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Abstract

Response inhibition is of vital importance in the context of controlling inappropriate

responses. The role of perceptual processes during inhibitory control has attracted

increased interest. Yet, we are far from an understanding of the mechanisms. One

candidate mechanism by which perceptual processes may affect response inhibition

refers to “gain control” that is closely linked to the signal-to-noise ratio of incoming

information. A means to modulate the signal-to-noise ratio and gain control mecha-

nisms is perceptual learning. In the current study, we examine the impact of percep-

tual learning (i.e., passive repetitive sensory stimulation) on response inhibition

combining EEG signal decomposition with source localization analyses. A tactile

GO/NOGO paradigm was conducted to measure action restraint as one

subcomponent of response inhibition. We show that passive perceptual learning

modulates response inhibition processes. In particular, perceptual learning attenuates

the detrimental effect of response automation during inhibitory control. Temporally

decomposed EEG data show that stimulus-related and not response selection pro-

cesses during conflict monitoring are linked to these effects. The superior and middle

frontal gyrus (BA6), as well as the motor cortex (BA4), are associated with the effects

of perceptual learning on response inhibition. Reliable neurophysiological effects

were not evident on the basis of standard ERPs, which has important methodological

implications for perceptual learning research. The results detail how lower level sen-

sory plasticity protocols affect higher-order cognitive control functions in frontal cor-

tical structures.
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1 | INTRODUCTION

Response inhibition, as a core feature of executive functioning, is of

vital importance in the context of controlling dominant, inappropriate

responses (Diamond, 2013; Miyake & Friedman, 2012). Even though

attentional and perceptual processes play a major role when inhibitory

control has to be exerted (Boehler et al., 2009; Chmielewski,

Mückschel, Stock, & Beste, 2015; Huster, Westerhausen, Pantev, &

Konrad, 2010; Raud & Huster, 2017; Shedden & Reid, 2001; Stock,

Popescu, Neuhaus, & Beste, 2016; Verbruggen, Liefooghe, & Van-

dierendonck, 2006), we are far from an understanding how modula-

tions of perceptual processes affect response inhibition. For better

comprehension of this interrelation, we investigate action restraint

(withholding a predominant response) as one subcomponent of

response inhibition (Bari & Robbins, 2013; Schachar et al., 2007;

Sebastian et al., 2013) that is usually measured by means of a
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GO/NOGO task (Diamond, 2013; Eagle, Bari, & Robbins, 2008;

Sebastian et al., 2013; Sebastian, Forstmann, & Matzke, 2018). A can-

didate mechanism by which perceptual processes may affect response

inhibition refers to “gain control.” Gain control mechanisms relate sen-

sory input to the corresponding (motor) output (Aston-Jones &

Cohen, 2005; S.-C. Li & Rieckmann, 2014; Servan-Schreiber, Printz, &

Cohen, 1990). Gain control critically depends on the signal-to-noise

ratio of sensory information. When signal-to-noise ratio is high, the

input has a strong effect on output activation (Aston-Jones & Cohen,

2005; Servan-Schreiber et al., 1990). Just recently it has been shown

that gain control principles and neurobiological factors modulating

signal-to-noise ratio of information processing in neural circuits affect

response inhibition processes in superior frontal cortices (Adelhöfer,

Mückschel, Teufert, Ziemssen, & Beste, 2019). An important mecha-

nism by which gain control related mechanisms can be modulated is

perceptual learning (B. Dosher & Lu, 2017).

Perceptual learning can be induced by passive repetitive sensory

stimulation (Beste & Dinse, 2013; Freyer, Reinacher, Nolte, Dinse, &

Ritter, 2012; Parianen Lesemann, Reuter, & Godde, 2015; Seitz &

Dinse, 2007). The mechanism behind this type of learning is likely

based on changes in synaptic transmission (Beste & Dinse, 2013) and

is also associated with cortical reorganization processes (Pleger et al.,

2003). Studies investigating the effects of repetitive sensory stimula-

tion have been conducted in various modalities, yet the tactile modal-

ity has been studied most extensively (Beste & Dinse, 2013).

Repetitive tactile stimulation protocols enhance spatial tactile acuity

at the stimulation site (Beste & Dinse, 2013; Dinse, Kattenstroth,

Lenz, Tegenthoff, & Wolf, 2017; Godde, Stauffenberg, Spengler, &

Dinse, 2000; Ragert, Vandermeeren, Camus, & Cohen, 2008; Rocchi

et al., 2017). Interestingly, it has been demonstrated that perceptual

learning enhances the stimulus-related signal and the representation

of the relevant signal in neural circuits (B. A. Dosher & Lu, 1998; Gold,

Bennett, & Sekuler, 1999). Therefore, and because the efficiency of

the stimulus to trigger a specific output is increased by perceptual

learning (Gold et al., 1999), it is conceivable that perceptual learning

facilitates behavioral control (Beste, Wascher, Güntürkün, & Dinse,

2011). Importantly, increasing the strength of stimulus representa-

tions reduces automated response tendencies in response inhibition

tasks and makes it easier to inhibit a response (Cavina-Pratesi, Bricolo,

Prior, & Marzi, 2001; Chmielewski & Beste, 2016; Dippel, Mückschel,

Ziemssen, & Beste, 2017; Fiedler, Schröter, & Ulrich, 2011; Gondan,

Götze, & Greenlee, 2010). Therefore, we hypothesize that response

inhibition performance in a tactile GO/NOGO task is enhanced

through the use of a tactile perceptual learning protocol. This hypoth-

esis is also reasonable on the basis of neuroanatomical considerations:

