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ABSTRACT

Motivation: Computational approaches for the annotation of pheno-

types from image data have shown promising results across many

applications, and provide rich and valuable information for studying

gene function and interactions. While data are often available both at

high spatial resolution and across multiple time points, phenotypes are

frequently annotated independently, for individual time points only. In

particular, for the analysis of developmental gene expression patterns,

it is biologically sensible when images across multiple time points are

jointly accounted for, such that spatial and temporal dependencies are

captured simultaneously.

Methods: We describe a discriminative undirected graphical model to

label gene-expression time-series image data, with an efficient training

and decoding method based on the junction tree algorithm. The ap-

proach is based on an effective feature selection technique, consisting

of a non-parametric sparse Bayesian factor analysis model. The result

is a flexible framework, which can handle large-scale data with noisy

incomplete samples, i.e. it can tolerate data missing from individual

time points.

Results: Using the annotation of gene expression patterns across

stages of Drosophila embryonic development as an example, we dem-

onstrate that our method achieves superior accuracy, gained by jointly

annotating phenotype sequences, when compared with previous

models that annotate each stage in isolation. The experimental results

on missing data indicate that our joint learning method successfully

annotates genes for which no expression data are available for one or

more stages.

Contact: uwe.ohler@duke.edu

1 INTRODUCTION

The use of high-throughput image acquisition, such as in pheno-

typic screens, has been quickly increasing and thus provides a

new source of data for computational biologists. Microscopy of

colored or fluorescent probes, followed by imaging, is able to

deliver spatial and temporal quantitative phenotype information

such as gene expression at high resolution (Busch et al., 2012;

Ljosa et al., 2009; Walter et al., 2010). In addition, expression

patterns can be documented and distributed over the internet as

a valuable resource to the research community. Recent advances

in throughput, or long-term investment in specific projects, have

by now generated large collections of images. Such image data-

bases are traditionally analyzed through direct inspection by

human curators; an example is the Berkeley Drosophila

Genome Project (BDGP) gene expression pattern database

(Tomancak et al., 2002, 2007). In this dataset, images are as-

signed to stage ranges within the 17 embryonic stages defined

by developmental features, and annotated collectively in small

groups using a controlled vocabulary (CV), i.e. annotation terms.

This allows researchers to search image databases and compare

spatial and temporal embryonic development.

Given the very diverse nature of imaging technology, samples

and biological questions, computational approaches have often

been tailored to a specific dataset. For example, the image-based

profiling of gene expression patterns via in situ hybridization

(ISH) requires the development of accurate and automatic

image analysis systems for using such data, to understand regu-

latory networks and development of multicellular organisms.

Images are affected by multiple sources of noise due to experi-

ments or microscopy (incomplete or multiple embryos, variance

of probes across genes, illumination artifacts), making the extrac-

tion and registration of embryos non-trivial (Fowlkes et al., 2005,

2008; Harmon et al., 2007; Keranen et al., 2006; Kumar et al.,

2002; Mace et al., 2010; Puniyani et al., 2010;). Peng and Myers

(2004) and Peng et al. (2007) introduced an automatic

image annotation framework using various high-dimensional

feature representations and classifying frameworks: Principal

Component Analysis (PCA), wavelets, Gaussian mixture

models, Support Vector Machines (SVM), Quadratic Discrimi-

nant Analysis. Each image may show the embryo under different

views: lateral, dorsal or ventral; this is a challenge for gene an-

notation, as embryonic structures may be visible in only certain

views. Yet, recent studies have shown that incorporating images

from multiple views could consistently improve the annotation

accuracy (Ji et al., 2009; Pruteanu-Malinici et al., 2011).

It is desirable to represent images in a way that takes advan-

tage of image features and offers robustness to image distortions.

In contrast to such large feature sets prone to high redundancy

and high computational costs, Frise et al. (2010) identified a set

of basic expression patterns in Drosophila. A set of 39 well-

defined clusters describing specific regions of embryo expression

were determined from 2693 lateral views of early development.

