
INTRODUCTION 

Frailty is a clinical state resulting from age-related changes in multi-
ple physiologic systems and accumulation of diseases that reduces 
patient ability to maintain homeostasis in response to stressors.1) 
Frailty is common in older adults, affecting one in every 10 com-
munity-dwellers2,3) and one in every two nursing home residents,4) 
and is associated with increased risks of death (relative risk [RR], 
1.6–6.0), disability (RR, 1.8–2.8), institutionalization (RR, 2.6–
24.0), and falls (RR, 1.2–2.4).1) Health care costs for older adults 
with frailty increase by up to 2-fold compared to those in their 
non-frail counterparts,5,6) mainly due to inpatient care, post-acute 
care, and care for potentially preventable conditions.7,8) Given the 
considerable clinical and societal consequences of frailty in the ev-
er-growing aging population, assessment of frailty in clinical and 
population settings offers valuable opportunities for prevention 
and treatment through efficient use of evidence-based interven-
tions and resources.9-11) 

Considering the increasing burden and serious consequences of frailty in aging populations, there 
is increasing interest in measuring frailty in health care databases for clinical care and research. 
This review synthesizes the latest research on the development and application of 21 frailty mea-
sures for health care databases. Frailty measures varied widely in terms of target population (16 
ambulatory, 1 long-term care, and 4 inpatient), data source (16 claims-based and 5 electronic 
health records [EHR]-based measures), assessment period (6 months to 36 months), data types 
(diagnosis codes required for 17 measures, health service codes for 7 measures, pharmacy data 
for 4 measures, and other information for 9 measures), and outcomes for validation (clinical frail-
ty for 7 measures, disability for 7 measures, and mortality for 16 measures). These frailty mea-
sures may be useful to facilitate frailty screening in clinical care and quantify frailty for large da-
tabase research in which clinical assessment is not feasible. 
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Several validated tools are available to measure frailty,12-15) which 
can be selected based on the purpose (screening, diagnosis, or 
monitoring response to interventions), setting (emergency depart-
ment, inpatient, outpatient, or public health), and available re-
sources (trained staff to perform self-report vs. objective assess-
ment).16) Although simple clinical assessment tools17-19) and online 
calculators are available,20) frailty assessment typically requires 
clinical assessment in the form of a survey21-23) or objective assess-
ments of physical performance24-27) conducted by a clinician (e.g., 
geriatrician) or trained health care professional. However, routine 
adoption of the frailty concept for clinical care or public health 
practice is variably slow across health systems in different coun-
tries,11) in part due to a lack of time and resources for assess-
ment.28,29) To overcome these barriers, there is a growing interest in 
the measurement of frailty using ubiquitous health care databases 
such as administrative claims data and electronic health records 
(EHRs), which are by-products of health care encounters and 
transactions between health care providers and health plans. Admin-
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istrative claims data contain diagnosis codes, health service codes, and 
prescription drug data obtained from a large population of health plan 
members but lack detailed clinical information such as vital signs, 
physical examination findings, and diagnostic test results. In contrast, 
EHR provide clinical information not available in administrative 
claims data; however, much of the information is unstructured (e.g., 
narrative clinical notes) and may be discontinuous due to patients re-
ceiving care at multiple health systems using different EHR systems.30) 
Nonetheless, frailty scores derived from health care databases (“data-
base-derived frailty measures”) hold promise for population-level 
frailty screening as well as health services and outcomes research in 
frail older adults who are under-represented in clinical trials.31) 

This review summarizes the latest advances in frailty measurement 
in health care databases, mainly administrative claims data and EHR, 
as well as the potential applications for clinical care and research. Frailty 
measures requiring in-person surveys or evaluations are beyond the 
scope of this review. The outline is as follows: (1) literature search; (2) 
general approaches to frailty measurement in health care data; (3) 
frailty measurement in administrative claims data; (4) frailty measure-
ment in EHR; (5) considerations in developing a database-derived 
frailty measure; (6) potential applications of database-derived frailty 
measures; (7) areas of uncertainty; and (8) conclusions. 