The somatosensory cortex is connected to motor areas and the sup-

plementary motor cortex (SMA) (Ackerley & Kavounoudias, 2015;

Borich, Brodie, Gray, Ionta, & Boyd, 2015; Chouinard & Paus, 2006).

The latter is part of a response inhibition network (Sebastian et al.,

2018). Furthermore, motor control is modulated by changes of

somatosensory input (Borich et al., 2015) and it has already been

shown that repetitive tactile and electrical stimulation improves motor

performance (Kalisch, Tegenthoff, & Dinse, 2008; Kalisch,

Tegenthoff, & Dinse, 2010). Since somatosensory perceptual learning

modulates processing in somatosensory cortices (Dinse, Ragert, Ple-

ger, Schwenkreis, & Tegenthoff, 2003), it seems plausible to assume

that perceptual modulation by a tactile stimulation protocol is able to

modulate motor response inhibition processes that are dependent on

prefrontal structures (Bari & Robbins, 2013).

To examine underlying neurophysiological processes, we recorded

the electrophysiological signal (EEG) and modulations at the level of

functional neuroanatomical structures were identified using source

localization analysis (sLORETA). In terms of EEG correlates, especially

the NOGO-N2/P3 event-related potential (ERP) time windows are

important. The NOGO-N2/P3 ERPs reflect different response inhibi-

tion subprocesses as premotor inhibition, conflict monitoring or

response-related evaluation are important to consider (Falkenstein,

Hoormann, & Hohnsbein, 1999; Huster, Enriquez-Geppert, Lavallee,

Falkenstein, & Herrmann, 2013). Yet, especially in the N2 time range,

perceptual and response selection processes have been found to be

intermingled (Chmielewski, Mückschel, & Beste, 2018; Folstein & Van

Petten, 2008; Larson, Clayson, & Clawson, 2014; Mückschel, Dippel, &

Beste, 2017). It has been suggested that the N2 component reflects a

composition of different coding levels: one coding level refers to per-

ceptual processes, the other to response selection processes

(Chmielewski et al., 2018; Folstein & Van Petten, 2008; Mückschel,

Dippel, & Beste, 2017). Since we are specifically modulating percep-

tual processes by passive sensory stimulation, it is likely that no reli-

able effects are observed in standard ERPs, which reflect various

signals from different sources (Huster, Plis, & Calhoun, 2015; Nunez

et al., 1997; Stock, Gohil, Huster, & Beste, 2017). Rather, effects are

likely to be confined to the perceptual coding level involved during

conflict monitoring in response inhibition. To disentangle coding levels

during response inhibition, we use residue iteration decomposition

(RIDE) (Chmielewski et al., 2018; Mückschel, Dippel, & Beste, 2017;

Ouyang, Herzmann, Zhou, & Sommer, 2011; Ouyang, Sommer, &

Zhou, 2015a, 2015b). This procedure decomposes the EEG signal into

different clusters: Stimulus-related processes like perception or atten-

tion are reflected by the S-cluster (Ouyang et al., 2011; Ouyang et al.,

2015b). Processes associated with response selection are reflected by

the C-cluster (Ouyang, Hildebrandt, Sommer, & Zhou, 2017; Verleger,

Metzner, Ouyang, Śmigasiewicz, & Zhou, 2014). We hypothesize that

neurophysiological effects manifest in the S-cluster. However, it can-

not a-priori be ruled out that effects are also evident in the C-cluster.

C-cluster effects have already been found in studies investigating the

influence of perceptual processes on response inhibition performance

(Friedrich, Mückschel, & Beste, 2017a, 2017b). Yet, in these studies

manipulation of perceptual processes was also linked to changes in

response assignments so that C-cluster effects may have occurred

because the C-cluster is rather involved in stimulus–response transi-

tion processes (Bluschke, Chmielewski, Mückschel, Roessner, & Beste,

2017; Ouyang et al., 2017; Verleger et al., 2014).