As with the majority of described approaches, this study involved

a high level of human intervention in selecting ‘good’ images for

training/testing purposes—a potential drawback, considering the

rapid increase in the size of ISH image collections. In contrast,

Pruteanu-Malinici et al. (2011) proposed a new approach for

automatic annotation of spatial expression patterns using a

‘vocabulary’ of basic patterns that involved little to no human

intervention. This work provided a flexible unsupervised frame-

work in competitively predicting gene annotation terms, while

using only a small set of features.*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

mailto:uwe.ohler@duke.edu


A particular aspect that has been largely neglected by compu-
tational approaches so far is that data acquired from such experi-

ments often span multiple time points or conditions. Phenotypes

are typically annotated stage-by-stage, without jointly learning

the salient temporal dependencies across multiple time points,

which should allow for an overall higher accuracy; e.g. the an-

notation terms predicted for earlier stages should inform the

prediction at later stages. Furthermore, many genes are anno-

tated with more than one term from the vocabulary, creating an

additional dependency structure between annotations within the

same stage range.
In this article, we address the automatic annotation of

Drosophila embryo gene expression sequences, building on

state-of-the-art models from computer vision and machine learn-
ing. There are several challenges that need to be addressed when

approaching this problem through computational methods. As

we mentioned previously, the image acquisition process results in

embryonic structures with multiple perspectives, shapes and lo-

cations. Moreover, the shape/position of the same embryonic

structure may vary from image to image: ‘variation in morph-

ology and incomplete knowledge of the shape and position of

various embryonic structures’ have made the gene annotation

task more prohibitive (Ji et al., 2008).
We first show that a non-parametric Bayesian factor analysis

(BFA) approach, the infinite factor model, allows for an efficient

and sparse feature representation of the Drosophila gene expres-

sion dataset. Then, we propose a conditional random field (CRF)

to tackle the time-evolving annotation task. Experiments show
that the exploitation of dependencies across adjacent

developmental stages leads to annotation accuracy superior to

existing Drosophila gene expression annotation approaches. The

proposed framework also tackles the missing data scenario: for

many genes, one or more stage ranges are absent from the image

collection; in such cases, human annotators would take into ac-

count the entire set of expression data from adjacent stages to

successfully annotate the available images. The challenge to auto-

matize this process is novel and represents a step closer toward a
fully automatic gene annotation pipeline. These predictions can be

later analyzed by biologists to assess the correctness of the image

acquisition and the level of interest for that particular gene.

Finally, for a given gene, the described framework predicts the

entire set of annotation terms simultaneously, taking full advan-

tage of the term dependencies that exist at the stage-range level.
The rest of this article is organized as follows: in Section 2, we

focus on data description and introduce the sparse BFA-CRF

framework. Experimental results are reported in Section 3, fol-

lowed by conclusions and future work in Section 4.

2 MATERIALS AND METHODS

2.1 Data description

One of the most popular large-image expression datasets is the BDGP

collection of embryonic expression patterns. The project started with a

first release of images for 2000 genes; the second release was in 2007 with

6000 genes. Release number 3 came in 2010 bringing the total to 7500

genes, including 97% of the sequence-specific transcription factor genes.

As of today, the collection consists of over 105000 images, which docu-

ment patterns of embryonic gene expression for over 7400 of the 13659

protein-coding genes identified in the Drosophila melanogaster genome.

Expression is visualized by RNA ISH, which provides an effective way of

locating specific mRNA sequences by hybridizing complementary

mRNA-binding oligonucleotides and a suitable dye (Tautz et al., 1989).

The mRNA expression apparent in the captured in situ images was

verified by independently derived microarray time-course analysis using

Affymetrix GeneChip technology (more details can be found at http://

insitu.fruitfly.org, and in Tomancak et al., 2002). Gene expression pat-

terns were documented by taking low (2�) and high (20�) magnification

images, at multiple developmental stages. The low-magnification digital

images were taken to capture groups of embryos, to provide a permanent

record of the hybridization in each well. Each slide was then further

examined under higher magnification using a Zeiss Axiophot optical

microscope. Images were assigned to developmental stage ranges follow-

ing the sequence of events taking place at specific times after fertilization,

using the 17 stages defined in (Campos-Ortega, 1985). In this analysis, we

focused on the first 15 hr ofDrosophila development, spanning embryonic

stages 4–6, 7–8, 9–10, 11–12 and 13–16. Developmental stages 1–3 were

skipped owing to predominant ubiquitous expression patterns not of

interest to our analysis.