LITERATURE SEARCH 

A literature search was conducted in PubMed using the Medical 
Subject Headings, “frailty” AND (“administrative claims, health-
care” OR “electronic health records” OR “Medicare”), and their 
variations in the title field. Additional filters were applied, includ-
ing publication date, January 1, 2001, to December 31, 2019, and 
“aged, 65+ years”. This search yielded 50 articles. Risk scores de-
rived from health care databases that aimed to predict mortality or 
hospitalization were not considered as frailty measures, although 
they may also be correlated with frailty.32,33) From the search re-
sults, 10 reviews or commentaries; 9 articles using frailty measures 
not derived from health care databases; and 8 articles not reporting 
development, validation, or application of database-derived frailty 
measures were excluded. The initial search was supplemented by 
an additional 29 articles from the references of the included arti-
cles. Finally, 52 articles informed this review. 

GENERAL APPROACHES TO FRAILTY 
MEASUREMENT IN HEALTH CARE DATA 

Health care databases generated primarily for health care service 
administration, care quality assessment, and clinical care delivery 
generally do not contain sufficient information to derive clinically 

validated measures of frailty.12-15) Therefore, frailty measures24-27) 
requiring clinical assessment (e.g., gait speed, grip strength, physi-
cal activity, or cognitive function) cannot be directly calculated. In 
the absence of sufficient clinical information, researchers attempt-
ed to measure frailty using demographic information, diagnosis 
codes, or health service codes available in health care databases. 
The approach to developing a frailty measure depended on the 
availability of a dataset containing a reference standard measure of 
frailty and methods to select diagnosis and health service codes in 
health care databases (Fig. 1). 

Clinical Knowledge-Driven Selection 
Health care providers and researchers with expertise in aging and 
frailty select diagnosis codes or health service codes based on prior 
research and clinical knowledge. These codes may include diseases 
(e.g., pressure ulcer, failure to thrive, or history of falls), symptoms 
or signs (e.g., fatigue, muscle weakness, abnormality of gait), and 
health services (e.g., hospital beds, walking aids, or transportation 
services) commonly reported or used by older adults with frailty.31) 
Frailty has been defined as the presence of any code within a 
pre-specified period (e.g., 12 months), while its absence assumes 
that the condition does not exist. This approach is straightforward 
and does not require a dataset containing a reference standard 
measure of frailty. It generally offers high specificity and low sensi-
tivity but underestimates frailty prevalence. Alternatively, research-
ers have quantified frailty by counting the number of different 
codes in a pre-specified period and deriving a deficit-accumulation 
frailty index34) using these codes as health deficits. For example, a 
person with 10 of 40 pre-specified codes within a 12-month peri-
od is assigned a frailty index of 0.25 ( = 10/40). The deficit-accu-
mulation approach allows measurement of severity rather than all-
or-none classification and choice of a threshold to achieve high 
sensitivity or high specificity depending on the purpose. Notably, a 
deficit-accumulation frailty index calculated mainly from diagnosis 
codes seems to have a narrower range of values (99th percentile 
0.4–0.5)35) than that for a frailty index calculated from clinical as-
sessment (99th percentile 0.6–0.7).36) 

Data-Driven Selection without a Reference Standard 
When a dataset with a reference standard frailty measure is not 
available, researchers have tried to define frail individuals in the 
dataset by cluster analysis.37) Cluster analysis is an unsupervised 
learning technique that classifies individuals into groups of similar 
nature in terms of measured characteristics in the dataset such as 
diagnosis codes, hospital days, and total costs during a pre-speci-
fied period. After examining the characteristics of the groups de-
rived from cluster analysis, one of the groups (i.e., the group with a 
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Approach 1: clinical knowledge-driven selection
● Use clinical knewledge to select codes that are associated with clinical features of frailty.
● Frailty is defined as 1) the presence of any of the selected codes (yes/no) or 2) proportion 

of the codes present (range: 0-1)

Approach 2: data-driven selection without a reference standard
● Use cluster analysis to classify people into different groups based on selected 

characteristics.
● The group with high prevalence of frailty-related diagnosis codes is defined as the frailty 

group.

Approach 3: data-driven selection with a reference standard
● Use a regression-based model or machine learning technique to select codes that predict 

the reference standard frailty measure.