On a functional neuroanatomical level, we hypothesize prefrontal

and premotor areas of the frontal cortex to be associated with the

effect of perceptual learning on response inhibition since they are fre-

quently shown to be involved in response inhibition processes (Aron,
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Robbins, & Poldrack, 2004; Bari & Robbins, 2013). For example, the

superior frontal gyrus, including the supplementary motor area (SMA),

has been shown to modulate task performance in cognitive and motor

control tasks (W. Li et al., 2013) and has already been linked to S-

cluster modulations in the context of cognitive control (Mückschel,

Chmielewski, Ziemssen, & Beste, 2017). Furthermore, the medial pre-

frontal gyrus has been linked to GO/NOGO task performance deficits

(Bari & Robbins, 2013). It is also plausible that the SMA and pre-SMA

are of relevance since they constitute core structures of response

inhibition (Bari & Robbins, 2013; Chen, Muggleton, Tzeng, Hung, &

Juan, 2009; C. R. Li, Huang, Constable, & Sinha, 2006; Swick, Ashley, &

Turken, 2011) and especially the SMA is linked to somatosensory

areas (Borich et al., 2015). Because of its relevance in regard to move-

ment selection (Rushworth, Johansen-Berg, Göbel, & Devlin, 2003)

and cognitive aspects of motor control (Tanaka, Honda, & Sadato,

2005) activity in the premotor cortex is likely to be modulated as well.

Moreover, the dorsal part of the premotor area, which is closely con-

nected with prefrontal areas, has been associated with linking arbi-

trary cues to specific responses (Chouinard & Paus, 2006;

Chouinard & Paus, 2010) and is therefore expected to be involved in

the modulation of response inhibition.

2 | MATERIALS AND METHODS

2.1 | Participants

The study tests an interaction between the time point of task execu-

tion (before or after perceptual learning) and group (stimulation or no-

stimulation group): that is, a group which received perceptual learning

should reveal modulations of response inhibition after the perceptual

learning protocol has been commenced. A group receiving no such

protocol should reveal no modulations in response inhibition perfor-

mance. The study design hence comprises a between-subject factor

and a within-subject factor. We conservatively considered a smaller

effect size of η2p = .10 to be detectable with a power of at least 95%.

The power analysis using G*Power (Faul, Erdfelder, Lang, & Buchner,

2007) revealed that a total sample size of N = 32 is required for that.

Importantly, the size of the actually observed effect (see Section 3)

was larger (i.e., η2p > .198), which underlines that the study was suffi-

ciently powered.

N = 34 participants (24 females) between 19 and 30 years took

part in the experiment. N = 17 participants (12 females) received

repetitive tactile stimulation (mean age = 24.2; SEM = 0.75) and the

other half (mean age = 24.3; SEM = 0.8) did not receive it. All partici-

pants were right-handed and had no psychiatric or neurological disor-

der. Participants were pseudorandomly assigned to the experimental

groups; that is, it was ensured that the distribution of sexes is equal in

each group. In advance, written informed consent was obtained by

the participants in accordance with the Helsinki Declaration of 1975,

as revised in 2008. All methods were performed in accordance with

the relevant guidelines and regulations. The local ethics committee of

the Medical Faculty of the TU Dresden approved the study.

2.2 | Somatosensory response inhibition task

Since perceptual learning processes are best studied in the somato-

sensory domain, we examined response inhibition using a somatosen-

sory response inhibition task developed by our group (Friedrich et al.,

2017b). During the task, small electromagnetic stimulators were used

for vibrotactile stimulation (Dancer Design; for more detailed informa-

tion see http://www.dancerdesign.co.uk). A “main module”

(Neurocore; http://www.neurocore.de/) was used to control the stim-

ulators that deliver the stimulation. The stimulation setup is described

in Figure 1 and identical to previous studies (Friedrich et al., 2017b).

The right thumb was stimulated since it is easiest to avoid contact

of the stimulation device with the table or response device. 70% of

trials presented GO stimuli and 30% presented NOGO stimuli. This

ratio fosters a response tendency taxing inhibitory control processes

(Dippel et al., 2017; Helton, 2009; Stevenson, Russell, & Helton,

2011). Frequencies of 40 and 150 Hz (duration of 100 ms) were uti-

lized as GO or NOGO stimuli since they are clearly separable

(Friedrich et al., 2017a). These frequencies were chosen because stim-

ulation in the range from 10 to 50 Hz is predominantly activating pri-

mary sensory cortex (Chung et al., 2013; Francis et al., 2000;

Harrington & Hunter Downs III, 2001), while the 100–400 Hz

F IGURE 1 Illustration of the experimental setup. The stimulator
was attached to the right thumb to avoid contact with the table and
the response device. Participants were asked to respond by button
press with their right index finger to the GO stimulation
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stimulation range activates the secondary somatosensory cortex

