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Simple Summary: Clear cell sarcoma (CCSA) is a rare subtype of soft tissue sarcoma characterized by
EWSR1 rearrangement and subsequent MET upregulation. The European Organisation for Research
and Treatment of Cancer 90101 phase II trial evaluated the MET inhibitor crizotinib in CCSA but
resulted in only sporadic responses. The aim of this exploratory study was to identify the molecular
alterations potentially relevant for the treatment outcome by using archival CCSA samples and
trial-related clinical data. We characterized MET signaling and revealed an infrequent activation of
MET, which may explain the lack of response to crizotinib in the disease cohort. Based on sequencing
analyses, we discovered copy number alterations, mutations and dysregulated pathways with
potentially predictive or prognostic values for patients’ outcomes. This work describes the molecular
heterogeneity in CCSA and provides deep insight into the biology of this ultra-rare malignancy,
which may potentially lead to better therapeutic approaches.

Abstract: Clear cell sarcoma (CCSA) is characterized by a chromosomal translocation leading to
EWSR1 rearrangement, resulting in aberrant transcription of multiple genes, including MET. The
EORTC 90101 phase II trial evaluated the MET inhibitor crizotinib in CCSA but resulted in only
sporadic responses. We performed an in-depth histopathological and molecular analysis of archival
CCSA samples to identify alterations potentially relevant for the treatment outcome. Immunohisto-
chemical characterization of MET signaling was performed using a tissue microarray constructed
from 32 CCSA cases. The DNA from 24 available tumor specimens was analyzed by low-coverage
whole-genome sequencing and whole-exome sequencing for the detection of recurrent copy number
alterations (CNAs) and mutations. A pathway enrichment analysis was performed to identify the
pathways relevant for CCSA tumorigenesis. Kaplan–Meier estimates and Fisher’s exact test were
used to correlate the molecular findings with the clinical features related to crizotinib treatment,
aiming to assess a potential association with the outcomes. The histopathological analysis showed
the absence of a MET ligand and MET activation, with the presence of MET itself in most of cases.
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However, the expression/activation of MET downstream molecules was frequently observed, sug-
gesting the role of other receptors in CCSA signal transduction. Using sequencing, we detected a
number of CNAs at the chromosomal arm and region levels. The most common alteration was a
gain of 8q24.21, observed in 83% of the cases. The loss of chromosomes 9q and 12q24 was associated
with shorter survival. Based on exome sequencing, 40 cancer-associated genes were found to be
mutated in more than one sample, with SRGAP3 and KMT2D as the most common alterations (each
in four cases). The mutated genes encoded proteins were mainly involved in receptor tyrosine
kinase signaling, polymerase-II transcription, DNA damage repair, SUMOylation and chromatin
organization. Disruption in chromatin organization was correlated with longer progression-free
survival in patients receiving crizotinib. Conclusions: The infrequent activation of MET may explain
the lack of response to crizotinib observed in the majority of cases in the clinical trial. Our work
describes the molecular heterogeneity in CCSA and provides further insight into the biology of this
ultra-rare malignancy, which may potentially lead to better therapeutic approaches for CCSA.

Keywords: clear cell sarcoma; molecular analysis; CREATE; crizotinib

1. Introduction

Clear cell sarcoma (CCSA) is an ultra-rare subtype of soft tissue sarcoma (STS) that
accounts for approximately 1% of all STS cases [1,2]. This disease has a strong tendency
toward local recurrence and diffuse distant metastasis and is characterized by a profound
resistance to chemo- and radiotherapy [3–5]. CCSA is often diagnosed in the extremi-
ties but can occur in any part of the body [6]. Approximately 90% of CCSA harbor a
t(12; 22)(q13; q12) translocation causing an Ewing sarcoma breakpoint region 1/activating
transcription factor-1 (EWSR1/ATF1) rearrangement, resulting in the aberrant activation
of microphthalmia-associated transcription factor (MITF) [7,8]. MITF activates the tran-
scription of multiple genes, including MET, and the subsequent overexpression of the
receptor tyrosine kinase (RTK) MET, which is suggested as a potential target for CCSA
treatment [9,10].

A prospective phase II trial, European Organization for Research Treatment of Cancer
(EORTC) 90101 “CREATE”, evaluated the oral MET/ALK/ROS1 inhibitor crizotinib in
patients with CCSA [11]. The activity of this agent was assessed in MET-positive and
MET-negative cases, where the MET status was defined by fluorescence in situ hybridiza-
tion (FISH), detecting EWSR1 rearrangements in at least 15% of the tumor cells. This trial
demonstrated that crizotinib provided some clinical benefits in patients with locally ad-
vanced or metastatic CCSA but did not meet its primary endpoint (overall response rate),
as only one partial response was observed among 26 evaluable patients. This suggests that
other factors may contribute to the oncogenesis and progression of CCSA in addition to
MET upregulation.

It has been reported that EWSR1 rearrangement is required for MET expression
and that MET inhibition could decrease CCSA cell growth in vitro [10]. The molecular
epidemiology of the MET status (expression and activation) is poorly described in the
literature. The associated molecules involved in MET signaling, such as the MET ligand
hepatocyte growth factor (HGF), can possibly have an impact on the function of MET in
CCSA. Additionally, other molecular event can possibly influence the response to crizotinib,
including MET amplification or mutations, and bypass the signaling pathways [12]. MET-
addicted non-small cell lung cancer (NSCLC) with high-level MET amplification and MET
exon 14 alterations is known to be sensitive to treatment with crizotinib, while the presence
of secondary MET mutations is described as a potential resistance mechanism [13,14].
Similar phenomena may play a role in the sensitivity of CCSA to crizotinib.