Fig. 1. Approaches to developing a frailty measure in health care databases. Prior research applied three general approaches to develop a frailty 
measure for health care databases. When a dataset containing information on a reference standard measure of frailty was not available, frailty was 
measured using diagnosis and health service codes selected based on clinical knowledge (approach 1) or cluster analysis using diagnosis codes, 
hospital days, and total costs (approach 2). When a dataset with a reference standard measure of frailty was available, a variable selection method 
(e.g., penalized regression or machine learning technique) was used to select diagnosis and health service codes to measure frailty (approach 3). 
EHR, electronic health records.

high number of diagnoses indicative of frailty) can be designated 
as the frailty group. However, cluster analysis can be computing-in-
tensive for large datasets and may not yield the same grouping in 
different datasets. Gilbert et al.37) tried to overcome this limitation 
by conducting cluster analysis in a subset of a large hospital admin-
istrative dataset and developing a logistic regression model to pre-
dict frailty group membership based on diagnosis codes. The pre-
dicted probability from this logistic model can be used to assign 
individuals to the frailty group from the entire dataset. While this 
approach identifies frail individuals without requiring a dataset 
with a reference standard frailty measure, determining the number 
of groups in the cluster analysis and designating a single frailty 
group may be subject to interpretation. Moreover, frail individuals 
may not be classified exclusively into a single group (e.g., frail peo-
ple with cancer and frail people with heart disease may be classified 
into different groups despite similar levels of frailty).38) 

Data-Driven Selection with a Reference Standard 
If a population-based dataset containing information on a refer-
ence standard frailty measure (e.g., frailty phenotype or deficit-ac-
cumulation frailty index) and administrative claims data is avaiable, 
specific codes can be selected against the reference frailty measure 
(also known as supervised learning). Several variable selection al-
gorithms have been applied— e.g., stepwise regression,39,40) penal-
ized regression,39,41) or tree-based algorithms.39) More flexible 

“black-box” machine learning algorithms such as random forest 
and gradient boosting, provide limited or marginal advantages 
over regression-based algorithms in predictive performance.39) Un-
der this approach, the first step is variable selection and estimation 
of weights (in regression models) to optimize predictive perfor-
mance against a reference standard measure of frailty in a training 
dataset. The model derived from the training dataset is evaluated 
in a hold-out testing dataset or via cross-validation. This method 
can select codes that are positively (e.g., degenerative disease of the 
central nervous system) or negatively (e.g., vaccination) associated 
with frailty. It provides better predictive performance of frailty and 
adverse health outcomes than counting the number of codes or 
calculating a deficit-accumulation frailty index directly from the 
codes.41) 

FRAILTY MEASUREMENT IN ADMINISTRATIVE 
CLAIMS DATA 

Table 1 summarizes 16 frailty measures for administrative claims 
data. Of these, 12 measures were developed for the United States 
Medicare8,39-48) or Veterans Affairs49,50) claims databases, including 
two proprietary measures; namely, the Johns Hopkins Adjusted 
Clinical Groups Frailty Indicators43) and JEN-Frailty Index,45,46) 
two were developed for the Canadian claims databases,51,52) and 
two were developed for the United Kingdom hospital claims data-

Health care database

● Demographic information
● Diagnosis codes
● Procedure codes
● Health service codes
● Medications
● Health care utilization & costs
● Vital status
● Vital signs (EHR)
● Diagnostic test results (EHR)
● Narrative clinic notes (EHR)

Frailty dataset

Dataset with a reference standard 
measure of frailty available
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Table 1. Frailty measures for administrative claims data

Author (y) Database/population  
(study year)

Outcomes
Predictors

Development Validation
Clinical knowl-

edge-driven se-
lection

Lunney et al.42) 
(2002)

Medicare database (USA)
- Medicare 0.1% sample (1993–1998)42)

Not applicable None Presence (yes/no) of any of 11 con-
ditions based on ICD diagnosis 
codes

Abrams et al.43) 
(2003)

Medicare database (USA)43)

- HMO in Israel (2008)54)

- Major non-cardiac surgery, emergency 
general surgery, orthopedic surgery pa-
tients in Canada (2002–2014)80-83)

Not applicable Vulnerable Elders Survey
Mortality
Complications
Discharge disposition
Costs

Presence (yes/no) of any of 10 con-
ditions based on ICD diagnosis 
codes (Johns Hopkins Adjusted 
Clinical Groups)

Chrischilles et 
al.44) (2014)

Medicare database (USA)
- Acute MI patients (2007–2008)44)

- Kidney cancer patients (2000–2009)84)

Not applicable Mortality
Cardiac catheterization
Complications
Costs

Presence (yes/no) of any or ≥ 2 of 
16 conditions based on ICD diag-
nosis and HCPCS codes