(Chung et al., 2013; Francis et al., 2000; Kalberlah, Villringer, & Pleger,

2013). The experiment consisted of four blocks and participants

received 204 trials per block (i.e., 832 trials in total). In two blocks, the

low frequency served as GO and the high frequency as NOGO stimu-

lus. In the other two blocks this was vice versa. The order of blocks

presenting different GO and NOGO stimulus frequencies was

counterbalanced across subjects. The data were analyzed without

considering the frequency used to present GO and NOGO trials, since

we had no a-priori hypothesis that the frequency used to present GO

or NOGO stimuli interacts with the perceptual learning protocol; that

is, the low and high frequency GO trials were pooled afterwards. The

same was done for NOGO trials. The amplitude of the tactile stimuli

was the same for all participants. Participants were asked to respond

to GO stimuli with the index finger of their right hand as fast as possi-

ble and to inhibit their response in NOGO trials. The trial sequence in

each block was pseudorandomized to eliminate sequence effects and

the time between trials was jittered between 700 and 1,100 ms to

avoid stimulus onset predictability. A GO trial was classified as correct

when the button press occurred within 100–1,000 ms after GO stim-

ulus presentation. For a correct NOGO trial, no response should occur

in that interval. Prior to the experiment, participants were familiarized

with the stimuli and received practice blocks to make sure that the

procedure was understood.

2.3 | Perceptual learning protocol

Due to the high spatial specificity of tactile perceptual learning effects

(Ragert et al., 2008), the stimulation site during the perceptual learn-

ing protocol was the thumb, which was also used as stimulation site

during the GO/NOGO task. Also, the same electromagnetic stimula-

tors were used. The perceptual learning protocol consisted of a 20 Hz

stimulation delivered for 1 s followed by an interval of 5 s with no

stimulation. This sequence was repeated for period of 40 min. The

protocol was chosen since it has been shown to facilitate tactile dis-

crimination for at least 24 hr when applied for 20 min (Ragert et al.,

2008) and was also used in other studies (Dinse et al., 2017; Freyer

et al., 2012; Freyer, Becker, Dinse, & Ritter, 2013). Similar effects

were also demonstrated in other sensory domains (Beste & Dinse,

2013). To ensure sufficient aftereffects, stimulation duration was set

to 40 min as done in studies applying visual stimulation protocols

(Beste et al., 2011). To avoid that subjects attended the stimulation,

they watched a nature documentary during stimulation. Participants

who did not receive tactile stimulation also watched the documentary

while the stimulation device was still attached to the thumb so that

the set up was identical between the two groups. This procedure was

chosen because it ensures controlled conditions between the testings

and also ensured that the participants being stimulated did not

actively attend the tactile stimulation protocol. It was considered the

methodologically most appropriate alternative to have exact the same

set up for both groups except of varying the administration of the

stimulation protocol. A control stimulation at the same hand was

excluded since it could still have interfered with the relevant

stimulation site due to potentially overlapping cortical representations

(Ackerley & Kavounoudias, 2015; Kalberlah et al., 2013; Sanchez Pan-

chuelo, Besle, Schluppeck, Humberstone, & Francis, 2018). Con-

ducting the control stimulation on the other hand was also not an

option because transcallosal connections between homologous

somatosensory regions as well as nonhomologous regions (Tamè,

Braun, Holmes, Farnè, & Pavani, 2016) could have a potential effect

on the results. After watching the documentary with or without stim-

ulation, participants performed the tactile GO/NOGO task again.

2.4 | EEG recording and analysis

EEG recording was done using 60 passive Ag/AgCl ring electrodes

arranged at equidistant positions. Electrodes were connected to a

QuickAmp amplifier (Brain Products Inc.) and the EEG data was

preprocessed with BrainVision Analyzer (Brain Products Inc.). The

coordinates for the ground and reference electrodes were theta = 58,

phi = 78 and theta = 90, phi = 90, respectively. EEG data were sam-

pled at a rate of 500 Hz. The recording bandwidth was 0.5–80 Hz and

electrode impedances were kept below 5 kΩ. The IIR band-pass filter

was set to 0.5–20 Hz with a slope of 48 dB/oct. Afterwards, a manual

raw data inspection was conducted to discard infrequent technical or

muscular artifacts. This was followed by an independent component

analysis (ICA; infomax algorithm) performed for all blocks to detect

regularly occurring artifacts like blinks or lateral eye movements. Inde-

pendent components clearly reflecting such artifacts were removed.

Then, the data was segmented according to the different experimental

conditions. Only trials with correct responses were used for further

data analysis steps. Criteria were a correct button press within

100–1,000 ms after GO stimulus presentation and no button press

within this 1,000 ms time period in NOGO trials. In an automated arti-

fact rejection procedure, trials with a maximal value difference of

200 μV in a 200 ms period were discarded. Further rejection criteria

were amplitudes below −200 μV and above 200 μV, as well as below

0.5 μV in a 100 ms interval. On average, 11% of all GO trials and 18%

of all NOGO trials were rejected either manually or by automated arti-

fact rejection. Of originally 582 GO trials 516 remained and of origi-

nally 250 NOGO trials 204 remained (on average).

On average, 13% of all trials were rejected either manually or by

automated artifact rejection. Of initially 832 trials, 720 remained.