Any gene is represented, on average, by approximately 12 images;

however, the number of images per gene varies from 1 to 80. This vari-

ability reflects the BDGP strategy to document highly dynamic, complex

and novel patterns, while lowering the number of images documenting

common expression patterns. Among those, there are images with non-

informative patterns due to poor-quality staining/washing or non-tissue–

specific expression (maternal or ubiquitous). Images within the same

window can show different patterns due to embryo orientation or the

relatively long developmental time spanned by a stage range. Images are

annotated with ontology terms from a CV describing developmental ex-

pression patterns (Fig. 1). This vocabulary has been developed and

refined by FlyBase (The FlyBase Consortium, 2002) over the past few

years, allowing human curators to compare their findings with expression

data assembled from the literature, expansion of annotations to greater

detail and thorough searches of datasets based on Gene Ontology

schema. The annotations used throughout this project consisted of a

subset of about 300 of the 5800 annotation terms in the FlyBase CV,

many of which only apply to later stages of development.

As mentioned previously, we use all available images in our approach,

i.e. including those taken with any embryo orientation: lateral, dorsal and

ventral. Before extracting features, we segmented and registered images

using a previously described probabilistic segmentation approach based

on statistical shape models (Mace et al., 2010). This provides us with

240� 120 pixel images, mostly containing a single embryo in a standard

dorsal(up)/anterior(down) orientation and no background. In Figure 1,

we show a particular gene expression pattern across five developmental

stage ranges of interest. The complexity and variability of the image data

led to competitive but not perfect results, in terms of precise embryo

extraction as well as embryo orientation, which increased the challenge

of automatic gene annotation.

We here use the average intensities in a down-sampled fixed grid size of

80� 40 pixels as input features for the entire collection of images within

the BDGP dataset.

2.2 Feature extraction—sparse BFA

Sparse Bayesian factor analysis (sBFA) is a statistical method for model-

ing many dependent random variables through linear combinations of a

few hidden variables (Gorsuch, 1983). This model is designed to address

the high-dimensional setting where hundreds or thousands of genes are

simultaneously examined. The sparsity assumption is the key feature in

our model that allows us to scale stable and accurate inference to a large

number of images/genes represented by many image input features.

For high-dimensional models, sparsity helps prevent sampling errors

from swamping out the true signal in data, leading to stable parameter

estimates. In our framework, sparsity implies that each image/gene is
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affected only by a few underlying estimated factors, and as a result, many

of the mixing weights in the model will be (near) zero.

The sparse Bayesian factor model was derived using the following

matrix representation:

X ¼ ASþ E ð1Þ

where X¼ [x1, x2. . . xn] is a p� n dimensional data matrix, with n the

number of features, quantifying the associated gene-expression values for

p images (genes) under consideration. Each row of X is called a gene

pattern with dimension 1� n. Here, we assume that each gene pattern

is already normalized to zero mean. A is the factor loading matrix with

dimension p�k, which contains the linear weights. S is the factor matrix

with dimension k� n, with each element modeled by a standard normal

distribution. Each column of S is the factor score for feature i (i¼ 1, 2, . . . ,

n) and each row is called a factor. E is the additive Gaussian noise with

dimension p� n. Both A and S are inferred by the model simultaneously.

From the model we can see that each row of X is modeled by a linear

combination of the factors (rows of S), indicating that the variability of

the original p feature patterns can be explained by only k latent factors.

The model can also be written in vector form as follows:

xj ¼ ajSþ "j ðj ¼ 1, 2, :::, pÞ ð2Þ

where xj and aj denote the j
th row of X and A, respectively, and the basis

matrix S is shared across all samples. Indeed, factor analysis is an un-

supervised dimensionality reduction method used widely in data analysis

and signal processing (Prince et al., 2008).

To impose the sparsity required by the underlying biological assump-

tion where spatial gene expression patterns are modeled only by a few

domains (factors), we used the Student-t distribution, which consists of a

Gaussian distribution and a Gamma prior on the precision parameter.