JEN Associ-
ates45,46) (2008) 

Medicare database (USA)45,86)

- Spouses of AD patients (2001–
2005)85)

- National Long-Term Care Survey 
(2004)60)

- Medicare 5% sample (2011–2014)61)

Not applicable Mortality
NH admission
Costs
Disability

Count of the number of 13 condi-
tions present based on ICD diag-
nosis codes (JEN-Frailty Index)

Hope et al.47) 
(2015)

Medicare database (USA)
- ICU patients (2004–2008)47)

Not applicable Mortality Presence (yes/no) of nursing facili-
ty claims or 11 conditions based 
on ICD diagnosis codes

Soong et al.53,87) 
(2015)

Inpatient claims database, England
- HES database (2005–2013)53,87)

Not applicable Mortality
Discharge disposition
Readmission

Presence (yes/no) of any of 9 con-
ditions based on ICD diagnosis 
codes

Joynt et al.8) 
(2017)

Medicare database (USA)
- Medicare 20% sample (2011–2012)7,8)

Not applicable Costs Presence (yes/no) of ≥ 2 of 12 con-
ditions based on ICD diagnosis 
codes and HCPCS codes (speci-
fied by Kim and Schneeweiss)31)

Orkaby et al.49) 
(2018)

VA claims database (USA)
- National sample (2002–2012)49)

Not applicable Mortality Proportion of 31 health deficits 
present based on ICD diagnosis, 
CPT, and HCPCS codes

McIsaac et al.51) 
(2019)

Administrative claims database (Canada)
- Major non-cardiac surgery (2002–

2015)51,88)

Not applicable Mortality
Discharge disposition

Proportion of 30 health deficits 
present based on ICD diagnosis 
codes, drugs, assistive device 
codes, and living environment 
(preoperative Frailty Index)

Data-driven selec-
tion without a 
reference stan-
dard

Gilbert et al.37) 
(2018)

Inpatient claims database, England
- HES database (2005–2013)37)

- Hospital cohorts37)

Frailty cluster 
(from cluster 
analysis)

Mortality
Prolonged hospitalization
Readmission
Frailty phenotype
Deficit-accumulation FI

Includes 109 ICD diagnosis vari-
ables

Data-driven selec-
tion with a ref-
erence standard

Rosen et al.50) 
(2000)

VA claims database (USA)
- Long-term care (1996–1997)50,89)

Disability Disability Includes 13 conditions based on 
ICD diagnosis codes

Data-driven selec-
tion with a ref-
erence standard

Dubois et al.52) 
(2010)

Prescription claims database (Canada)
- PRISMA cohort (2001–2005)52)

Functional 
status score

Mortality
Disability
Hospitalization
NH admission

Includes 11 prescription drug cate-
gories

Davidoff et al.40) 
(2013)

Medicare database (USA)
- MCBS cohort (2001-2005)40)

- HRS cohort (2008-2010)56)

- SEER-Medicare cohort (1999–
2007)90,91)

Disability Mortality
Disability
Frailty phenotype
Deficit-accumulation FI

Includes sex, Medicaid enrollment, 
number of office visits, 8 health 
care visit types, 3 health care ser-
vices, 9 procedures, 6 DMEs, and 
2 imaging tests based on CPT and 
HCPCS codes, and geographical 
regions

(Continued to the next page)
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Author (y) Database/population  
(study year)

Outcomes
Predictors

Development Validation
Faurot et al.48) 

(2015)
Medicare database (USA)

- MCBS cohort (2006)48)

- Medicare beneficiaries with or without 
influenza vaccination (2007–2008)62)

- ARIC cohort (2011–2013)58)

- MarketScan Medicare (2013)63)

- HRS cohort (2008-2010)56)

Disability Mortality
Disability
Falls
Mobility impairment
Frailty phenotype
Deficit-accumulation FI
Costs

Includes age, sex, race, and 23 con-
ditions based on ICD diagnosis, 
CPT, or HCPCS codes

Segal et al.39,55) 
(2017)

Medicare database (USA)
- CHS cohort (1992–1993/1997)39)

- NHATS cohort (2000)55)

- Medicare TAVR cohort (2011-2015)64)

- HRS cohort (2008-2010)56)

Frailty pheno-
type

Mortality
Disability
Hospitalization
Fracture
NH admission
Frailty phenotype
Deficit-accumulation FI