Thus, the remaining number of trials is sufficient for a reliable data

analysis.

Subsequently, a current source density (CSD) transformation was

applied with 4 splines and 10 polynomials. By conducting a CSD

transformation the reference potential is removed and a reference-

free evaluation of the data is obtained leading to amplitude values in

μV/m2. Since the CSD transformation works as a spatial filter

(Nunez & Pilgreen, 1991; Tenke & Kayser, 2012), it fosters the identi-

fication of relevant electrode sites for data quantification. Following

this, a baseline correction from −200 to 0 was conducted with time

point 0 representing the time of GO/NOGO stimulus presentation. In

the next step, an averaging of different conditions (stimulation/no-

stimulation group, first or second time point of task execution and
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GO/NOGO trials) was performed on the single-subject level. Then,

the ERP amplitudes were quantified at the single subject level. The

time windows and electrode sites for data quantification were chosen

on the basis of a visual inspection of corresponding ERP scalp topog-

raphy maps. This choice of electrodes and time windows was vali-

dated using a statistical method (Mückschel, Stock, & Beste, 2014):

Within each of the search intervals (see below), the peak amplitude

was extracted for all electrode sites. Each electrode was subsequently

compared against the average of all other electrodes using

Bonferroni-correction for multiple comparisons (critical threshold

p = .0007). Only electrodes that showed significantly larger mean

amplitudes (i.e., negative for N-potentials and positive for the P-

potentials) than the remaining electrodes were selected. The identi-

fied electrode sites matched those determined in the visual inspection

of the data. We quantified the P2 in the time window between

170 and 200 ms in GO and NOGO trials for the “stimulation group”

and 210–240 ms in GO and NOGO trials for the “no-stimulation

group.” The mean amplitude in the N2 time window was quantified at

electrode Cz in the time range from 350 to 380 ms in GO trials for

both groups and time points. This time window might seem late for

this component, yet the N2 component can occur between 200 and

400 ms after stimulus onset (Albares, Lio, & Boulinguez, 2015) and

the chosen time window is still within this range. In NOGO trials, the

time window from 260 to 290 ms was used for the “stimulation

group” for both time points. In the “no stimulation group” the time

range between 305 and 335 ms was quantified for the first time point

and 280–310 ms for the second time point. The mean amplitude of

the P3 component was also quantified at electrode Cz in the time

period from 470 to 510 ms in GO trials for both time points and

groups. In NOGO trials, the time window from 360 to 410 ms was

quantified in the “stimulation group” for both time points as well as

the “no stimulation group” at the second time point. The time range

between 440 and 500 ms was used for the first time point in the “no

stimulation group.”

2.5 | Residue iteration decomposition

The RIDE algorithm uses single-trial EEG data and was performed

with MATLAB (MATLAB 12.0; Mathworks Inc.). We applied the RIDE

toolbox (available on http://cns.hkbu.edu.hk/RIDE.htm) following pre-

vious work (Mückschel, Chmielewski, et al., 2017; Ouyang et al.,

2011; Verleger et al., 2014). For mathematical details of that method

please refer to previous literature on the method (Ouyang et al.,

2015a). In principle, the RIDE algorithm decomposes ERP components

and minimizes the residual error arising from temporal (i.e., latency)

variability in single trials (Ouyang et al., 2015a). The RIDE decomposi-

tion is performed for each electrode separately without taking scalp

distributions or waveforms into account. Therefore, the CSD transfor-

mation can be applied without biasing the results. The RIDE algorithm

has the advantage of decomposing ERP signals into clusters that can

be linked to stimulus onset (S-cluster) or reaction times (R-cluster).

Since no reaction time measures can be recorded in correct NOGO

trials, the response-related R-cluster is not considered in GO/NOGO

paradigms (Ouyang, Schacht, Zhou, & Sommer, 2013). Furthermore, a

third cluster (C-cluster) can be extracted. It has a variable latency and

is temporally located between stimulus and response. The C-cluster

waveform is initially estimated and then iteratively improved. A time

window function initially estimates C-cluster latency and a self-

optimizing iteration scheme is employed to enhance C-cluster latency

estimation. This process works by removing the S-cluster and re-

estimating the C-cluster latency by mean of a template matching

approach. It is essential to predefine the time windows in which the

clusters are expected to occur. Therefore, it is necessary to adjust the

values to the data under investigation (Ouyang et al., 2015a). Further

information is available in Ouyang et al. (Ouyang et al., 2011, 2015a,

2015b). The time window for the S-cluster was set to −200 to

600 ms and for the C-cluster to 150–800 ms around stimulus onset.

These time windows are comparable to those used in previous studies

(Friedrich et al., 2017a, 2017b).

The S-cluster was quantified at electrode Cz in the time window

between 350 and 380 ms in GO trials for both time points and groups.