We performed an in-depth histopathological and molecular analysis of archival CCSA
tumor materials from patients who participated in the CREATE trial, based on tissue
microarrays (TMA) constructed from leftover tissue. Using immunohistochemistry and



Cancers 2021, 13, 6057 3 of 19

high-throughput sequencing, we characterized the relevant molecules in the MET-signaling
pathway and assessed the copy number changes and mutational profiles, with the aim to
identify potentially predictive/prognostic biomarkers and novel therapeutic targets for
this rare cancer.

2. Material and Methods
2.1. Immunohistochemical Characterization of the MET-Signaling Pathway

A total of 36 formalin-fixed and paraffin-embedded (FFPE) tissue samples from pa-
tients with CCSA were available and had been archived in a central biorepository (BioRep,
Milan, Italy). The diagnosis of CCSA was centrally confirmed as part of the clinical trial.
Thirty-two of the tumor blocks were used to construct a TMA with 1.5-mm triplicate cores
per case [15]. A series of TMA sections were used for immunohistochemical character-
ization of the MET pathway-related molecules [16]. Commercially available antibodies
against MET, GRB2-associated-binding protein 1 (GAB1), mitogen-activated protein ki-
nase (MAPK), protein kinase B (AKT), ribosomal S6 kinase (S6) and their phosphorylated
(activated) forms, as well as MITF and HGF, were used for immunohistochemistry (IHC).
Optimized conditions and source of the antibody are listed in Table S1. Stained TMA slides
were subsequently scanned and evaluated blindly by an investigator (CJL) using an Olym-
pus BX43 microscope and cellSens software (Olympus, Tokyo, Japan). The analysis was
done according to the scoring intensity: negative, weakly positive, moderately positive and
strongly positive. Cores with more than 80% of the tissue section absent after processing
were considered unevaluable. For cases with more than one available core on the TMA, the
mean of the scoring was recorded as the final result.

2.2. Low-Coverage Whole-Genome Sequencing

DNA was extracted from 24 archived FFPE tumor samples having a quality acceptable
for libraries preparation. Illumina® HiSeq4000 (Illumina, San Diego, CA, USA) was used
for sequencing at a low coverage (±0.1×). Raw sequencing reads (50 bp) were mapped
to the human reference genome (GRCh37/hg19 version) using Burrows-Wheeler Aligner
(BWA v0.5.8 a, Massachusetts Institute of Technology, Cambridge, MA, USA) and sorted
with SAMtools (v0.1.19, Massachusetts Institute of Technology, Cambridge, MA, USA).
Picard tools were used to remove duplicates. QDNASeq and ASCAT were used to count
and segment the aligned reads in bins of 50 kb [17,18]. The Genomic Identification of
Significant Targets in Cancer algorithm (GISTIC, Broad Institute, Cambridge, MA, USA)
was used to identify the most frequent and significant chromosomal alterations. A region
was considered deleted if the log value was <−0.1, while it was amplified if the log value
was >0.1. The Benjamini–Hochberg method was used to correct for multiple testing, and
significant CNAs with a cut off q-value < 0.25 were selected [19]. CNAs were defined as
a broad (arm level) event if the alterations were spanning >75% of a chromosomal arm,
while alterations spanning <75% were considered as focal CNAs (region level).

2.3. Whole-Exome Sequencing

Libraries prepared for low-coverage whole-genome sequencing were enriched for
exomic sequences using the SeqCapV3 exome enrichment kit (Roche, Basel, Switzerland)
following the manufacturer’s instructions. They were sequenced on HiSeq4000 using a
flow cell, resulting in 2 × 150-bp end reads that were further mapped and sorted, and the
duplicates were removed as described above. Next, base recalibration, local realignment
and single-nucleotide variant calling were performed with the Genome Analysis Tool
Kit (GATK, Broad Institute, Cambridge, MA, USA). Dindel was used for calling small
insertions and deletions (indels). Mutations with a coverage <10× or a quality score <30 for
substitutions or <50 for indels were discarded. Since no germline samples were available,
a strict filtering strategy was applied based on publicly available databases to exclude
the common single-nucleotide polymorphisms. Mutations occurring in large databases
(ESP, 1 kg, ExAC) with an allelic frequency >0.001, as well as mutations occurring in
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smaller, appropriate databases (bitsTrio, inhouseDB, cg69 and GoNL), were removed if they
occurred in more than one individual. The Cancer Gene Consensus (CGC) set, developed
by the Catalogue of Somatic Mutations in Cancer databases (COSMIC v89, Wellcome Trust
Sanger Institute, Cambridge, UK), was applied for a further analysis to include genes
that have been implied in cancer [20]. We also used PolyPhen-2 (Harvard University,
Cambridge, MA, USA) to predict the possible impacts of amino acid substitutions on the
structures and functions of protein products [21], and this analysis was supplemented
by VarSome (Saphetor, Lausanne, Switzerland) if the mutations were not analyzable by
PolyPhen-2 [22]. Visualization of the mutations was performed using MutationMapper
(cBioPortal, Memorial Sloan Kettering Cancer Center, New York, NY, USA) [23]. To assess
the clinical applications of the mutated genes, we used the Drug Gene Interaction Database
(DGIdb, Washington University School of Medicine, St. Louis, MO, USA) to predict the
potential druggability [24].

2.4. Pathway Enrichment Analysis

To identify the pathways that were significantly dysregulated in CCSA, we conducted
a pathway enrichment analysis using g:Profiler (University of Tartu, Estonia) to identify
disrupted pathways enriched in the list of mutated CGC genes that were detected by WES.
The g:Profiler is a tool combining bioinformatic and statistic methods to pick up pathways
where the genes present in the dataset are significantly enriched or overrepresented, as
compared to all the genes in the genome [25]. All pathways were tested for enrichment
in the gene list based on Reactome (European Molecular Biology Laboratory, European
Bioinformatics Institute, Hinxton, UK), one of most common databases for the investigation
of molecular pathways [26]. Pathways with minimum sizes of 5 genes per set were
considered for the analysis. The significance was computed using Fisher’s exact test
and multiple test correction. Pathways with q-values < 0.01 were considered significant.
Visualization was done by using EnrichmentMAP, AutoAnnotate and the Markov Cluster
algorithm (Bader Lab, University of Toronto, ON, Canada) in a Cytoscape v3.7.2 (Institute
of Systems Biology, WA, USA) environment [27,28].