Includes age, sex, race, Charlson 
Comorbidity Index, past hospital-
ization, and 16 conditions based 
on ICD diagnosis codes

Kim et al.41) 
(2018)

Medicare database (USA)
- MCBS cohort (2006–2007/2011–

2012)41)

- HRS cohort (2008–2010)56,57)

Deficit-accu-
mulation FI

Mortality
Disability
Hospitalization
SNF stay
NH admission
Falls
Frailty phenotype
Deficit-accumulation FI

Includes 52 ICD diagnosis vari-
ables, 25 CPT variables, and 16 
HCPCS variables

AD, Alzheimer disease; ARIC, Atherosclerosis Risk in Communities; CHS, Cardiovascular Health Study; CPT, Current Procedural Terminology; DME, durable 
medical equipment; FI, frailty index; HCPCS, Healthcare Common Procedure Coding System; HES, Hospital Episode Statistics; HMO, health maintenance 
organization; HRS, Health and Retirement Study; ICD, International Classification of Diseases; ICU, intensive care unit; MCBS, Medicare Current Beneficiary 
Survey; MI, myocardial infarction; NH, nursing home; NHATS, National Health and Aging Trends Study; PRISMA, Program of Research to Integrate Services 
for the Maintenance of Autonomy; SEER, Surveillance, Epidemiology, and End Results; TAVR, transcatheter aortic valve replacement; VA, Veterans Affairs.

base.37,53) Database-derived frailty measures varied widely in terms 
of development approaches (clinical knowledge in nine measures, 
cluster analysis in one measure, and reference standard measures in 
six measures), number of variables included (nine to 109 vari-
ables), target populations (general vs. specific disease populations), 
and validation outcomes (clinical frailty assessment, functional sta-
tus, mortality, health care utilization, or costs). Only seven of 16 
measures have been compared against a clinical frailty assess-
ment37,54-59) and seven measures have been tested for disabili-
ty50,52,56,57,60) or nursing home admission.45,52,57,60) 

The comparative performance of database-derived frailty mea-
sures has not been well studied. In an analysis of Medicare Current 
Beneficiary Survey data, implementation of a deficit-accumulation 
frailty index using commonly used diagnosis codes or health ser-
vice codes showed lower correlation with a reference standard 
frailty index and was less predictive of mortality than a frailty mea-
sure developed using a least absolute shrinkage and selection oper-
ator (LASSO) regression.41) A recent study compared four Medi-
care claims-based frailty measures—Davidoff index,40) Faurot in-
dex,48) Segal index,39) and Kim index41)—for the ability to measure 
frailty phenotype, deficit-accumulation frailty index, and activi-

ties-of-daily-living dependency (requiring another person’s help to 
perform daily activities). Of the four measures, the Kim index 
showed higher C statistic for frailty phenotype (0.78 vs. 0.73–
0.74) after age and sex adjustment, as well as age and sex-adjusted 
partial correlation with a deficit-accumulation frailty index from 
clinical assessment (0.55 vs. 0.18–0.32).56) 

These frailty measures have been applied to define population 
subgroups by frailty levels,61) reduce confounding by frailty in ex-
amining the association between influenza vaccination and mor-
tality,62) estimate health care costs attributed to frailty, 63) and im-
prove mortality prediction after transcatheter aortic valve replace-
ment.64) 

FRAILTY MEASUREMENT IN EHR 

Table 2 summarizes five frailty measures for EHR. Four measures 
were developed for three United States regional EHR systems65-68) 
or the Veterans Affairs EHR database,69) while the e-Frailty Index 
was developed for the United Kingdom primary care practices,35) 
which was later implemented in a primary care EHR system in Aus-
tralia.59) Clinical knowledge-based selection was used for four mea-

Table 1. Continued
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sures while data-driven selection without a reference standard was 
used for one measure. A natural language processing method to ex-
plore unstructured clinic notes was applied for two measures.67,69) 

Of these measures, the e-Frailty Index has been most widely 
used in the United Kingdom primary care EHR database to de-
scribe frailty trajectories before dying,70) examine the effect mea-
sure modification of systolic blood pressure and mortality relation-
ship by frailty,71) predict fractures and mortality after fractures,72) 
and assess de-intensification for diabetes and hypertension treat-
ment regimens among older adults with frailty.73) 