In NOGO trials, the time range from 260 to 290 ms was quantified

within the “stimulation group” for both time points. In the “no stimula-

tion group” the time window from 300 to 340 ms was chosen for both

time points. Furthermore, the S-cluster was quantified between

170 and 200 ms in GO and NOGO trials for the “stimulation group”

and 210–240 ms in GO and NOGO trials for the “no stimulation

group.” The C-cluster was quantified between 510 and 540 ms in GO

trials for the “stimulation group” for both time points. In the “no stim-

ulation group” the time range was set to 550–580 ms for both time

points. In NOGO trials, the time window in the “stimulation group”

was quantified from 380 to 400 ms for both time points and in the

“no stimulation group” the time period from 420 to 440 ms was cho-

sen for both time points. The selection of time windows and electrode

sites was performed and validated using the same procedure as used

for the standard ERP data.

2.6 | Source localization analysis

Source localization analysis was performed using sLORETA (standard-

ized low resolution brain electromagnetic tomography) (Pascual-Mar-

qui, 2002). sLORETA has the advantage of providing a single solution

to the inverse problem (Marco-Pallarés, Grau, & Ruffini, 2005;

Pascual-Marqui, 2002; Sekihara, Sahani, & Nagarajan, 2005). First, the

intracerebral volume is split into 6,239 voxels that have a spatial reso-

lution of 5 mm. By means of a realistic three-shell spherical head

model, the standardized current density is then calculated for each

voxel (Fuchs, Kastner, Wagner, Hawes, & Ebersole, 2002) based on an

MNI152 template (Mazziotta et al., 2001). sLORETA yields reliable

results without localization bias as demonstrated mathematically

(Sekihara et al., 2005). Sources found by sLORETA have also been val-

idated by further EEG/fMRI and neuronavigated EEG/TMS studies

(Dippel & Beste, 2015; Sekihara et al., 2005). To compare voxel-based

sLORETA images across conditions and groups, the sLORETA-built-in

voxel-wise randomization tests with 2,500 permutations were applied

which rests on statistical nonparametric mapping (SnPM). Voxels
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demonstrating significant differences (p < .01, corrected for multiple

comparisons) between calculated contrasts were shown in the MNI

brain.

2.7 | Statistical analysis

Behavioral data (i.e., hits and reaction times in GO trials, as well as

false alarms in NOGO trials) were analyzed by means of mixed-effects

analysis of variance (ANOVAs). “Time point” (first/second time point

of task execution) was used as a within-subject factor. “Group” (stimu-

lation/no stimulation) was set as a between-subject factor. Mixed-

effects ANOVAs were also used to analyze neurophysiological data

and “trial type” was added as another within-subject factor. All tests

were Greenhouse–Geisser corrected and Bonferroni correction was

conducted for all post hoc tests. The mean and SEM are given for the

descriptive statistics.

3 | RESULTS

3.1 | Behavioral data

A mixed-effects ANOVA of hit rates revealed a significant main effect

of “time point” (F(1,32) = 7.1; p = .012; η2p = .182) with higher hit rates

at the first (99%±0.2) than at the second time point of task execution

(98.1%±0.4). No other main or interaction effect was significant (all

F≤1; p≥ .335). Analyzing hit reaction times demonstrated a significant

main effect of “time point” (F(1,32) = 75.3; p< .001; η2p = .702) wither

faster responses at the second (381ms±9) than at the first time point

of task execution (434ms±12). No further main or interaction effect

was significant (all F≤0.7; p≥ .411).

The analysis of false alarm rates (i.e., responding in NOGO trials

although no response is required) as the most important indicator of

response inhibition performance showed a significant main effect of

“time point” (F(1,32) = 31.2; p < .001; η2p = .493). More inhibition

errors were committed at the second time point of task execution

(8.8%±1) than at the first (6.7%±1). There was no main effect

“group” (F(1,32) = 0.2; p = .674; η2p = .006). Importantly, a significant

interaction effect of “time point x group” was obtained (F(1,32) = 7.9;

p = .008; η2p = .198). A post hoc power calculation revealed a power of

99% for that effect. Post hoc paired t tests were conducted showing

that within the “no stimulation group” false alarm rates at the first

(5.8%±1.1) and the second time point of task execution (8.9%±1.4)

differed significantly (t(16) = −6.29; p< .001). In the “stimulation

group” there was only a marginally significant difference between the

task performance at the first (7.7%±1.6) and the second time point of

task execution (8.7%±1.6) (t(16) = −1.86; p = .082). Importantly, an

independent samples t test showed that the difference between the

false alarm rates at the first and the second time point of task execu-

tion was significantly larger in the “no stimulation group” (3.1%±0.5)

than in the “stimulation group” (1%±0.5) (t(32) = 2.8; p = .008). This

shows that the extent of deterioration of inhibition performance

between testing time points is significantly larger in the group that did

not receive tactile stimulation.

Details can be found in Table 1.

3.2 | Standard event-related potentials (ERP
components)

The standard ERPs are shown in Figure 2.

