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Abstract

Prostate cancer is a common malignancy among men in Western countries. Recently the morbidity

and mortality of prostate cancer increase dramatically in several oriental countries including

China. Rapidly evolving technology in molecular biology such as high-throughput sequencing and

integrative analysis of genomic and transcriptomic landscapes have enabled the identification of

key oncogenic events for prostate cancer initiation, progression and resistance to hormonal

therapy. These surging data of prostate cancer genome also provide insights on ethnic variation

and the differences in histological subtype of this disease. In this review, differences in the

incidence of prostate cancer and the prevalence of main genetic alterations between Asian and

Western populations are discussed. We also review the recent findings on the mechanisms

underlying neuroendocrine differentiation of prostate cancer and the development of small cell

neuroendocrine carcinoma after androgen deprivation therapy.
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Prostate cancer is the second most commonly diagnosed nondermatologic cancer and the

sixth leading cause of cancer-related deaths in men worldwide [1]. The morbidity and
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mortality of this hormone-related cancer vary significantly among different countries and

racial/ethnic populations. In western countries, prostate cancer is the most prevalent

malignancy for men [1]. In 2013, approximately 238590 new cases of prostate cancer are

expected in the United States, which account for 28% of all newly diagnosed cancers in

American men, and it is estimated that about 29720 American men will die from this disease

this year [2]. In several developing countries located primarily in the Caribbean, South

America and sub-Saharan Africa, prostate cancer surpasses lung cancer and

gastroenterological cancer and is the leading cause of cancer deaths in men [3].

1 The difference in the incidence of prostate cancer among different ethnic

groups

In contrast, the incidence and mortality rates of prostate cancer are much lower in Asian

countries including China, India, Japan, Philippines, South Korea, Thailand and Vietnam

[3,4], although it has increased significantly in most of these countries in recent years, with

about 12%–14% average annual increase in China and South Korea [3]. The significant

differences in the incidence of prostate cancer between Asian countries and Western

countries may be attributed to dietary and lifestyle-related factors, as well as differences in

the use of prostate specific antigen (PSA) screening and access to medical care [4].

However, the epidemiological studies of Asian immigrants living in North America or

European continents reported that the incidence and mortality rates of prostate cancer among

these Asian immigrants are 50%–80% lower than those for non-Hispanic whites and Africa

Americans [2,4], suggesting that in addition to environmental influences, genetic

heterogeneity also contributes to prostate carcinogenesis.

To identify genetic variants associated with prostate cancer risk, multiple genome-wide

association studies (GWAS) have been carried out in populations of European descent,

African-Americans, Japanese and Chinese. So far 77 single nucleotide polymorphisms

(SNPs) associated with prostate cancer susceptibility have been identified [5,6], including

two new risk loci, 9q31.2 and 19q13.4, which were found to be significantly associated with

predisposition to prostate cancer in a Han Chinese population [7], and 23 new susceptibility

loci that were recently identified using the iCOGS custom genotyping array in a linkage

study with a larger pool of samples of European ancestry [5]. Unlike the previously

identified loci that were associated exclusively with non-aggressive prostate cancer, 16 out

of these 23 new susceptibility loci were found to be associated with aggressive as well as

non-aggressive disease, although none of the new loci are associated exclusively with the

indolent form of prostate cancer [5].

Of the 23 newly identified susceptibility loci for prostate cancer, rs11650494 is located at

chromosome 17q21, a gene-dense locus that contains several prostate cancer candidate

genes such as HOXB13 and SPOP [5]. Interestingly, by exome sequencing 202 genes on

chromosome 17q21–22, a rare but recurrent germline mutation in the HOXB13 gene

(HOXB13 G84E) was reported to be highly associated with familial prostate cancer in

Caucasians [8]. Although the same mutation was not detected in Chinese men, a novel rare

mutation (G135E) in HOXB13 was found to be associated with increased prostate cancer

risk among Chinese men [9]. HOXB13 is a member of the homeodomain family of
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transcription factors, which has been implicated in normal prostate development [10] as well

as cancer pathogenesis in tumors of several epithelial tissue origins [11–13]. However, the

definitive role of HOXB13 mutations in prostate carcinogenesis remains unclear. Similarly,

