients who exhibit bicuspid aortopathy involving dilation of the
ascending aorta in association with an aortic arch expansion. The treatment option may
be the replacement of the aortic valve combined with the supracoronary replacement of
the ascending aorta and with the involvement of the aortic hemiarch. Again, in case of
the involvement of this distal part of the aorta, surgical treatment requires more or less
deep hypothermia with the circulatory arrest that may be associated with the use of an
anterograde or retrograde cerebral perfusion approach [114–122].

In patients with isolated aortic root involvement, the surgical option is directed to-
wards the Bentall procedure, which includes aortic valve and aortic root replacement using
a mechanical or biological composite valve conduit. A conservative surgical repair revealed
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excellent results in cases that present an ideal patho-anatomy of bicuspid aortopathy, al-
though patients must be addressed to expert referral centers [120,121,123–125]. Indication
of the combined aortic valve and ascending aorta replacement surgery should consider
nonsurgical factors integrated into the final decision-making process. Therefore, the pa-
tient’s lifestyle, the need for long-term anticoagulants, and future reproductive plans in the
case of female patients should be considered. A Ross procedure may represent the ideal
option for special populations because it uses the pulmonary autograft, which constitutes a
living tissue [111,126–130].

Patients with no indication for valve replacement and who reveal dimensions of the
aortic root or ascending aorta with a diameter ranging from 45 to 50 mm should be referred
for surgery only if they have substantial high-risk characteristics such as a family history
of aortic dissection, evidence of sudden rupture, and evidence-based imaging of an aortic
growth rate greater than 5 mm per year [115,117–119,122,131]. On the other hand, the ratio
of aortic area to body height greater than 10 cm2 per meter is also effective for patients with
short body stature [109,110,132]. If these conditions are insufficient to establish a correct
clinical evaluation, an annual reassessment of risk stratification using CT or MR should
be reconsidered.

Current ACC/AHA guidelines and the position papers of professional societies rec-
ommend a threshold of 5.5 cm and a more individualized approach. COR I and LOE
A of ACC/AHA state that in asymptomatic or symptomatic BAV patients with a diam-
eter of the aortic sinuses or ascending aorta higher than 5.5 cm, operative intervention
to replace the aortic sinuses, and/or the ascending aorta is recommended. In asymp-
tomatic patients with an aortic root or ascending aorta with a diameter ranging between
5.0 and 5.5 cm and an additional risk factor for dissection (COR 2a, LOE B-NR), surgery is
recommended [111,113,133].

In other specific clinical conditions, different approaches may be adopted. For asymp-
tomatic BAV patients with low surgical risk and a diameter of the aortic sinuses or ascending
ranging from 5.0 to 5.5 cm without additional risk factors for dissection, surgery to replace
the aortic sinuses and/or the ascending aorta may be considered if the surgery is performed
at a comprehensive valve center (COR 2b, LOE B-NR) [115,117–120,122,131,133,134]. BAV
patients who meet the criteria for replacement of the aortic sinuses may be considered
for valve-sparing surgery when the surgery is performed at a comprehensive valve cen-
ter (COR 2b LOE C-LD) [114]. European guidelines recommend the aortic replacement
in patients who experience a diameter of the aortic root or ascending aorta at 5.0 cm or
more and when patients have associated risk factors that include coarctation of the aorta,
systemic hypertension, family history of dissection, or an increase in the aortic diameter
of more than 2 mm per year [93]. International guidelines recommend ascending aortic
replacement surgery in patients with a lower threshold (aortic diameter: 45 mm) for whom
there is an indication for aortic valve surgery and when valve repair can be performed
in an expert center [93,111]. As for patients who received an AVR related to BAV disease
and presented with an aortic sinus or ascending aortic diameter greater than 4.0 cm, serial
surveillance with lifelong aortic imaging is advisable [135,136].