2.5. Clinical Outcome and Statistical Analysis

The response to crizotinib was evaluated using Response Evaluation Criteria in Solid
Tumors (RECIST v1.1), as previously reported [11]. A total of 26 patients were assessable
for the primary endpoint: an objective response, according to RECIST v1.1 [29]. For the
purpose of the current translational project, patients with at least a stable disease (SD) as
the best response were defined as having achieved disease control, while patients with
a RECIST progressive disease (PD) were defined as non-responders. Progression-free
survival (PFS) and overall survival (OS) were available as secondary endpoints from
the clinical trial. Fisher’s exact test was used to test whether the response groups were
significantly enriched for certain alterations. Kaplan–Meier estimates with the log-rank test
were used to assess the correlation between the molecular findings and patient survival.
For the correlation between survival and the expression of MET-related molecules, the
tumors from the patients were grouped as having low (negative or weakly positive) or high
expression (moderately or strongly positive) based on the intensity of the IHC staining.
A statistical analysis was performed using GraphPad Prism v7 (GraphPad, CA, USA) and
SPSS v27 (IBM, NY, USA). p values < 0.05 were considered significant.

3. Results
3.1. Patient Cohort

Archival tumor material was available from 34 out of 36 CCSA patients enrolled in
EORTC 90101. These samples included 30 MET-positive tumors according to the protocols,
three MET-negative and one unevaluable for MET status. Among 26 out of the 34 eligible
patients in the trial, only one achieved a partial response (PR), and 17 had SD as the best
response to crizotinib by RECIST 1.1. PD was the best response in 8 cases. Six patients
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were treated but did not reach the primary end point, and two cases were not treated [11].
The biological materials obtained from 34 cases included 21 primary tumors, 12 metastatic
lesions and one unknown disease status. The male-to-female ratio in this subset was 1.8,
and the median age at diagnosis was 41 years (range 17–62). The median OS and PFS were
8.3 and 3.5 months, respectively. Among the 34 available samples, 32 were included in the
TMA, and 24 underwent sequencing. The clinicopathological variables for each case are
summarized in Table 1.

3.2. Immunohistochemical Characterization of MET Signaling

To explore the expression and activation of MET and related molecules involved in
RTK signaling, we performed IHC using TMA constructed from 32 cases. A series of TMA
slides were successfully stained with antibodies against MITF, HGF, (p)MET, (p)GAB1,
(p)MAPK, (p)AKT and (p)S6, with evaluable rates from 88% to 100% per staining. MITF
expression was observed in 78% of the samples, including three MET-negative cases, while
expression for HGF and MET was found in 16% and 82% of the samples, respectively.
To assess the activation of the MET receptor, two phosphorylated MET sites (Tyr1234
to 1235 and Tyr1349) were evaluated, showing immunopositivity in 4% and 50% of the
cases, respectively. The downstream-signaling molecules and their phosphorylated forms
were positive in most of the cases, apart from phosphorylated AKT i.e., GAB1 (100%),
pGAB1 (100%), MAPK (100%), pMAPK (79%), AKT (97%), pAKT (53%), S6 (97%) and
pS6 (74%). Notably, 20%, 43% and 24% of the cases expressing MAPK, AKT and S6 were
absent for the phosphorylated form, suggesting a dominance of MAPK and S6 activation
in CCSA. The immunoreactivity for each molecule is summarized in Figure 1 and Table S2.
Representative examples of the immunohistochemical analysis of MET-related molecules
can be found in Figure S1.
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Figure 1. Overview and summary for immunohistochemical characterization of the MET-signaling pathway in clear cell
sarcoma. The heatmap presents an overview for the expression profile of MET pathway-related molecules in 32 cases. The
expression level was determined by the mean of the staining intensity among the cores per case.
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Table 1. CCSA patient characteristics, treatment outcome and availability of the archival tumor tissue used in this exploratory study.

Study
SeqID

Gender/
Age (Years)

Origin of
Tested Material

MET Status (EORTC 90101
Protocol) Best Response

(RECIST)
Progression Status

on Crizotinib
PFS

(Months)
Survival

Status
OS

(Months)
Exploratory

Study
Status FISH (% Positive Cells)

5 M/28 P MET+ nd not reached Progression 0.7 Dead 0.7 IHC

12 F/55 P MET+ 70 SD Progression 2.6 Dead 2.6 IHC + Seq

13 M/33 P MET− 10 PD Progression 2.2 Dead 12.1 IHC + Seq

20 M/38 Meta MET+ 90 PD Progression 1.4 Dead 4.4 Seq

21 M/22 P MET+ 61 PD Progression 1.1 Dead 2.1 IHC

23 M/55 P MET+ nd SD Progression 2.8 Dead 14.5 IHC + Seq

25 M/29 Meta MET+ 71 SD Progression 4.3 Dead 7.6 IHC

32 M/44 P MET+ 59 SD Progression 4.3 Dead 7.6 IHC + Seq

35 M/52 Meta MET+ 71 SD Progression 9.0 Dead 10.8 IHC + Seq

36 M/29 Meta MET+ 85 SD Progression 8.3 Dead 21.7 IHC + Seq

49 F/23 Meta MET+ 71 PD Progression 0.8 Dead 1.4 IHC

52 M/40 P MET+ 40 PD Progression 0.8 Dead 4.4 IHC + Seq

57 F/38 Meta MET+ 86 SD Progression 4.8 Alive 14.5 IHC + Seq

60 F/54 P MET+ 73 not reached Progression 9.2 Dead 9.2 IHC + Seq

68 M/44 P MET+ 87 SD Progression 5.5 Dead 16.8 IHC + Seq

69 M/43 P MET- 0 SD Progression 4.2 Alive 20.7 IHC + Seq

72 F/41 Meta MET+ 85 SD Progression 2.7 Dead 8.5 IHC

81 M/32 P MET+ 81 SD Progression 11.3 Dead 11.3 IHC

91 M/57 P MET+ 23 PD Progression 1.4 Dead 7.6 IHC
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Table 1. Cont.

Study
SeqID

Gender/
Age (Years)