CONSIDERATIONS IN DEVELOPING A DATABASE-
DERIVED FRAILTY MEASURE 

Database-derived frailty measures use different types of data (e.g., 
diagnosis, procedure, and health service codes) collected over a 
pre-specified period, ranging from 639) to 3649) months. Because 
some claims datasets record information according to a unique 
coding system specific to each country (e.g., Current Procedural 

Table 2. Frailty measures for electronic health records

Author (y) Database/population (study year)
Outcomes

Predictors
Development Validation

Clinical knowledge- 
driven selection

Clegg et al.35) (2016) Primary care EHR database (UK)
- ResearchOne database (2008–

2016)35,70,75)

- THIN database (2008–
2013)35,73)

- CPRD database (2001–
2009)71,72)

Primary care EHR database, Aus-
tralia
- A primary care clinic59)

Not applicable Mortality
Hospitalization
NH admission
Fracture
Frailty phenotype

Proportion of 36 health 
deficits present based 
on Read codes (codes 
for diagnosis, proce-
dure, disability, and so-
cial circumstances) 
and polypharmacy

Lekan et al.65) (2017) A tertiary-care hospital EHR data-
base (USA)
- Inpatients (2010–2011)65,66)

Not applicable Mortality
Readmission
SNF stay

Includes 16 biopsycho-
social factors including 
4 laboratory tests

Anzaldi et al.67) (2017) A regional health system EHR da-
tabase (USA)
- Medicare ACO enrollees 

(2011–2013)67)

Not applicable Geriatric syndromes iden-
tified using diagnosis 
codes and text phrases

Mention of “frailty” in 
clinical notes

Pajewski et al.68) (2019) A regional health system EHR da-
tabase (USA)
- Medicare ACO enrollees 

(2014–2016)68)

Not applicable Mortality
Falls
Health care utilization

Includes 54 health defi-
cits based on diagnosis 
codes, smoking status, 
vital signs, laboratory 
tests, and functional 
status

Data-driven selection 
without a reference 
standard

Shao et al.69) (2017) VA EHR database (USA)
- Heart failure patients (2010)69)

Topics generated 
from clinical notes

Mortality
Hospitalization

Includes 53 topics gener-
ated from clinical notes

ACO, accountable care organization; CPRD, Clinical Practice Research Datalink; EHR, electronic health records; NH, nursing home; SNF, skilled nursing 
facility; THIN, The Health Improvement Network; VA, Veterans Affairs.

Terminology codes and Healthcare Common Procedure Coding 
System codes in the United States and Read codes in the United 
Kingdom), the choice of datasets can affect the transportability of 
the frailty measures. The length of the assessment period during 
which codes are measured may affect the accuracy of capturing 
certain chronic conditions. Chronic conditions that are less likely 
recognized or coded by general practitioners (e.g., dementia and 
incontinence) may require a longer assessment period than acute 
conditions (e.g., acute myocardial infarction) or well recognized 
chronic conditions (e.g., hypertension and diabetes). A longer as-
sessment period to calculate a frailty measure reduces the amount 
of follow-up data available for the main analysis.  

Frailty measures developed from health care databases tend to 
rely on diagnoses, whereas clinical frailty assessment relies more 
on functional status and physical performance, factors rarely avail-
able in health care databases. Health service codes indicating clini-
cal encounter types (e.g., home visits) and use of durable medical 
equipment (e.g., hospital beds or wheelchairs) seem to be import-
ant to capture functional impairment or poor physical perfor-
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mance, which differentiates frailty measures from comorbidity in-
dices.57) However, including demographic characteristics in the 
frailty model lessens its ability to explain variation in frailty beyond 
demographic variables.56) 

Once a frailty measure is developed, the key step is its validation 
against a reference standard measure of frailty. Given the lack of 
consensus on frailty definitions,12) prevalent activities-of-daily-liv-
ing dependency can be used as an alternative outcome for valida-
tion.40,48,56,60) However, information on a reference standard frailty 
measure or activities-of-daily-living dependency is not always 
available. Many database-derived frailty measures were tested for 
mortality prediction rather than for frailty itself. Although frailty is 
associated with mortality, it is unclear how these frailty measures 
can be differentiated from mortality prediction models. 