Barbieri et al. [14] described that 6%–13% of localized primary prostate cancer samples

harbor mutations in SPOP, a gene encoding the substrate-binding subunit of a cullin-based

E3 ubiquitin ligase. While wild-type SPOP protein interacts directly with steroid receptor

coactivator SRC-3 and enhances its ubiquitin-dependent proteasomal degradation to control

the transcriptional activity of androgen receptor (AR), it has been recently demonstrated that

most prostate cancer-associated SPOP mutants lack the capacity to promote the turnover of

SRC-3 protein and thus display attenuated tumor suppressor effects in prostate cancer cell

lines [15]. Consistently, in vitro studies showed that forced expression of SPOP mutant or

siRNA-mediated knockdown of SPOP led to increased invasion, but no significant changes

in cell growth and viability [14], suggesting that SPOP protein could function as a tumor

suppressor in the prostate.

2 Differences in the prevalence of prostate oncogenic events among

different ethnic groups

In the past decade, rapidly evolving technologies have revolutionized our understanding of

the cellular and molecular basis for the development of prostate cancer. In addition to the

aforementioned SNPs associated with prostate cancer susceptibility, a variety of genetic and

epigenetic alterations have been found to be involved in prostate cancer initiation,

progression, metastasis and drug resistance. Recurrent gene fusions involving several

members of ETS transcription factor family (ERG, ETV1, ETV4 or ETV5) were found to be

the most frequent genetic alterations in prostate cancer, which can be detected in as many as

50%–70% of prostate cancer samples [16,17]. ETS gene fusions resulting from either

interstitial deletion or chromosomal translocation lead to the generation of a handful of

fusion transcripts that commonly contain 5′ regulatory elements from androgen-responsive

genes, such as TMPRSS2, and the coding sequence of ETS transcription factors. The

TMPRSS2-ERG fusion at chromosome 21q22 is the predominant subtype of ETS fusions

[17,18]. The prevalence of the TMPRSS2-ERG fusion in prostate cancer appears to vary in

different ethnic groups, with the highest frequencies of occurrence in Caucasians (~50%)

[19,20], modest in African Americans (24%–31%) [19,20] and much lower frequencies in

Asian populations (8%–21%) [19,21–23], indicating that distinct genetic alterations may

drive prostate cancer development in different ethnic groups (Table 1).

Similar ethnic differences have also been demonstrated in PTEN status, another common

early event involved in prostate carcinogenesis. In Western countries, loss or alteration of at

least one PTEN allele is frequently present in primary prostate cancer, and is correlated with

disease progression to the metastatic stage [31,32]. It has been shown that approximately

40%–70% of primary prostate tumors have PTEN deletion, resulting in activation of the

PI3K-AKT pathway [30,31]. By parallel comparison of the frequencies of PTEN deletion/

inactivation among prostate cancer samples from China and the United Kingdom, Mao et al.

[24] revealed that only 34% of Chinese tissue specimens displayed low levels of PTEN,
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although the frequency of PTEN inactivation (69.8%) in specimens from the United

Kingdom were similar to that previously published for Western samples.

The low prevalence of ERG gene fusion and PTEN deficiency in Chinese patients with

prostate cancer suggests that alternative molecular mechanisms may play important roles in

the development of prostate cancer in Asian men. Using RNA-seq technology to profile the

changes in the transcriptome of primary prostate cancer samples from China, Ren et al. [21]

reported that two novel gene fusions, CTAGE5-KHDRBS3 and USP9Y-TTTY15, occurred at

high frequencies (~35%) in Chinese patients [21]. Two additional gene fusions, SDK1-

AMACR and RAD50-PDLIM4 were also found with relatively lower prevalence (24%–28%)

in this cohort of Chinese descent. Although the functional relevance and clinical significance

of these novel gene fusions remain elusive, the high recurrence of these gene rearrangements

indicates that unique genetic alterations in alternative pathways may affect prostate

oncogenesis among Asian patients.