Finally, the Canadian guidelines recommend the surgical option for an aortic diameter
threshold that ranges between 5 and 5.5 cm, also considering the body surface and specific
patient risk factors as fundamental criteria, such as the time when the procedure is per-
formed and the nature of the elective aortic replacement [137,138]. Prophylactic surgery
is recommended for patients with a lower threshold limit of 50 mm and substantial risk
factors for developing an aortic complication, such as rapid aortic growth, concomitant
aortic valve disease, and disorders related to connective tissue or genetic syndromes. How-
ever, the prophylactic surgery option is not recommended in patients with an increased
risk of complications during surgery. Canadian guidelines assume that, since the aortic
complications represent a long-term risk that increases with time, they may be prevented if
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patients undergo elective aortic valve replacement and when aortic surgery is executed in
centers with a mortality rate less than 1% [137] (Figure 12).

Figure 12. Decision-making algorithm for the management of the bicuspid aortopathy. Abbreviations;
AVR, aortic valve replacement; CT, computed tomography; MRI, magnetic resonance imaging; TTE,
transthoracic echocardiography.

8.2. Special Populations

During pregnancy, women who experience a bicuspid aortic valve with concomi-
tant aortic dilatation may record changes in hemodynamics and the level of the tunica
media of the aorta leading to an increased risk of complications. In women who reveal
a bicuspid aortic valve associated with an aortic diameter greater than 4.5 cm, general
guidelines recommend discontinuing pregnancy. For athletes with aortic root or ascending
aortic dilatation greater than 45 mm diameter, regardless of valve dysfunction, guidelines
recommend participating in low-intensity events.

For patients who experience symptomatic BAV with severe AS, the transthoracic
aortic valve replacement (TAVR) procedure may be considered a valid alternative to AVR
after evaluation of patient-specific procedural risks, values, trade-offs, and if executed in a
comprehensive valve center (ACC/AHA; COR 2b, B-NR) [139–141]. Finally, the familiarity
with bicuspid aortic disease, such as that which occurs in the first degree of kinship, should
involve marked surveillance for early detection of an asymptomatic bicuspid aortic valve
and aortic disease [93,111,142].

8.3. Surgery in Special Population

The Ross procedure with Pulmonary Autograft (PA) is a valuable option for treating
bicuspid aortopathy in young or middle-aged patients. PA implanted in an aortic position
offers a lasting solution, especially in pregnant women [123,130,143–152]. Patients who
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underwent the Ross operation disclosed a retrieval of normal life expectancy, reaching an
excellent quality of life with a low number of valve-related complications [127–130]. The
Ross procedure is particularly recommended for women who plan pregnancy because
prolonged administration of anticoagulant drugs is not necessary [153–156]. Consequently,
the use of PA as a substitute for the diseased aortic valve has a reduced risk of developing
valve thrombosis, thromboembolism, and bleeding compared to the use of mechanical
valve prosthesis [157,158]. Furthermore, several studies revealed the superiority of the
Ross procedure over other surgical options for AVR in the long term [123,143–151,159,160];
nevertheless, ESC/ESCTS does not consider the Ross procedure as a recommendation
among surgical options (Class IIb) [93]. Conversely, AHA/ACC guidelines (COR IIb LOE
C) recommend using the Ross procedure in patients who require a replacement of the aortic
valve [66]. The guidelines support the use of PA in aortic valve and/or aortic root surgery in
specific conditions, such as patients no older than 50 years, with non-disabling comorbidity
and an aortic stenosis anatomical pattern, and with a small or normal-sized aortic ring.
Finally, an experienced surgeon should be involved in the use of pulmonary autograft in
young patients with bicuspid aortopathy when AVK anticoagulation is contraindicated
or undesirable. We are unaware of any randomized studies comparing the use of Ross
operation with cryopreserved aortic homograft for infectious BAV and it is unlikely that
such a study will be conducted. Therefore, the current recommendation for the treatment
of endocarditis in patients with BAV is based on observational data. Again, evidence from
RCTs is lacking for patients who are suitable to receive surgical treatment for a BAV and
asymptomatic for a functional or degenerative disorder of mitral valve but who have severe
mitral regurgita-tion without a left ventricular dysfunction or dilation, atrial fibrillation,
or pulmonary hy-pertension. These patients should undergo early combined mitro-aortic
surgery [160–164] (Figure 13).