Another consideration is that coding systems or coding practices 
may change over time or vary across geographical regions. In the 
United States, the International Classification of Disease system 
transitioned from the 9th to 10th revisions in October 2015. New 
billing codes are generated for new procedures and health care ser-
vices and some codes are retired each year. Coding practice may be 
influenced by the likelihood of reimbursement for health care ser-
vices, which may differ across health care systems or countries. 
Therefore, the performance of claims-based frailty measures 
should be evaluated periodically in more contemporary datasets 
and before application to a different health care system or country. 

Lastly, the development of a frailty measure from EHR may re-
quire restricting the population to those with high rates of data 
completeness within an EHR system to avoid bias due to health 
information outside the EHR system.30) A predictive algorithm is 
available to identify those with high rates of completeness.74) 

POTENTIAL APPLICATIONS OF DATABASE-DERIVED 
FRAILTY MEASURES 

Frailty measures calculated from health care databases can be use-
ful to measure frailty and study health outcomes of older adults 
with frailty in clinical care and research (Table 3). 

Clinical Care 
Database-derived frailty measures can be used to screen older 
adults for frailty in a health care system or a health plan. Because 
database-derived frailty scores generally have C statistics ranging 
from 0.65 to 0.75 for frailty phenotype and correlation coefficients 
of 0.2 to 0.6 against a deficit-accumulation frailty index,37,39,56) they 
are unlikely to replace bed-side clinical frailty assessments. Frailty 
measures are useful to predict adverse health outcomes. In particu-
lar, the Kim index performed better than a comorbidity index for 

the prediction of disability, mobility impairment, recurrent falls, 
and skilled nursing facility days in the Medicare population.41,57) 
However, an e-Frailty Index > 0.19, a threshold for frailty, had a 
positive predictive value of 0.11 for death in the next 3 months 
among primary care patients in the United Kingdom. These results 
suggest that, although a database-derived frailty measure may be a 
strong predictor in a population, it cannot be interpreted deter-
ministically for an individual (this issue also exists for a clinical 
frailty assessment).75) Nonetheless, they can be useful as a routine 
screening test to identify individuals requiring additional detailed 
assessment and individualized care management.76) A cut-off point 
for positive screening can be determined according to percentile 
distributions (e.g., top 5% percent), sensitivity and specificity for 
frailty state (e.g., 90% sensitivity to detect frailty phenotype), or 
pre-defined clinically relevant thresholds (e.g., ≥ 0.20 according to 
a deficit-accumulation frailty index) after considering clinical con-
texts (e.g., outpatient, inpatient, or preoperative screening) and 
available resources for detailed assessment and care management.  

Research  
Database-derived frailty measures provide vast opportunities for 
clinical research in older populations. These measures can be used 
to efficiently screen individuals for enrollment in a clinical trial of 
interventions for frailty. In database studies to evaluate treatment 
effects in older adults, treated individuals may differ in frailty levels 
from untreated individuals, which leads to confounding. Such bias 
can be reduced by adjusting for a frailty measure, although residual 
confounding may persist.62) In choosing a frailty measure for con-
founding adjustment, a measure that does not include demograph-
ic variables may be more effective than a measure that includes 
them.56) Moreover, frailty can be an effect measure modifier. The 
benefits and risks of a treatment may vary by frailty status—e.g., a 
hypnotic drug increases the risk of hip fracture more in less frail 
older adults than frailer ones who are totally dependent.77) Evalua-
tion of treatment effect heterogeneity by frailty in health care data-
bases may provide real-world evidence to guide individualized 
treatment choice based on frailty assessment in older adults who 
are typically excluded from clinical trials. In some clinical trials that 
enrolled frail individuals yet lacked frailty assessment, frailty levels 
at trial baseline can be estimated by linking trial data to administra-
tive claims data or EHR and applying database-derived frailty mea-
sures. Such secondary analyses of existing clinical trial data may 
generate hypotheses for future trials. 

AREAS OF UNCERTAINTY 

Few studies to date used a database-derived frailty measure as an 
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outcome (i.e., change in frailty level over time) to evaluate the 
treatment effect. The responsiveness of a frailty measure to im-
provement or deterioration of health status and the minimal clini-
cally important change have not been well studied. Diagnosis 
codes, which comprise a large proportion of the database-derived 
frailty measures, tend to be carried over visits and accumulate over 
time in administrative claims data or EHR, causing increased frail-
ty score. Since older adults are more likely to seek medical care 
during acute illness or functional decline (informed presence 
bias78)), the estimated frailty level may be affected by the effect of 
acute illness and frailty progression may be recorded more often 
than improvement. Furthermore, in health care databases, the in-
formation needed to estimate frailty is obtained over time as op-
posed to clinical trials wherein information is obtained from a dis-
crete assessment visit (e.g., baseline or follow-up visit). Therefore, 
the assessment periods may overlap between outcome frailty and 
baseline frailty, making the two measures highly collinear. For 
these reasons, the utility of a database-derived frailty measure as a 
treatment outcome remains uncertain. 