The mixed-effects ANOVA for the N2 component revealed a main

effect of “time point” (F(1,32) = 5.09; p = .031; η2p = .137) with a larger

(i.e., less negative) amplitude at the first (2.97 μV/m2±1.96) than at

the second time point (1.42 μV/m2±1.7). The main effect of “trial

type” was also significant (F(1,32) = 28.05; p< .001; η2p = .467) and the

N2 was more negative in GO (−3.13 μV/m2±1.67) than in NOGO tri-

als (7.51 μV/m2± 2.39). These effects are in contrast to the literature

(Huster et al., 2013), where the N2 is usually more negative in NOGO

than GO trials. However, this may reflect an effect of the repeated

measures design, intraindividual variability in the data and specific

effects of the stimulation protocol on a subset of processes inter-

mingled in the N2 time window. The latter is also suggested by the

RIDE data analysis. There was a significant interaction of “time

point× group” (F(1,32) = 6.91; p = .013; η2p = .178). Post hoc indepen-

dent samples t tests showed that groups did not differ at the first time

point (t(32) = 1.27; p = .213) but at the second time point (t

(32) = 2.53; p = .016). The N2 was more negative in the “stimulation

group” (−2.88 μV/m2±2.55) than in the “no stimulation group”

(5.72 μV/m2±2.24). A significant interaction of “time point× trial

type” was obtained (F(1,32) = 6.73; p = .014; η2p = .174). Post hoc

paired t-tests revealed that the first and the second time point were

not significantly different in GO trials (t(33) = −0.02; p = .984) but in

NOGO trials (t(33) = 3.11; p = .004). The amplitude at the first time

point was more positive (9.07 μV/m2 ±2.60) than at the second time

point (5.95 μV/m2±2.42). Importantly, no other main or interaction

effect was significant (all F≤3.55; p≥ .069), including an interaction

TABLE 1 Behavioral data dependent on the stimulation and no stimulation group

Group Time point of task execution Hit rates Hit reaction times False alarms

Stimulation group First 98% 424 ms 7.7%

Second 99% 373 ms 8.7%

No stimulation group First 98% 444 ms 5.8%

Second 99% 388 ms 8.9%

Note: Interaction effects. Mean (M) hit rates, hit reaction times, and false alarm rates.
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“time point× trial type× group” (all F≤ 0.99; p≥ .549). That interaction,

however, is important given the behavioral data. To examine this obvi-

ous lack of a differential effect of time point and trial type in further

detail, we conducted a Bayesian analysis of that particular interaction

using the method by Masson (2011). This means, we calculated the

probability of the null hypothesis being true given the data p(H0/D).

According to Raftery (1995), values higher 0.5 indicate that the null

hypothesis is more likely to be true than the alternative hypothesis.

For the interaction, we calculated a probability of p(H0/D) = 0.83.

These additional results provide positive evidence in favor of the null

hypothesis.

The mixed-effects ANOVA of the P2 component revealed no sig-

nificant main or interaction effects (all F ≤ 2.7; p ≥ .110) and also the

factor “group” was not significant (F(1,32) = 3.7; p = .064; η2p = .103).

The mixed-effects ANOVA for the P3 component showed a main

effect of “time point” (F(1,32) = 12.01; p = .002; η2p = .273) with a

larger P3 amplitude at the second (14.44 μV/m2±1.93) than at the

first time point of task execution (11.06 μV/m2±1.86). Furthermore, a

main effect of “trial type” was obtained (F(1,32) = 38.88; p< .001;

η2p = .549) revealing larger amplitudes in NOGO (20.16 μV/m2± 2.66)

than in GO trials (11.06 μV/m2±5.34). No other main or interaction

effects were significant (all F≤2.73; p≥ .109). The Bayesian analysis

revealed strong support for a lack of effects, especially in the missing

interaction “time point× trial type× group” (p(H0/D) = 0.85). To sum-

marize, the standard ERP data did not parallel the observed behavioral

effects.

3.3 | Residue iteration decomposition

3.3.1 | S-cluster

The S-cluster is shown in Figure 3a.

The mixed-effects ANOVA for the S-cluster in the N2 time win-

dow showed a main effect of “time point” (F(1,32) = 32.2; p < .001;

η2p = .502) with a larger S-cluster at the second (−3.11 μV/m2±1.31)

than at the first time point of task execution (0.38 μV/m2± 1.36). Fur-

thermore, a significant interaction of “time point× trial type” was rev-

ealed (F(1,32) = 10.22; p = .003; η2p = .242). Post hoc paired t tests

showed that GO (−1.44 μV/m2±1.22) and NOGO trials (2.2 μV/

m2±1.8) differed at the first time point of task execution (t

(32) = −2.6; p = .014). Yet, there was no difference at the second time

point (t(32) = −0.1; p = .939). Moreover, a significant interaction of

“time point× trial type× group” was obtained (F(1,32) = 5.98; p = .020;