Figure 13. Algorithm for patient special population selection for aortic valve replacement. Ross
procedure or conventional mechanical/biological prosthesis may be used according with interna-
tional guidelines. Abbreviations; ACC, American College of Cardiology; AHA, American Heart
Association; BAV, bicuspid aortic valve; COR, class of recommendation; ESCTS, European Society
of Cardiothoracic Surgery; ESC, European Society of Cardiology; LOE, level of evidence; TAVR,
transthoracic aortic valve replacement.
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9. Conclusions

BAV remains challenging in everyday clinics. Since patients may present a broad
spectrum of anatomy, pathophysiological, clinical, and surgical features, disease classifica-
tion is complex. A synthetic classification should help elucidate fusion patterns and the
geometry of the valve commissures to distinguish valves considered for reparation from
valves needing a classical substitution. In the diagnostic field, biophysics may be integrated
into regular clinical activity, especially for patients who have no surgical indications but
need monitoring to predict the developing enlargement and control risk factors related to
dilation velocity.

In the surgical approach, international guidelines focus on the coexistence of the
structural pathology and risk factors for aortic dissection and rupture. Therefore, in the
new clinical procedures, the alteration of valve structure and aortic enlargement should be
considered two aspects of the same disease.
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Abbreviations

ATA Ascending thoracic aorta
ACTA Alfa actine
AS Aortic stenosis
AR Aortic regurgitation
AV Aortic valve
AVK Anti-vitamin K
AVR Aortic valve replacement

AXIN
gene encodes a cytoplasmic protein, which contains a regulation of G-protein
signaling (RGS) domain and a disheveled and axin (DIX) domain

BAV Bicuspid aortic valve
CABG Coronary artery bypass grafting
CCT Cardiac computed tomography
CineMR Cine magnetic resonance
CMR 4D-flow Time-resolved three-dimensional phase-contrast cardiovascular magnetic resonance
COR Class of recommendation
CT Computed tomography
DA Descending aorta
E Young’s elastic module
EMT Epithelial–mesenchymal transition
EndMT Endothelial–mesenchymal transition
ENG Endoglin
eNOS Endothelium-derived nitric oxide synthetase
Erb Tyrosine kinase receptor
FBN 1 Fibrillin 1
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FJA flow jet angle
GATA sequence for transcription factors for zinc proteins’ binding DNA sequence
IPRF In-plane rotational flow
LOE Level of evidence
LVOT Left ventricular outflow tract
MAPK Mitogen-activated protein kinase
miRNA Micro-RNA
MMP Metalloproteinases
MR Magnetic resonance
MRI Magnetic resonance Imaging
NFD normalized flow displacement
NOTCH1 gene encoding transmembrane proteins
NOS3 nitric oxide synthase 3
PA pulmonary autograft
PDIA2 Protein disulfide isomerase family A member 2
PECAM Platelet endothelial cell adhesion molecule
PWV Pulse wave velocity
SFRR systolic flow reversal ratio
SMAD 2 similar mothers against decapentaplegic Drosophila gene 2
SNP single nucleotide polymorphism
STJ Sinotubular junction
TA Thoracic aorta
TAVR Transcatheter aortic valve replacement
TEE transesophageal echocardiography
TGF Transforming growth factor
TIMP Tissue inhibitor of matrix metalloproteinases
TTE Transthoracic Echocardiography
VSMCs Vascular smooth muscle cells
VBR Virtual Basal Ring
WSS Wall Shear Stress
Γ circulation
ω vorticity
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