Origin of
Tested Material

MET Status (EORTC 90101
Protocol) Best Response

(RECIST)
Progression Status

on Crizotinib
PFS

(Months)
Survival

Status
OS

(Months)
Exploratory

Study
Status FISH (% Positive Cells)

101 M/17 P MET+ 31 not reached Progression 1.5 Dead 1.5 IHC + Seq

106 nd P MET+ 75 not treated nd nd Alive nd IHC + Seq

112 F/56 P MET+ 78 PR No progression 30.6 Alive 30.6 IHC + Seq

115 F/30 P MET+ 92 SD No progression 26.3 Alive 26.3 IHC + Seq

121 M/33 Meta MET+ 96 SD Progression 7.7 Dead 14.0 IHC + Seq

123 M/50 P MET+ 84 SD Progression 9.6 Dead 15.4 IHC + Seq

124 F/31 P nd nd not reached Progression 0.8 Dead 0.8 IHC

126 F/47 Meta MET+ 67 SD Progression 2.8 Dead 8.1 IHC + Seq

127 nd P MET+ 68 PD Progression 1.4 Alive 1.4 Seq

135 M/50 P MET+ 73 SD Progression 5.1 Dead 9.4 IHC + Seq

141 F/49 Meta MET+ 72 not reached Progression 2.4 Dead 2.4 IHC + Seq

144 F/28 n/a MET+ 60 not reached Progression 0.9 Dead 0.9 IHC

145 M/62 Meta MET+ 34 PD Progression 1.6 Dead 8.0 IHC

146 M/56 Meta MET+ 71 SD Progression 9.1 Dead 9.1 IHC + Seq

147 nd P MET− 0 not treated nd nd Alive nd IHC + Seq

+: positive, −: negative, F: female, FISH: fluorescent in situ hybridization, IHC: immunohistochemistry, M: male, Meta: metastatic lesion, nd: no data, OS: overall survival, P: primary tumor, PD: progressive
disease, PFS: progression-free survival, PR: partial response, RECIST: Response Evaluation Criteria in Solid Tumors, SD: stable disease and Seq: sequencing.
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3.3. Global CNA Profile in CCSA

To reveal the CNA profile in CCSA, we performed low-coverage whole-genome
sequencing and a GISTIC analysis allowing the detection of recurrent regions affected
by CNAs in 24 assessable samples. A number of the chromosomal arm-level (broad
events) and regional-level (focal events) regions affected by CNAs were detected. The most
frequent arm-level CNA was a gain of chromosome 8q, which was present in 16 out of
24 (67%) cases. Other broad events detected were the gain of 7q (38%), 7p (33%), 1q (29%),
6p (25%) and 8p (25%), with frequent losses of 9p (54%), 19q (38%), 9q (33%), 17q (33%),
19q (33%), 10p (29%) and 10p (25%) (Figure 2A). Furthermore, focal CNAs were detected
at 17 loci (10 regions gained and seven deleted). An overrepresented focal copy number
gain was observed at 8q24.21 (83%), followed by 8q11.23 (67%), 1q32.1 (42%), 12q15 (38%),
5q12.1 (29%), 12q13.13 (25%), 3q29 (17%), 11p15.1 (17%), 11q13.1 (17%) and 2q22.3 (8%).
The recurrent losses were at 9p21.3 (63%), 9p21.2 (63%), 10q26.3 (63%), 11q24.1 (42%),
12q24.33 (29%), 22q12.2 (29%) and 14q24.3 (25%) (Figure 2B). The CGC genes involving
regions affected by focal CNAs are listed in Table 2.

Cancers 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

12q24.33 (29%), 22q12.2 (29%) and 14q24.3 (25%) (Figure 2B). The CGC genes involving 
regions affected by focal CNAs are listed in Table 2. 

 
Figure 2. Global copy number alteration profile in clear cell sarcoma. The recurrent alterations were 
identified at the (A) broad and (B) focal levels in 24 cases. Colored peaks represent gains/losses by 
broad (chromosome arm) or focal (region) events; the threshold of significance is a q-value < 0.25; 
numbers in parentheses represent the % of samples affected by copy number alterations. 

Table 2. List of the most frequent focal copy number alterations with affected cancer-related genes in 24 clear cell sarcomas. 

Altered Cytogenetic Band Region (Start–End)  Genes from Cancer Gene Consensus Set (COSMIC v89) Q Values * # Samples (%) 
+8q24.21 113375001–142524999 EXT1, MYC, RAD21, NDRG1, FAM135B, CSMD3 0.008 20 (83.3%) 
+8q11.23 51325001–55724999 TCEA1 0.034 16 (66.7%) 
−9p21.3 2825001–28874999 CDKN2A, JAK2, MLLT3, NFIB, PTPRD, PSIP1, CD274, PDCD1LG2 0.003 15 (62.5%) 
−9p21.2 23825001–30424999  0.002 15 (62.5%) 
−10q26.3 129875001–135534747 MGMT, DUX4 0.119 15 (62.5%) 

−11q24.1 114575001–135006516 
CBL, DDX6, FLI1, KCNJ5, MLL, PAFAH1B2, ARHGEF12, BCL9L, 

FOXR1 
0.000 10 (41.7%) 

+1q32.1 203825001–205524999 MDM4 0.061 10 (41.7%) 
+12q15 70225001–70674999  0.008 9 (37.5%) 
+5q12.1 58075001–59674999  0.201 7 (29.2%) 