The sparseness is directly controlled by the precision parameter �j,m; the

objective of imposing sparseness is to automatically shrink most elements

in A near zero. The updating equations, along with a full description of

the sparse factor model used in this manuscript can be found in Pruteanu-

Malinici et al. (2011).

For an extension of our previous work, which largely focused on

two developmental stage ranges only, the number of factors (k) for

every developmental stage range needed to be determined in an ideally

unbiased fashion. For this, we used an adaptive Gibbs sampler, which

automatically truncated the loading and factor matrices through an

adaptive selection of the number of important factors. This sparse

Bayesian infinite factor model, first introduced by Bhattacharya and

Dunson (2011), obviates the need for pre-specifying the number of

factors; the effective number of factors (here denoted by k*) is

chosen such that the contribution from adding additional factors is

negligible. This approach has been shown to produce accurate esti-

mates of the true effective number of factors k*; the adaptation of

the Gibbs sampler occurs every 10 iterations at the beginning of the

Markov chain but decreases in frequency exponentially fast, so as to

satisfy the diminishing adaptation condition in Theorem 5 of Roberts

and Rosenthal (2007). More specifically, the decreasing frequency is

modeled as an exponential

pðtÞ ¼ expð�0 þ �1tÞ ð3Þ

at the tth Gibbs iteration with �0 and �1 chosen so that adaptation occurs

every 10 iterations initially but then decreases in frequency exponentially

fast. The loadings matrix is adaptively modified by monitoring the

Fig. 1. Examples of Drosophila embryo ISH images and associated annotation terms (BDGP database) for gene Actn (FBgn0000667), across five

developmental stage ranges. The dark blue stained regions highlight areas where genes are expressed; darker colors correspond to higher gene expression

levels
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columns with all elements within some pre-specified small neighborhood

of zero. For some iterations, columns may be discarded or a new column

could be simply added to the matrix; the remaining parameters of the

model are modified accordingly. The parameters of the factors (in the

case of adding some) are estimated from their prior distribution to fill in

the necessary values.

2.3 Conditional random fields

Probabilistic graphical models such as Bayesian networks and random

fields are increasingly popular choices for statistical modeling of complex

biological relationships. Although Bayesian networks provide a viable

solution for directed acyclic relationships where the direction of causality

can be easily identified, undirected graphical models offer a clear advan-

tage for highly connected relational structures that are not simple chains

or trees. Among undirected models, CRFs (Lafferty et al., 2001) have

proven to be among the most powerful predictors owing to their inher-

ently discriminative (rather than generative) nature.

In a CRF, the observable variables (X¼ {Xi}) and unobservable vari-

ables (Y¼ {Yi}) are treated separately, with the unobservables globally

conditioned on the observables. The relationships among the unobserv-

ables are modeled via an undirected graph G¼ (Y,E), in which the Yis are

the nodes (vertices), and edges E � Y�Y are pairs (Yi, Yj); the edges

serve to denote direct non-independence relations between pairs of Yis. In

particular, a node Yi is taken to be conditionally independent of all other

nodes Yj, given the immediate neighbors NG of Yi in the graph:

PðYijfYk6¼igÞ ¼ PðYijNGðYiÞÞ ð4Þ

for NG(Yi)¼ {Yj6¼ij(Yi, Yj)2E}.

The well-known Hammersley–Clifford theorem (Hammersley and

Clifford, 1971) provides a means of computing conditional densities via

decomposition of the graph into cliques. In particular,

PðY Xj Þ ¼
1

ZðXÞ
e

P

I2cliquesðGÞ

�I�IðYI,XÞ

ð5Þ

where YI denotes the nodes in clique I, and Z(X) is a normalizing con-

stant; it is assumed that P(Y)40 for all possible joint assignments to Y.

�I is called the potential function for clique I; in practice, these are often

pooled among like-sized cliques. Because cliques larger than some rea-

sonable size N are typically ignored, modeling is accomplished by choos-

ing a suitable set {�1, �2, . . . �N} of potential functions for different

clique sizes; the �is and any additional parameters of the �’s can be

trained discriminatively via cross validation.