Information on functional status or physical performance is of-
ten recorded in health care databases. In United States Medicare 
data, the Minimum Data Set records clinicians’ assessments of 
functional status among nursing home patients. The Outcome and 
Assessment Information Set contains information on patient out-
comes for individuals receiving home care. In EHR, cognitive 
function and physical function are documented in clinical notes by 
primary care physicians, specialists (e.g., geriatricians, neurologists, 
and psychiatrists), physical therapists, or occupational therapists. 
In the absence of routine assessment, these documentations tend 

to be inconsistently available or for a subset of patients in specific 
clinical contexts (e.g., after a fall event, hospitalization, or major 
surgery), which may not represent an individual’s usual state of 
health. A recent study by Kharrazi et al.79) showed that the preva-
lence of geriatric syndromes was underestimated when only claims 
and structured EHR data were analyzed; natural language process-
ing of unstructured EHR data substantially improved detection by 
1.5-fold for dementia, 3.2-fold for falls, 18.0-fold for malnutrition, 
and 455.9-fold for lack of social support. While these findings are 
promising, the contribution of unstructured EHR data for case 
identification depends on the health information technology infra-
structure and completeness of documentation by health care pro-
viders. 79) How to best combine clinical information with adminis-
trative claims data or structured EHR data requires further investi-
gation.  

CONCLUSIONS 

The use of a database-derived frailty measure offers new opportu-
nities to facilitate frailty screening in clinical care and quantify frail-
ty for large population-based database research in which clinical 
assessment is not feasible. Several database-derived frailty mea-
sures have been validated for use in administrative claims data and 
EHR, with some key differences (Fig. 2): target population (16 
ambulatory, 1 long-term care, and 4 inpatient), data source (16 
claims-based and 5 EHR-based measures), length of the assess-
ment period (6 to 36 months), data types required for calculation 
(diagnosis codes required for 17 measures, health service codes for 
7 measures, pharmacy data for 4 measures, and other additional 

Table 3. Potential applications of database-derived frailty measures and areas for future research
Areas Applications Caveats/areas for future research
Clinical care Screen for frail individuals requiring detailed evaluation and care 

management in a health care system or health plan
Predict the risk of adverse health outcomes (frailty measures are more 

useful than comorbidity measures for the prediction of disability, 
mobility impairment, falls, and SNF days).

Database-derived frailty measures are acceptable yet imperfect; thus, 
they are unlikely to replace clinical assessment.

Seeking health care during acute illness or functional decline may lead to 
overestimation of the frailty level (informed presence bias).

Further improvement in frailty measurement may be possible by in-
cluding clinical assessment datasets (e.g., MDS or OASIS in the 
United States Medicare database) or EHR clinic notes.

Research Efficiently screen for frail individuals to enroll in a clinical trial
Adjust for case-mix (confounding) by frailty in evaluating the effect of 

medical treatment or outcomes among health care systems
Evaluate the treatment effect heterogeneity by frailty in analysis of 

health care databases or clinical trial datasets (by linking clinical trial 
data to claims data for estimation of frailty level)

Responsiveness and MCID of database-derived frailty measures re-
main to be investigated.

The assessment period used to calculate a frailty measure ranges from 
6 to 36 months. The optimal period is not known.

Residual confounding may exist even after adjusting for case-mix by 
using a database-derived frailty measure.

Usefulness of EHR data may depend on the health information tech-
nology infrastructure and completeness of documentation.

EHR, electronic health records; MCID, minimal clinically important difference; MDS, Minimum Data Set; OASIS, Outcome and Assessment Information Set; 
SNF, skilled nursing facility.
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information for 9 measures), and outcomes against which a frailty 
measure was validated (clinical frailty assessment for 7 measures, 
disability for 7 measures, and mortality for 16 measures). This 
summary can serve as a guide to choosing a database-derived frail-
ty measure that suits specific objectives and databases at hand. 
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