−12q24.33 70775001–133851895 
ALDH2, BCL7A, BTG1, POLE, PTPN11, PTPRB, CLIP1, TBX3, 
HNF1A, NCOR2, SH2B3, SETD1B, CHST11, ZCCHC8, USP44 0.199 7 (29.2%) 

−22q12.2 29775001–31074999 NF2 0.015 7 (29.2%) 
+12q13.13 51875001–52874999  0.176 6 (25%) 

−14q24.3 68175001–107349540 
AKT1, HSP90AA1, RAD51B, TSHR, TCL1A, TRIP11, GOLGA5, 

DICER1, BCL11B 
0.194 6 (25%) 

+3q29 195775001–198022430 TFRC 0.176 4 (16.7%) 
+11p15.1 19475001–20224999  0.203 4 (16.7%) 
+11q13.2 66325001–67924999  0.203 4 (16.7%) 
+2q22.3 145025001–146074999  0.208 2 (8.3%) 

* Regions affected by copy number alterations were selected from the GISTC analysis with a q-value < 0.25 as the cut-off. 
#: number. 

Figure 2. Global copy number alteration profile in clear cell sarcoma. The recurrent alterations were identified at the
(A) broad and (B) focal levels in 24 cases. Colored peaks represent gains/losses by broad (chromosome arm) or focal (region)
events; the threshold of significance is a q-value < 0.25; numbers in parentheses represent the % of samples affected by copy
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Table 2. List of the most frequent focal copy number alterations with affected cancer-related genes in 24 clear cell sarcomas.

Altered Cytogenetic Band Region (Start–End) Genes from Cancer Gene
Consensus Set (COSMIC v89) Q Values * # Samples (%)

+8q24.21 113375001–142524999 EXT1, MYC, RAD21, NDRG1,
FAM135B, CSMD3 0.008 20 (83.3%)

+8q11.23 51325001–55724999 TCEA1 0.034 16 (66.7%)

−9p21.3 2825001–28874999 CDKN2A, JAK2, MLLT3, NFIB,
PTPRD, PSIP1, CD274, PDCD1LG2 0.003 15 (62.5%)

−9p21.2 23825001–30424999 0.002 15 (62.5%)

−10q26.3 129875001–135534747 MGMT, DUX4 0.119 15 (62.5%)

−11q24.1 114575001–135006516
CBL, DDX6, FLI1, KCNJ5, MLL,

PAFAH1B2, ARHGEF12,
BCL9L, FOXR1

0.000 10 (41.7%)

+1q32.1 203825001–205524999 MDM4 0.061 10 (41.7%)

+12q15 70225001–70674999 0.008 9 (37.5%)

+5q12.1 58075001–59674999 0.201 7 (29.2%)

−12q24.33 70775001–133851895

ALDH2, BCL7A, BTG1, POLE,
PTPN11, PTPRB, CLIP1, TBX3,

HNF1A, NCOR2, SH2B3, SETD1B,
CHST11, ZCCHC8, USP44

0.199 7 (29.2%)

−22q12.2 29775001–31074999 NF2 0.015 7 (29.2%)

+12q13.13 51875001–52874999 0.176 6 (25%)

−14q24.3 68175001–107349540
AKT1, HSP90AA1, RAD51B, TSHR,
TCL1A, TRIP11, GOLGA5, DICER1,

BCL11B
0.194 6 (25%)

+3q29 195775001–198022430 TFRC 0.176 4 (16.7%)

+11p15.1 19475001–20224999 0.203 4 (16.7%)

+11q13.2 66325001–67924999 0.203 4 (16.7%)

+2q22.3 145025001–146074999 0.208 2 (8.3%)

* Regions affected by copy number alterations were selected from the GISTC analysis with a q-value < 0.25 as the cut-off. #: number.

3.4. Mutational Landscape of CCSA

To assess the mutational landscape of CCSA, the DNA used for the CNA analysis was
also subjected to whole-exome sequencing. We sequenced them at an average coverage
of 77.2× and detected a total of 6181 mutations with an average of 258 mutations per
sample (range 156–473). Among all the alterations detected, 4201 were no-synonymous mu-
tations, including 3548 missense, 134 nonsense mutations and 519 insertions and deletions
(indels). For further analysis, we focused on the genes that were previously documented
in the CGC set. A total of 105 CGC genes affected by 211 mutations, with the average
of nine (range 3–22) per case, were identified, and 40 of them were found to be mutated
in more than one case. Only 22 altered genes (SRGAP3, KMT2D, NIN, TSC2, CACNA1D,
WRN, AFF1, CREBBP, CYLD, DAXX, DICER1, FBXW7, GNA11, MAP2K1, MAP3K13,
ITK, MN1, NOTCH1, RBM15, SH2B3, TBX3 and UBR5) displayed damaging mutations
(PolyPhen-2 or VarSome) in more than one case. The proportion of mutations, including
those with damaging phenotypes, is presented in Figure 3A. In the analyzed cohort, the
mutations in SRGAP3 and KMT2D were the most common alterations (in four cases). SR-
GAP3 encodes a product inhibiting Rho GTPase Rac1 and interacts with actin remodeling
proteins to regulate the cytoskeleton [30]. KMT2D plays a critical role in epigenetic regu-
lation and may have an impact on development, differentiation, metabolism and tumor
suppression [31]. We also detected two cases with MET mutations (p.S548L) located in
the plexin–semaphorin–integrin (PSI) domain. However, this mutation was predicted
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to be non-pathognomonic. Figure 3B presents the positions and types of mutations in
SRGAP3, KMT2D and MET. Among the genes mutated in more than one case, we identified
16 potentially druggable genes (CACNA1D, PTPRC, FAT1, CREBBP, MAP2K1, MAP3K13,
ITK, NOTCH1, KIT, NCOR2, TRRAP, FGFR3, LRIG3, MET, MLH1 and PLCG1) using DGIdb.
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The y-axis represents the number of cases with nonsynonymous mutations, and the x-axis represents mutated genes. The
gray-scale-colored column serves as the number of cases with damaging mutations. (B) The lollipop plots map the mutations
in SRGAP3, KMT2D and MET on a linear protein sequence and their domains (colored boxes). The y-axis represents the
number of cases with mutations, and the x-axis represents an amino acid sequence of mutated genes. The colored codes of
the mutation diagram circles represent different mutation types (green: missense and brown: indels).