Exact inference with a CRF is tractable if the graph can be converted

into a chain or a tree. To this end, a junction tree can be obtained by

collapsing tight clusters of nodes into meta-nodes and extracting a max-

imal spanning tree from the resulting structure (Jensen et al., 1990;

Lauritzen and Spiegelhalter, 1988). The sum–product algorithm (Pearl,

1988) can then be applied to propagate local densities across the tree,

permitting exact computation of posterior probabilities for joint or indi-

vidual value assignments to nodes in the graph, or identification of the

maximum a posteriori assignment; for linear-chain CRFs, these are analo-

gous to the well-known Forward–Backward and Viterbi algorithms for

hidden Markov models (Rabiner, 1989).

To infer the presence or absence of specific annotation terms for indi-

vidual embryo images, we constructed a CRF structured as shown in

Figure 2. Each node Yi denotes the status of an annotation term:

Yi¼ 1 means present (the annotation term applies to the image), Yi¼ 0

means absent (the annotation term does not apply). Columns correspond

to developmental stages. All of the nodes in a column are directly con-

nected via an edge to all nodes in adjacent columns (blue lines). Within a

column, the nodes are connected in a linear chain (i.e. each node has

exactly 1 or 2 neighbors within the column), with the order of the chain

chosen so as to maximize the total mutual information between all

adjacent pairs in the chain; this maximization was carried out via a stand-

ard traveling-salesman heuristic in Matlab. Each column was constrained

to include only the most popular annotation terms in the training parti-

tion (for more details, see Results). The sparse image factors (previous

section) were included as observables Xi; the Xis were specific to each

column, and numbered from k¼ 57 to k¼ 160, depending on develop-

mental stage, with later stages having more factors.

We defined potential functions for cliques of size up to 2:

�1(Yi, X)¼�1 log P(XjYi), and �2(Yi, Yj, X)¼ �2 log P(Yi, Yj), where

P(Yi, Yj) is a multinomial and P(XjYi) is a multivariate Gaussian with

diagonal covariance, both trained by simple counts (maximum likeli-

hood) from the training partition during cross validation (see Results).

Coefficients �1 and �2 were estimated by maximizing the training-parti-

tion classification accuracy via simple hill climbing. �1 we refer to as the

node potential, as it is associated with single-node cliques, and �2 we refer

to as the edge potential, as it is associated with two-node cliques (individ-

ual edges in the graph).

3 RESULTS

In this section, we describe the application of a sparse BFA-CRF
framework for automatic time-course gene expression pattern

annotation. Our procedure starts by extracting sparse meaning-
ful features (sBFA) from the entire collection of Drosophila em-

bryos, suitable for downstream temporal analysis based on a
conditional-random-fields approach. We then use the estimated

factor loadings as observed variables in the CRF framework, so

as to infer most likely annotation terms for previously unseen
images.

3.1 Factor inference/decomposition of expression patterns

The BDGP collection divides early embryogenesis of Drosophila

into six developmental stage ranges, 1–3, 4–6, 7–8, 9–10, 11–12,
13–16, and most of the CV terms are stage-range specific. As

mentioned previously, we skipped stage range 1–3 owing to lack
of informative images, as well as a low number of annotation

terms associated to it. We applied the sBFA model to the entire
set of images from the five stage ranges of interest. These

spanned thousands of images (Table 1), with each stage being
annotated by a set of 40–150 annotation terms. To illustrate the

potential of the sBFA for decomposing expression patterns into
meaningful features, we show selective estimated factors from

developmental stages 9–10. The model began with the set of
5929 embryo images and estimated the loadings and factor

matrices while having full control of the degree of sparsity
(throughout our analysis, the sparsity on the factor loading

matrix A was controlled by a scale parameter of the Gamma

prior distribution on the precision parameter �, h0¼ 10�6).
Figure 3 illustrates a selection of the estimated factors that, per

ensemble, correspond to lateral, dorsal and ventral views,
demonstrating the ability of the model to automatically extract

distinct patterns for different embryo orientations. As mentioned
in ‘Materials and Methods’ section, the number of factors was