In addition, the differences in activated RAS-RAF-MAPK signaling pathway also have been

characterized between Asian and Western patients with prostate cancer. Although

constitutive activation of RAS-RAF-MAPK pathway occurs in a majority of advanced

prostate tumors, the incidence of direct mutations of the upstream activators such as KRAS

and BRAF are not commonly found in prostate cancer [31]. However, it has been reported

that the frequency of KRAS mutations in prostate cancer patients from East Asian countries

was much higher than that in American cases. In contrast to a very low prevalence in

American patients (up to 3%) [25,31], about 7.3% of Korean patients [26], 9.1%–12.5% of

Chinese patients [27,28], and 10%–17% of Japanese patients [25,29] harbor KRAS

mutations. A similar difference in the frequency of BRAF mutation also has been reported in

prostate cancer samples from Caucasian populations and men of Korean descent [26,33].

Furthermore, it has been recently described that although rearrangements of BRAF and

RAF1 occur at a comparable frequency between Chinese and Western samples, the

prevalence of BRAF copy number gain in Chinese patients was significantly higher than that

in patients for the United Kingdom (29% vs. 9.2%) [28]. Taken together, these results

indicate that the RAS-RAF-MAPK signaling pathway may be more important for prostate

cancer pathogenesis in Asian men than in Western men.

3 Castration-resistant prostate cancer and neuroendocrine differentiation

Despite the considerable differences in epidemiology and etiology of prostate cancer

between Asian and Western countries, prostate cancer patients of different ethnic groups are

currently treated with the same modalities mainly based on tumor grade and stage. We know

very well now that a large portion of these patients have indolent tumors that will impact

neither quality of life nor life expectancy, so that active surveillance is a preferred option.

Localized cancers are treated with surgery or radiation with similar efficacy. For advanced

and metastatic prostate cancer, hormonal therapy that inhibits androgen production and/or

blocks androgen receptor (AR) function is the first-line treatment. However, many patients

experience only a short term disease regression, and nearly all of them will eventually recur

with castration-resistant prostate cancer (CRPC). During the past several decades, the

cellular and molecular basis underlying the development of CRPC has been intensively
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investigated. Diverse mechanisms have been proposed, including sustained intratumoral

synthesis of androgen, amplification of AR gene, gain-of-function mutations and alternative

splice variants of AR, changes in co-regulatory molecules, ligand-independent activation of

AR signaling as well as other AR-independent pathways that facilitate cancer cell survival

and growth under androgen-depleted conditions [34]. Recently, an integrated genetic study

of 50 heavily pre-treated CRPC samples obtained at rapid autopsy revealed the mutational

landscape of lethal metastatic CRPC. In addition to previously reported recurrent genomic

alterations such as PTEN, AR, RB1, TP53 and APC mutations, several novel somatic

mutations in multiple chromatin/ histone modifiers including MLL2, UTX and ASXL1 as

well as transcription factors FOXA1 and ETS2 were found in CRPC [35].

In addition to these identified molecular alterations, a pathological characteristic referred as

neuroendocrine differentiation of prostate cancer has also been demonstrated to be

significantly associated with the development of CRPC [36–38]. Epithelia of mouse and

human normal prostate consist of three types of differentiated cells: basal cells, luminal

secretory cells, and neuroendocrine cells, which are proposed to be derived from a common

pool of prostate stem/progenitor cells [39]. The luminal cells are columnar epithelial cells

constituting the bulk of the polarized glandular structures, with high levels of AR expression

and AR-dependent secretory machinery; whereas basal cells are localized between the

luminal cells and the underlying basement membrane, and express p63 and relatively low

levels of AR. Neuroendocrine cells constitute a minor population (~1%) of the total

epithelial cells in the normal prostate, and are scattered throughout the epithelial

compartment and can be detected by immunohistochemical (IHC) staining with

neuroendocrine cell-specific markers such as chromogranin A or synaptophysin [38]. Due to

the lack of nuclear AR expression in neuroendocrine cells [40,41], neuroendocrine cells in

normal prostate are resistant to castration, while androgen ablation leads to apoptosis of the

majority of luminal cells and growth arrest of basal cells [42].