3.5. Gene Alteration Landscape and Pathway Enrichment Analysis in CCSA

Next, we combined the molecular findings in this study cohort, aiming to explore the
disease biology beyond EWSR1 rearrangement. An overview of the molecular alterations
detected in the analyzed cohort is summarized in Figure 4. Furthermore, we performed a
pathway enrichment analysis to allocate the mutated CGC genes to predefined pathways
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(Reactome), focusing on the identification of significant dysregulations at the pathway level.
Subsequently, five clusters involving 22 significantly disrupted pathways were identified,
including PI3K-AKT signaling; polymerase II transcription; DNA damage and mismatch
repair (MMR); SUMOylate target proteins (reversible posttranslational modification by
small ubiquitin-like modifiers) and chromatin organization-modifying enzymes (histone
modification, DNA modification and transcription) (Figure 5). The overrepresented terms
of the disrupted pathways are listed in Table S3. To better understand how MET signaling
was dysregulated, we compared the expression profiles of the activated molecules involved
in MET signaling with genomic alterations in the RTK-related pathways detected in CCSA.
We found that the RTK-, ERBB2- and GFR-signaling pathways were altered in 13, 6 and 14
out of 21 comparable cases, and only one case presented activated MAPK and S6 in the
absence of activated MET or genomic alterations in these signaling pathways (Figure S2).
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Figure 4. An overview of the genetic alteration landscape and crizotinib-related clinical data in
24 clear cell sarcomas. On the top, the clinical data of each patient is listed, ordered based on their
response to crizotinib. Genomic regions, as well as genes (cancer consensus gene-associated and
common cancer susceptibility genes) affected by recurrent copy number alterations and mutations,
are ranked according to the frequency.
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Figure 5. Pathways disrupted by mutations in the CGC set, identified in clear cell sarcoma, revealing dysregulations in
receptor tyrosine kinase signaling, polymerase II transcription, DNA damage and mismatch repair, SUMOylation damage
and chromatin organization-modifying enzymes. Red-coded nodes represent the significantly dysregulated pathways, and
the significance is determined by the intensity of the color. The size of the node indicates how many genes are documented
in each pathway. The edges represent the associations between the pathways, and the thickness is used to present the
associated level.

3.6. Association between Molecular Findings and Clinical Features Related to Crizotinib Treatment

To identify the potential prognostic factors, we correlated the molecular findings with
the clinical parameters, including the disease status, OS, PFS and response to crizotinib. In
the immunohistochemical analysis, the Kaplan–Meier estimates showed that the activation
of MAPK was associated with longer OS (p = 0.046) (Figure 6A). In the genomic analysis,
the loss of chromosomes 9q and 12q24.33 was associated with shorter OS (p = 0.02) and
PFS (p < 0.01), respectively (Figure 6B). We also observed more often copy number gains of
chromosomes 1q (5/8 vs. 2/16, p = 0.02), 7p (6/8 vs. 2/16, p = 0.005) and 7q (7/8 vs. 2/16,
p < 0.001) in metastatic lesions compared to the primary tumors, though they were not
associated with patient survival. Figure 6C demonstrates the association between chro-
matin organization deficiency (disrupted pathways involving histone modifications, DNA
modifications and transcriptions) with prolonged PFS (p = 0.025). We tried to perform a
more advanced statistical analysis to support our oberservation. However, we were not
able to obtain conclusive results due to the disease cohort being of a small sample size and
with limited clinical data.



Cancers 2021, 13, 6057 13 of 19Cancers 2021, 13, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 6. Survival curves for the correlation between the molecular findings and clinical features related to crizotinib 
treatment. (A) Kaplan–Meier estimates for different levels of immunoreactivity divided by low (negative and weakly pos-
itive) and high (moderately and strongly positive) expressions. Overall survival is compared between high and low ex-
pressions of phosphorylated MAPK. (B) Overall survival and progression-free survival for cases with different copy num-
ber alteration statuses of chromosomes 9q and 12q24.33. (C) Progression-free survival for cases with and without altera-
tions in chromatin organization. 

4. Discussion 
CCSA is known as a translocation-associated sarcoma that is associated with EWSR1-

rearrangements, leading to aberrant MET expression [32]. Crizotinib is a MET inhibitor 
and was therefore tested in a prospective phase II trial, EORTC 90101 CREATE, in patients 
with this ultra-rare entity. The results from this trial suggested that MET may not be the 
most relevant or only target for therapy in CCSA [11]. Little is known about the biology 
of this disease. Therefore, we aimed to characterize the molecular alterations in CCSA 
using archival tumor samples (n = 34) collected in the context of the clinical trial. The re-
current alterations were further analyzed and correlated with the treatment outcome, with 
the aim of identifying the therapeutic targets and potential predictive/prognostic bi-
omarkers. The results of this work were a comprehensive analysis of the genomic land-
scape of CCSA including an in-depth analysis of MET signaling in this rare malignancy. 