determined in an unsupervised fashion, for every developmental
stage range, using the sparse Bayesian infinite factor model. The

estimated number of factors can be found in Table 2; in addition,
we compared these findings with an empirically determined esti-

mation akin to Pruteanu-Malinici et al., 2011. As illustrated in
Table 2, the range of factors is similar for both scenarios: fully

unsupervised (infinite factor models) or estimated by underlying
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biological assumptions (generate and test). A convergence check

on the estimated number of factors for two randomly chosen

stage ranges is illustrated in Figure 4. Similar to the sBFA ana-

lysis, the Bayesian infinite factor model was run for 6000 Gibbs

iterations, discarding the first 1000 and estimating the model

parameters on the remaining 5000 iterations.
The feature extraction/selection process was followed by filter-

ing non-informative (such as ubiquitous) gene expression pat-

terns. Using Euclidean distances between estimated sparse

factor analysis weights and a null vector as reference, we sepa-

rated informative images from the non-informative ones (for a

full description see Pruteanu-Malinici et al., 2011). We success-

fully removed 2.6–9% non-informative images (Table 1).

3.2 Large-scale annotation of time-course expression

patterns

In evaluating the performance of the sBFA-CRF framework, we

used the estimated sparse loadings/features only on the set of

genes in common between all five stage ranges of interest and

a repertoire of annotation terms from a CV. The most popular

annotation terms were independently selected for each stage

range, to cover �85% of the entire set of genes. This resulted

in a set of 1807 images and 48 annotation terms distributed as

follows: 14 terms for stage range 4–6, 8 terms for stage range 7–8,

9 terms for stage range 9–10, 9 terms for stage range 11–12 and 8

terms for the last stage range 13–16 (Table 1).
To assess the relative utility of various parts of our model, we

determined the prediction accuracy of the full model compared

with versions of the model handicapped in various ways. In par-

ticular, we considered including (in separate experiments) the

following sets of edges in the CRF:

� Relationships across adjacent stage ranges and within stage

ranges (between annotation terms): blue and green lines in

Figure 2 (full model, scenario A).

� Relationships across adjacent stage ranges only: blue lines in

Figure 2 (scenario B).

� Relationships within stage ranges only: green lines in

Figure 2 (baseline, scenario C).

Fig. 2. CRF framework used for the automated annotation of time-course Drosophila embryo ISH images. Nodes correspond to annotation terms, and

edges denote relationships. The order of the annotation terms within a given stage range was determined using a standard traveling–salesman heuristic in

Matlab

Table 1. Statistics of the images from the BDGP database before and after the filtering process

BDGP image statistics Stage

range 4–6

Stage

range 7–8

Stage

range 9–10

Stage

range 11–12

Stage

range 13–16

Original number of images 9484 5744 5929 13 737 19 784

Number of images after filtering process 8722 5227 5523 13 245 19 269

Number of images shared across 1807 genes in common 6610 4615 4468 9315 11 111

Number of annotation terms 14 8 9 9 8

Note: The annotation terms represent a fraction of the total CV; for any given stage range, they cover �85% of the total number of genes of interest, being frequent enough to

show statistical significance.
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For example, when images are annotated for individual stage

ranges in isolation, the relationships indicated by the edges be-

tween adjacent stages are ignored. Two examples of Drosophila

expression pattern images across time are shown in Figure 5: we

are interested in modeling the edge potentials between develop-

mental stage ranges, as well as those between annotation terms

within each stage range.
Annotation accuracy was computed as a global measure,

across all annotation terms and stage ranges, by comparing the

ground truth (human curated labels) with the sBFA-CRF pre-

dictions. As previous methods had largely focused on the anno-

tation of individual stage ranges, one term at a time, and are

largely trained on heavily curated benchmark data rather than

the whole BDGP dataset, a fair comparison to these approaches

was not feasible. To put our approach into context, we therefore

compared the results generated by the sBFA-CRF framework

with our own recent binary Support Vector Machines (SVM)-

based classification system described in Pruteanu-Malinici et al.