In prostate adenocarcinoma, the predominant histological subtype of human prostate cancer,

the neoplastic glands are mainly composed of proliferating luminal type cancerous cells, and

complete loss of basal cells. However, scattered or nests of neuroendocrine cells are also

present in almost all cases of prostate adenocarcinoma [43], with varied ratios of

neuroendocrine to acinar-type cells in different patients. Increasing evidence supports the

notion that these neuroendocrine tumor cells are different from their counterparts in the

normal prostate gland, in terms of their cellular morphology and expression of lineage/

tumor-specific markers including cytokeratin 5/18 and AMACR [36,41], indicating that

neuroendocrine tumor cells are one type of bona fide epithelial constituent of prostate cancer

(Figure 1). Recent studies to assess ERG gene fusion status in neuroendocrine tumor cells by

FISH analysis consistently showed that despite the lack of ERG protein expression, the

TMPRSS2-ERG fusion can be detected in neuroendocrine cells that intermingle with ERG

rearrangement positive adenocarcinoma component within the same tumor foci [44]. These

findings further support the notion that unlike normal neuroendocrine cells, neuroendocrine

tumor cells could share a common cellular origin with luminal type cancer cells.

Interestingly, neuroendocrine tumor cells also display several unique features distinct from

luminal secretory-type cancer cells in prostate cancer. While highly proliferating luminal
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cancer cells are generally positive for AR and PSA, neuroendocrine cells in prostate

adenocarcinoma are usually quiescent and lack expression of AR and PSA [40,41]. Due to

these intrinsic features of neuroendocrine tumor cells, hormonal therapy of prostate

adenocarcinoma usually causes an increase in neuroendocrine differentiation and sometimes

induces the development of secondary small cell neuroendocrine carcinoma (SCNC) (Figure

1). Unlike adenocarcinoma, SCNC of the prostate does not show glandular structure but has

a solid sheet-like growth pattern. The tumor cells are small with scant cytoplasm, finely

granular and homogeneous chromatin and no prominent nucleoli. Nuclear molding, crush

artifact, mitotic and apoptotic figures are common histologic findings. SCNC is extremely

aggressive and is often widely metastatic at the time of diagnosis. It does not respond to

hormonal therapy and usually leads to death within a year [37,38,45].

It has been increasingly recognized that neuroendocrine differentiation following hormonal

therapy is associated with tumor progression and castration resistance [41,45,46]. However,

it remains controversial whether there is a causal relationship between the increased

neuroendocrine differentiation and CRPC development. Although the physiological roles of

neuroendocrine cells in prostate organogenesis and functional regulation are largely

unknown, it is proposed that neuroendocrine cells could interact with other types of prostate

epithelial cells and stromal cells via various mechanisms, due to their dual properties of

neurons and endocrine cells, such as dendrite-like cytoplasmic extensions and abundant

neurosecretory granules containing histamine, serotonin, neuron-specific enolase and many

other peptides/neuropeptides and cytokines [36]. In prostate cancer, especially under the

androgen-deprived environment, neuroendocrine tumor cells may promote the androgen-

independent growth of the luminal type prostate cancer cells [36]. Mechanistically, the

growth-promoting function of neuroendocrine tumor cells may be mediated by the paracrine

effects of peptide hormones such as bombesin/gastrin-releasing peptide family of

neuropeptides, which are secreted from neuroendocrine tumor cells and could stimulate

androgen-independent survival, growth and metastasis of the neighboring luminal type

prostate cancer cells [47] (Figure 1).

4 The cellular origins and key genetic events for SCNC

To date, the cellular origin of neuroendocrine tumor cells in prostate adenocarcinoma is

unclear. Given the pluripotency of prostate stem cells/progenitors that can give rise to basal,

luminal and neuroendocrine cells in the regeneration assay [48–50], it is proposed that

neuroendocrine tumor cells in prostate adenocarcinoma may be derived from prostate stem

cells that are transformed by a series of oncogenic events. On the other hand, several

preclinical studies showed that in an androgen-depleted setting or upon treatment with IL-6,

EGF or other agents that elevate the intracellular cyclic AMP, luminal type cancer cells

could undergo a process of transdifferentiation to acquire the morphology and lineage

specific markers of neuroendocrine cells [51–55], suggesting that neuroendocrine tumor

cells could be alternatively derived from luminal cancer cells in response to the pressure of

surviving in an androgen-depleted condition. This transdifferentiation model of

neuroendocrine tumor cells is further supported by a recent study of secondary SCNC,

showing that prostate luminal cell lines (RWPE-1 and LNCaP) have the ability to

transdifferentiate into cells with a neuroendocrine-like phenotype when they were stably
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transfected with transcription factor N-myc or Aurora kinase A (AURKA), a serine/

theronine kinase involved in cell cycle regulation [44].