EWSR1–ATF1 fusion has been proven to upregulate its transcriptional target of the 
MITF melanocytic transcription factor, leading to subsequent MET overexpression in 
CCSA [8]. Since a MET inhibitor crizotinib was tested in the “CREATE” trial, we were 
interested in the role of the MITF-MET-signaling pathway in the crizotinib response. 
Therefore, we characterized the MITF-MET-signaling pathway in 32 CCSA cases. Inter-
estingly, two cases without EWSR1 rearrangement showed MITF expression, while no 
MITF expression was detected by IHC in seven specimens with altered EWSR1, suggest-
ing that not all EWSR1-rearanged cases induce MITF overexpression. As previously 

Figure 6. Survival curves for the correlation between the molecular findings and clinical features related to crizotinib
treatment. (A) Kaplan–Meier estimates for different levels of immunoreactivity divided by low (negative and weakly
positive) and high (moderately and strongly positive) expressions. Overall survival is compared between high and low
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alterations in chromatin organization.

4. Discussion

CCSA is known as a translocation-associated sarcoma that is associated with EWSR1-
rearrangements, leading to aberrant MET expression [32]. Crizotinib is a MET inhibitor
and was therefore tested in a prospective phase II trial, EORTC 90101 CREATE, in patients
with this ultra-rare entity. The results from this trial suggested that MET may not be the
most relevant or only target for therapy in CCSA [11]. Little is known about the biology of
this disease. Therefore, we aimed to characterize the molecular alterations in CCSA using
archival tumor samples (n = 34) collected in the context of the clinical trial. The recurrent
alterations were further analyzed and correlated with the treatment outcome, with the aim
of identifying the therapeutic targets and potential predictive/prognostic biomarkers. The
results of this work were a comprehensive analysis of the genomic landscape of CCSA
including an in-depth analysis of MET signaling in this rare malignancy.

EWSR1–ATF1 fusion has been proven to upregulate its transcriptional target of the
MITF melanocytic transcription factor, leading to subsequent MET overexpression in
CCSA [8]. Since a MET inhibitor crizotinib was tested in the “CREATE” trial, we were inter-
ested in the role of the MITF-MET-signaling pathway in the crizotinib response. Therefore,
we characterized the MITF-MET-signaling pathway in 32 CCSA cases. Interestingly, two
cases without EWSR1 rearrangement showed MITF expression, while no MITF expression
was detected by IHC in seven specimens with altered EWSR1, suggesting that not all
EWSR1-rearanged cases induce MITF overexpression. As previously reported, CCSA with
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EWSR1-CREB1 rearrangement had little or no melanocytic signatures (absence of MITF)
compared to those with common fusion involving ATF1 [33]. It might explain the counterin-
tuitive observation in our cohort, and we cannot exclude other fusion partners in our subset
of CCSA, which should be confirmed with additional analyses. Next, MET expression
was seen in three cases without MITF expression, while three cases presenting MITF had
no MET expression. This suggests that MET upregulation could be MITF-independent in
some cases. For instance, MET upregulation can also result from other mechanisms, such
as AP1-enhancing transcription and eIF-mediated translation [34].

Under physiological conditions, MET activation requires the presence of its ligand
HGF. In our study, a relatively low frequency of HGF expression (16%, weak or mod-
erate positivity) and MET phosphorylation at Tyr1234–35 (tyrosine kinase domain, 4%)
was observed, while 50% of the cases were positive for MET phosphorylation at Tyr1349
(C-terminal). At the same time, the downstream signaling pathway was found activated in
a majority of the cases, as illustrated by frequent and strong positivity for pGAB1 (97%) and
pMAPK (79%). These findings suggested the presence of other activating mechanisms in
CCSA. Several RTKs (e.g., EGFR, RON and others) engaged with their ligands could trans-
activate MET and the subsequent signaling in an HGF-independent manner [34–36], which
may explain the cases with MET Tyr1349 phosphorylation in the absence of HGF. Among
these membrane molecules, the association between EGFR and MET has been studied in
more detail. Activated EGFR was reported to transactivate MET undergoing subsequent
signaling and/or directly transduce the MAPK-signaling pathway via GAB1 [36,37]. There-
fore, the role of EGFR in CCSA should be further explored. Nevertheless, a high frequency
of S6 activation (74%) was observed in our cohort, suggesting mTOR activation, which is
also supported by a previous research article [38]. That may indicate the potential utility of
mTOR inhibitors in CCSA. Our comprehensive characterization of MET signaling provided
information that can be useful for the development of novel treatment strategies; however,
we did not find clear associations with the outcome on crizotinib.

Using low-coverage whole-genome sequencing, we detected recurrent CNAs in
24 CCSA samples, where a gain of chromosome 8q (67%) was the most common broad
alteration. Similarly, a number of individual cases harboring gains of chromosome 8q were
found in previous studies [7,39], indicating that this alteration and the genes located in this
region might be important oncogenic drivers for the development of CCSA. Furthermore,
the most commonly affected regions were a gain of 8q24.21 (83%) and loss of 9p21.3 (63%),
where MYC and CDKN2A are located, respectively. Ozenberger et al. recently reported
MYC amplifications and CDKN2A deletions as recurrent CNA in 13 CCSA cases and
demonstrated that MYC overexpression contributes to tumorigenesis in this disease [40].
Aberrant MYC (gain) and CDKN2A (loss or mutation) have been frequently detected in
various human cancers, including melanoma [41–43]. Interestingly, CCSA was previously
(mis)classified as a “malignant melanoma of soft parts”, because it shares similar clinico-
pathological and molecular profiles with melanoma [3,44,45]. It is possible that aberrant
MYC also contributes to CCSA sarcomagenesis and could be a selective target for this entity.
A recent study has demonstrated the antitumor activity of small molecule MYC inhibitors
(MYCi361 and MYCi975), resulting in suppressed tumor growth and tumor sensitization
to immune checkpoint inhibition in vivo [46]. For these reasons, MYC should be further
investigated in the evolution of this disease, which may refine the therapeutic strategies
for CCSA.