(2011). We had previously shown that this approach provides

competitive and often superior classification results compared

with the best competing approaches, even when working with

the full BDGP image data instead of ‘cleaned’ benchmarks.
Our previous method used independent SVM classifiers for

each annotation term and stage range, disregarding relationships

within and between adjacent stage ranges. This resulted in lower

annotation accuracy, as shown in Table 3. The SVM results are

comparable with the new CRF baseline scenario, which only

considers edge potentials between annotation terms within the

same stage range (both models simply ignore any temporal/tran-

sition information that might improve the overall accuracy). The

advantage of using the edge potentials between adjacent stage

ranges translates into an absolute increase of 3–4% in accuracy

(i.e. a relative reduction of the error rate of420%). All models

were applied to the same set of 1807 images, using 10-fold cross

validation; mean values across five runs are shown.

3.3 Missing-data annotation analysis

In addition to improved gene annotation accuracy, the sBFA-

CRF framework provides an elegant means of annotating

images in missing-data scenarios. During CRF decoding, the

most likely configuration of the model (i.e. values of the unob-

servables, Y) is computed using relationships between adjacent

stage ranges, as well as within each stage range. In the case of

missing data, the most likely state for a given node Yi with no

directly related observables X is estimated entirely through rela-

tionships in the random field. This allows us to infer annotation

terms for missing images, which is of utmost importance in scen-

arios where, for a given gene, data have been collected for only a

subset of the stage ranges.
In evaluating the performance of the sBFA-CRF model in

annotating missing data, we manually removed 5–25% of

images from the 1807 gene set, by randomly selecting genes

and removing their corresponding images; for missing images,

the node potentials were set to 1. Results are shown in Figure 6,

where the model included edge potentials between adjacent stage

ranges, as well as within stage ranges (CRF scenario A); we were

able to annotate with 80% or better accuracy even for scenarios

with 25% missing data. Remarkably, our model outperforms the

SVM classification framework (which had access to full data)

even when 15% of the data are withheld from the sBFA-CRF.

Figure 7 illustrates particular cases with genes that are correctly

annotated, for stages where their images were missing. As previ-

ously mentioned, this is of particular interest to biologists who

require predictions for stages where images have not yet been

collected. Our results confirm that the proposed time-course

pipeline leads to highly successful expression pattern classifica-

tion, despite the presence of uninformative images, registration

errors and missing data in considerable amounts.

Lastly, we compared the sBFA-CRF predicted labels to the

human curated ones (the ground truth), so as to identify genes

and annotation terms for which the annotations were different

but the outcome from our model appeared consistent. We

Fig. 3. Selected factors, estimated from a total of k¼ 80 factors and a

grid size of 80� 40 (developmental stage range 9–10). Different back-

ground colors are an artifact and not part of the model

Table 2. Comparison of the number of estimated factors in the BDGP set

Method Stage range 4–6 Stage range 7–8 Stage range 9–10 Stage range 11–12 Stage range 13–16

Generate and test k¼ 60 k¼ 100 k¼ 100 k¼ 150 k¼ 150

Infinite factor models k¼ 57 k¼ 60 k¼ 80 k¼ 140 k¼ 160

Note: First row corresponds to number selection based on biological prior knowledge followed by generate-and-test procedures. Second row shows the estimated number of

factors, fully unsupervised (the infinite BFA).
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recognize that for the same annotation term, the corresponding

regions in different images may have significant variations in

visual appearances, which would lead to a difficult manual an-

notation task and could sometime generate ambiguous out-

comes. We show three examples for which the sBFA-CRF

annotations are opposite from the human curated ones and are

likely correct given the full context (Fig. 8). For all three scen-

arios, we confirmed our findings with the BDGP human

curators. Arguably, the model was correct in predicting differ-

ent annotation terms in the following examples, including gene

FBgn0003502, where human curators initially decided that

expression in ‘procephalic ectoderm AISN’ is not detected for

stage range 4–6; however, the sBFA-CRF predicted label,

as well as a second careful visual inspection, would suggest the

contrary. In addition, we identified another instance where ‘ven-

tral ectoderm anlage’ should have been annotated for gene

FBgn0022073 in stage range 7–8. The last scenario (gene

FBgn0033988) corresponds to a case where all images are ex-

tremely difficult to annotate owing to out-of-focus staining

issues or overall noise. On a second inspection, the model was

arguably correct in labeling the annotations for both stage ranges

4–6 and 9–10.