Using next-generation RNA sequencing and oligonucleotide arrays, Beltran et al. [44]

showed that in contrast to the lower prevalence (5%) in localized prostate adenocarcinoma,

about 40% of metastatic SCNC displayed concurrent overexpression and amplification of

AURKA and N-myc gene (MYCN), indicating that N-myc and AURKA could play important

roles in the development of SCNC of the prostate. Moreover, the preclinical studies with an

AURKA inhibitor PHA-739358 demonstrated that this kinase antagonist has specific

inhibitory effects on the growth of neuroendocrine tumor cells in cell culture and xenograft

models [44], suggesting that enhanced AURKA kinase activity could be essential for the

maintenance of SCNC. However, the definitive mechanisms underlying AURKA/N-myc-

associated neuroendocrine differentiation remain unknown. The contributions of other

genetic alterations, such as decreased expression of transcription factor REST and

upregulation of epithelial-mesenchymal transition associated molecules [56], to

neuroendocrine differentiation and tumor growth should be determined in future studies.

In contrast to the absence of proliferative activity of neuroendocrine cells in benign prostate

tissues and prostate adenocarcinomas, neuroendocrine cells in primary (de novo) or

secondary SCNC are highly proliferative, which results in almost all patients dying within

one year following diagnosis [38,57,58]. The molecular mechanisms underlying the

difference in the cell cycle status of neuroendocrine cells in benign prostate/adenocarcinoma

and SCNC remain unclear. Our previous study demonstrated that interleukin-8 (IL-8), a

cytokine potentially involved in androgen-independent growth of prostate cancer [59], and

its receptor CXCR2 are exclusively expressed by neuroendocrine tumor cells in prostate

adenocarcinoma [60]. Given the recent findings showing activation of CXCR2 by IL-8 leads

to cellular senescence in a p53-dependent manner [61], we propose that the IL-8-CXCR2-

p53 axis could be the major regulatory signaling pathway to maintain the neuroendocrine

cells of benign prostate and adenocarcinoma in a quiescent state. In a recent study, we

showed that the expression of wild-type p53 protein is required for the growth-inhibitory

effects of IL-8-CXCR2 signaling on two different prostate cancer cell lines [62], which

provides experimental evidence to support our hypothesis. Importantly, while

neuroendocrine cells in benign prostate and adenocarcinoma express wild-type p53, IHC

analysis of SCNC samples revealed that the majority of the NE tumor cells in SCNC display

strong and diffuse nuclear p53 staining, suggesting that p53 is frequently mutated in SCNC

[62]. Furthermore, targeted sequencing of exons 5–10 of TP53 gene showed that five of

seven cases of SCNC harbor a recurrent p53 mutation (D184N) [62], supporting the notion

that p53 missense mutation in neuroendocrine cells could be the critical genetic event in the

development of prostate SCNC.

5 Animal models of SCNC

The identification of p53 protein as a key molecular determinant for the regulation of

neuroendocrine cell proliferation and quiescence not only offers the critical link between the

transformation of neuroendocrine cells and the development of prostate SCNC, but also

provides a mechanistic explanation for the neuroendocrine phenotype of prostate tumors
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from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The TRAMP

transgenic mouse strain is engineered to express the SV40 virus large T and small t tumor

antigens in prostate epithelial cells under the control of the AR-responsive rat probasin

promoter [63,64]. These mice ultimately develop predominantly SCNC and metastasis to

distant sites, with limited signs of the formation of prostate adenocarcinoma in some strains

[65]. It is well accepted that SV40 T antigen-induced transformation is mainly mediated via

inactivation of p53 and retinoblastoma (Rb) pathways [66], indicating that loss of these two

tumor suppressors may substantially contribute to the development of SCNC. Consistent

with the TRAMP model, a similar phenotype of prostate cancer with neuroendocrine

differentiation was also observed in the compound knockout mice with prostate-specific

deficiency in p53 and Rb, although either p53 deletion or Rb loss alone only resulted in

prostatic intraepithelial neoplasia (PIN) in aged mice [67]. These data suggest that

inactivation of both p53 and Rb pathways are required to cause the formation of SCNC in

the mice. Our studies have demonstrated that p53 mutation is likely a critical molecular

event for human SCNC but it remains to be determined if inactivation of Rb is also required.