For the first time, we detected recurrent alterations using WES in CCSA, discovering
mutations in SRGAP3 (p.D48E, p.K442R and p.R864W) and KMT2D (p.Q791E, p.G1218R,
p.Q3607_Q3612dup and p.Q3918_Q3920del) in 17% of the analyzed cases as the most
common alterations. These mutations, apart from KMT2D p.Q791E, were bioinformatically
predicted as damaging events. The product of SRGAP3 has been identified as having
a tumor-suppressive role through the negative regulation of RAC [47], suggesting the
presence of a dysregulated Rho GTPase pathway in CCSA. KMT2D transcript plays an
important role in histone methyltransferase [48]; the detection of recurrent KMT2D muta-
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tions may implicate epigenetic dysregulation in the disease biology of CCSA. Although
the functionality of these mutations has not been fully clarified, mutations in SRGAP3 and
KMT2D have been detected and considered relevant in a variety of sarcomas, including
angiosarcoma, endometrial stromal sarcoma and alveolar rhabdomyosarcoma [49–53]. The
investigation of these genes in CCSA is warranted and can be carried out through func-
tional experiments (e.g., loss of function bioassay). Furthermore, compared to previously
described activating MET mutations located in the tyrosine kinase domain [54], the MET
mutations (p.S548L) detected in our cohort occurred at the PSI domain that is responsible
for positioning the binding site between the ligand and receptor [55]. The biological impact
and clinical relevance of mutations in this domain are still unknown but are computation-
ally predicted as nondamaging, implying that the MET mutation we detected is unlikely to
be an activating mutation and irrelevant for the response to crizotinib.

To broaden the scope of molecular findings, we applied a pathway enrichment analysis
to systematically explore mutated CGCs, hopefully identifying overrepresented pathways
that are disrupted in CCSA. Our findings indicated that CCSA-associated alterations might
be actively involved in transcriptional regulation, SUMOylation, RTK signaling and chro-
matin organization and modification, as well as MMR. It is not surprising that some of
these pathways have already been related to CCSA, such as transcriptional regulation
and RTK signaling [8,10]. Furthermore, MMR-related protein MSH6 has previously been
tested and was found to be absent in two out of 9 (22%) CCSA cases (one of which showed
microsatellite instability) [56,57]. In our cohort, MMR dysregulation was observed in 6 of
24 (25%), which is in-line with the literature and indicates a potential contribution of MMR
in a subset of CCSA cases. A further investigation of the tumor mutational burden should
be considered to confirm this hypothesis. Additionally, we compared the immunohisto-
chemical findings in MET signaling with the genomic alterations enriched in RTK-related
pathways in CCSA. In the cases without MET activation, the RTK-related pathways were
found disrupted in all but one case, indicating that genomic alterations may serve as
alternative mechanisms that contribute to the activation of MET-downstream molecules in
a ligand-independent manner. For instance, the TSC2 mutations that were detected in three
cases in our cohort were known to result in mTOR activation [58]. However, we cannot
exclude the presence of other molecular mechanisms (e.g., epigenetic, transcriptional and
translational regulation) that could regulate MET signaling. To sum up, we discovered
disease-associated pathways and paved the way for further exploration of the pathogenesis
of CCSA.

In the correlative analysis, we identified a number of associations between the molec-
ular findings and clinical features (e.g., disease status, OS and PFS). The histopathological
correlations revealed that a high-level expression of activated MAPK was significantly
associated with a better OS, suggesting that MAPK is a favorable predictive marker for
crizotinib treatment. However, we should not overestimate the significance of this finding
because of the very small sample size. Next, the copy number gains of chromosomes 1q,
7p and 7q (arm level) were seen more frequently in metastatic CCSAs as compared to
the primary tumors, suggesting their potential roles in disease progression, which is also
consistent with literature, revealing the association between copy number changes and
disease recurrence in various human cancers [59,60]. Recent findings have discovered novel
oncogenes on chromosome 7 (e.g., GTF2IRD1 and PEG10) associated with progression in
other cancer types [61,62]. The survival analysis highlighted that the loss of 9q and 12q24.33
was associated with poor survival, while chromatin organization deficiency was correlated
with longer PFS. As previously reported, the loss of 12q24.33 is an independent predictor
of poor PFS in dedifferentiated liposarcoma [63]. Alterations such as KMT2D deficiency in
chromatin organization have been identified as a favorable prognostic marker in small cell
lung cancer, and its potential role to enhance the activity of antitumor treatment in pancre-
atic adenocarcinoma has been shown [64,65]. To the best of our knowledge, we report here
for the first time the potential biomarkers with predictive values for CCSA patients.
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There are clear limitations in our study. Due to the lack of germline samples, the
genetic analysis was performed based on computational strategies and applications of
public databases (e.g., COSMIC and Reactome), which required further experimental
validation to confirm the functional consequences of the described alterations. Secondly,
these databases have been validated and extensively used, but molecular findings and
interactive pathways are still being accumulated. Updates should be considered if more
comprehensive genome-wide analysis data are available in the future. Furthermore, for
the identification of relevant alterations, we focused on cancer-related genes (CGCs) and
involved pathways that were affected by recurrent alterations, which might have missed
the importance of rare or noninterpreted alterations. Finally, because the number of
assessable cases was too small to perform more advanced statistical analyses, we should
not overestimate the statistical power of the described putative biomarkers. Ideally, the
observed correlations should be confirmed by treating and analyzing a validation cohort
of additional patients, but due to the orphan characteristics of CCSA, this is difficult to
achieve. Nevertheless, our study presents one of the biggest subtype-specific series in this
orphan disease. The compilation of existing and newly acquired datasets, that is currently
planned, will likely broaden our knowledge of CCSA biology.

5. Conclusions

We performed a comprehensive histopathological evaluation, characterized the MET-
signaling pathway and described the genomic alteration landscape in CCSA and were
able to illustrate the molecular heterogeneity of this rare malignancy. We correlated the
molecular findings with the outcomes of patients receiving an experimental therapy and
identified potential biomarkers with predictive values. Our study provides an insight into
the biology of this ultra-rare cancer and will hopefully lead to the identification of novel
targets to improve the clinical management of this commonly fatal malignancy.
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