4 CONCLUSIONS

We have described a novel sBFA-CRF model to automatically

annotate Drosophila embryo gene-expression time-course data.

Fig. 4. Convergence of the estimated number of factors for two developmental stage ranges (7–8 and 11–12): 5000 Gibbs iterations

Fig. 5. Drosophila embryonic gene expression across six stage ranges. Images can display different embryo orientations due to the relatively long

developmental time spanned by a stage range. Using the edge potentials between adjacent stage ranges, as well as within stage ranges, translates into a

significant increase in annotation accuracy

Table 3. Summary of annotation accuracy

Annotation

accuracy analysis

CRF

scenario (A)

CRF

scenario (B)

CRF

scenario (C)

SVM

Mean annotation

accuracy

86.75 85.69 82.93 83.32

Note: sBFA-CRF and SVM models: mean annotation accuracy, over 5N-fold cross

validation runs (N¼ 10). Scenario (A) includes relationships between adjacent stage

ranges and within stage ranges; scenario (B) considers only relationships between

adjacent stage ranges; scenario (C) models only relationships within stage ranges

(baseline). For the SVM model, we used independent classifiers for each annotation

term and stage range.
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The sparse BFA framework represents an efficient feature selec-

tion technique, which automatically determines the feature-space

dimension, using a non-parametric implementation. The learned

features are then used as observed variables in the CRF frame-

work, so as to infer most likely annotation terms for previously

unseen images. The CRF encodes temporal relationships be-

tween adjacent stage ranges throughoutDrosophila development.

By capturing the temporal sequence, the model is able to predict

the entire collection of annotation terms in a single run and

achieves superior performance when compared with highly com-

petitive models that annotate stages in isolation. In addition to

improved annotation accuracy, the experimental results demon-

strate the success of the method in handling missing-data scen-

arios. This is extremely useful in real-life scenarios when

estimates are needed over the ensemble of annotation terms,

with only partial data being collected.

One promising extension to our approach would be to include

‘latent’ annotation terms in the CRF structure, to account for

additional rare annotation terms for which we would not attempt

to obtain a prediction. These latent terms could have limited con-

nectivity in the graph, so as to allow large numbers of latencies to

be included without compromising decoding efficiency. Such an

extension may well improve prediction accuracy for the primary

terms, even if the latent terms are themselves difficult to accur-

ately predict (due to paucity of training data for those terms). It

would also increase the flexibility of the resulting model: while we

currently select the primary annotation terms manually based on

their popularity among genes in a given stage range, a simple

threshold on the number of genes being annotated, together

with an appropriate means of ranking terms, would allow to

automatically partition the primary versus latent sets. Based on

our experience with the BFA-CRF model described here, add-

itional work along these lines seems promising.
Finally, we are continuing to develop this approach in close

collaboration with biologists so as to suggest outliers or interest-

ing patterns during the anticipated expansion of the BDGP col-

lection to the whole Drosophila genome. We plan to incorporate

the sBFA-CRF framework into a Fiji plug in (Schindelin et al.,

Fig. 7. Missing-data gene annotation analysis. Shaded boxes indicate the stage range for which data were missing (we manually removed those images).

In two cases, the entire set of annotation terms is correctly annotated within the stage range despite the fact that no images were available (third and sixth

rows). In these two scenarios, the CRF used the relationships across adjacent stages, to estimate the most likely configuration. A selection of the correctly

and incorrectly annotated terms for the stage range with missing data are shown in the last two columns

Fig. 6. Annotation accuracy results for missing data scenarios. The accuracy values were computed as global measures, across the entire set of 1807

genes. For each case, we randomly selected 5–25% of the complete gene set and removed their corresponding images, so as to simulate missing data

scenarios. The green bar indicates the annotation accuracy for the full dataset scenario (previous analysis); the red bar corresponds to the SVM analysis
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2012)—a gene annotation tool that would accurately assign an-
notation terms to new/unseen images, in a timely manner.
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