In addition to genetically engineered mouse models, the tissue recombination/transplantation

model of prostate cancer is a very efficient approach to rapidly interrogate the functional

consequences of various genetic alterations central to the initiation and progression of the

human disease [68]. By appropriate reconstitution of the epithelial-stroma interactions to

mimic the native tumor microenvironment, the tissue recombination model consisting of

adult prostate epithelial cells and embryonic urogenital sinus mesenchymal cells can

faithfully recapitulate human prostate cancer evolution as well as the neoplastic lesions

developed in transgenic mice [69,70]. Furthermore, by incorporating other genetic tools

such as lentivirus-based gene transfer and shRNA-mediated knockdown, distinct

subpopulations of epithelial cells and mesenchymal cells can be genetically manipulated

with a high degree of flexibility. In a fast and cost-effective manner, this powerful system

can test both the cell-autonomous roles of genetic events in the epithelial compartment and

the influence of microenvironment on prostate carcinogenesis through paracrine actions

[71–73].

Importantly, primary prostate epithelial cells freshly isolated from benign human prostate

can be used as the starting material to study prostate cancer development in the tissue

recombination model, which makes it possible to examine many fundamental differences in

prostate cancer biology between mice and humans. Recently, we successfully established an

in vivo transformation assay using naïve human prostate epithelial cells directly harvested

from patients [74,75]. By coupling a lentiviral transduction technique with the in vivo

regeneration approach, we demonstrated that CD49fhiTrop2hi basal cells from primary

benign human prostate tissue are able to initiate prostate cancer in immunodeficient mice.

The synergistic effects of AKT activation, overexpression of ERG and AR in basal cells

closely recapitulated the histological and molecular features of human prostate cancer, with

loss of basal cells and expansion of malignant luminal cells expressing PSA and AMACR

[74]. These findings suggest that basal epithelial cells can be a cell of origin for human

prostate cancer. Although neuroendocrine differentiation is not observed in prostate tumors

derived from lentiviral transduced human basal cells in our current tissue recombination
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model, further investigation of the cellular origins of SCNC and identification of genetic and

epigenetic changes in neuroendocrine differentiation will facilitate the establishment of

relevant mouse models of SCNC, providing insights into the pathogenesis of SCNC and the

development of effective therapeutic strategies for this aggressive prostate malignancy.

6 Future direction

With continuous improvement in technologies and the significant reduction in cost for high-

throughput sequencing, remarkable advances have been made in molecular characterization

of prostate cancer. These findings at the molecular level are being translated into valuable

diagnostic biomarkers and prognostic predictors in the clinic, offering an opportunity for

patient stratification and personalized therapy. However, several unique features of prostate

cancer, including vastly different biology of different tumors, tumor multifocality, tumor

heterogeneity and the preference of bone as metastatic sites, pose significant challenges for

the acquisition and analyses of tumor samples. The exact roles of many newly identified

genetic alterations in prostate carcinogenesis remain uncertain. In addition, the contribution

of other factors, such as epigenetic changes, to ethnic variation and histological subtype

differences in prostate cancer has not been extensively investigated. Despite these

limitations and challenges, the recent molecular findings have provided strong candidates

for the development of novel targeted therapeutic agents. Combination therapies targeting

multiple molecules and pathways will likely substantially improve the clinical outcome of

patients with advanced prostate cancer in the near future.
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Figure 1.
The model of neuroendocrine differentation of prostate cancer and the development of small

cell neuroendocrine carcinoma after androgen deprivation therapy.
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Table 1

The prevalence of key genetic events for prostate carcinogenesis among different ethnic groups

Genetic alteration Prevalance in
Asian patients (%)

Frequency in patients
from Western
countries (%)

ERG-TMPRSS2 fusion 8–21 [19,21–23] 50–70 [17]

PTEN inactivation 34 [24] 70 [24,30]

CTAGE-KHDRBS3 fusion 37 [21] Unkown

USP9Y-TTTY15 fusion 35 [21] Unkown

KRAS mutations 7–17 [25–29] Up to 3 [25,31]

BRAF copy number gain 29 [28] 9 [28]
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