η2p = .158). Analyzing trial types separately revealed that the interac-

tion of “time point× group” was not significant in GO trials (F

(1,32) = 0.49; p = .491; η2p = .015), but for NOGO trials (F(1,32) = 5.16;

p = .030; η2p = .139). For the NOGO trials, post hoc paired t tests

showed that the first and the second time point of task execution dif-

fered in the “stimulation group” (t(16) = 5.1; p< .001) as well as in the

“no stimulation group” (t(16) = 2.2; p = .041). An independent samples

t test revealed that the difference in S-cluster amplitudes between

the second and the first time point of task execution was significantly

larger in the “stimulation group” (−7.49 μV/m2±1.46) than in the “no

stimulation group” (−2.99 μV/m2±1.34) (t(32) = 2.27; p = .030). The

sLORETA analysis (refer Figure 3a) revealed that this differential

effect was due to activation differences in the superior frontal gyrus

(BA6), with activation extending into the middle frontal gyrus and the

motor cortex (BA4). It is shown that these areas undergo stronger

modulations in the stimulation group than the nonstimulation group

and that the above mentioned brain regions were more strongly acti-

vated in the stimulation than the nonstimulation group. For the S-

cluster data, no further main or interaction effect was significant (all

F≤2.96; p≥ .095).

F IGURE 2 The N2 and P3 ERP components at electrode Cz are shown for NOGO (left) and GO trials (right). Different colors of the
electrophysiological time series represent the different groups (“stimulation” and “no stimulation” group) and time points of task execution for
NOGO and GO trials as shown in the legends. Time point 0 marks the stimulus presentation
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The mixed-effects ANOVA for the S-cluster in the P2 time win-

dow revealed a main effect of “trial type” (F(1,32) = 6.7; p = .015;

η2p = .172) with a larger amplitude in GO (12.87 μV/m2±1.73) than in

NOGO trials (11.25 μV/m2±1.56). No further significant main or

interaction effects were achieved (all F≤2.4; p≥ .131). Also the main

effect of “group” was not significant (F(1,32) = 2.9;

p = .099; η2p = .083).

3.3.2 | C-cluster

The C-cluster is shown in Figure 3b. The mixed-effects ANOVA for

the C-cluster showed a significant main effect of “trial type” (F

(1,32) = 34.07; p < .001; η2p = .516) with a larger C-cluster in NOGO

(25.88 μV/m2±2.68) than in GO trials (8.46 μV/m2±1.69). No other

main or interaction effects were significant (all F≤ 2.84; p≥ .102). To

examine this lack of a differential effect of “time point” and “trial type”

in detail, we conducted a Bayesian analysis of that particular interac-

tion using the method by Masson (2011). That is, we calculated the

probability of the null hypothesis being true given the data p(H0/D).

For the interaction, we calculated a probability of p(H0/D) = 0.80.

These additional results provide positive evidence in favor of the null

hypothesis.

4 | DISCUSSION

The current study aimed at investigating the role of perceptual learn-

ing in the context of response inhibition. Since perceptual learning can

affect gain control mechanisms by improving the signal-to-noise ratio

F IGURE 3 The S-cluster (upper part of the figure) at electrode Cz and the C-cluster (lower part) at electrode Cz are shown for NOGO (left)
and GO trials (right). Different colors of the electrophysiological time series represent the different groups (“stimulation” and “no stimulation”
group) and time points of task execution for NOGO and GO trials as shown in the legends. Time point 0 marks the stimulus presentation. The
scalp topography plots show the S-cluster and C-cluster at the peak of each cluster in NOGO trials for the different task modalities and
compatibility conditions. Red color indicates positive and blue negative values. The source localization plots illustrate the source of activity
modulations between the different groups at the different time points of task execution in the S-cluster in NOGO trials. The corresponding color
scale shows critical t-values (corrected for multiple comparisons using SnPM)
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of sensory information, we hypothesized that response inhibition per-

formance can be enhanced through the use of a perceptual learning

protocol. Functional anatomical considerations concerning the con-

nection of somatosensory and motor areas of the frontal cortex also

provided a plausible background to examine this question. Since stan-

dard ERPs represent a combination of stimulus-related and response-

related signals, the intermingled neurophysiological codes were

decomposed using the RIDE algorithm. Therefore, it was possible to

identify the neurophysiological effects underlying the modulation of

response inhibition through the use of a perceptual learning protocol.

Source localization analysis (sLORETA) was applied to reveal associ-

ated functional neuroanatomical structures.

Regarding the examined hypothesis of improved response inhibi-

tion performance through the use of a perceptual learning protocol,

we found an interaction of “time point x group” on the behavioral

level. It was demonstrated that the difference between the false alarm

rates at the first and the second time point of task execution was

larger in the group receiving no perceptual learning protocol than in

the group receiving the perceptual learning protocol. Without the use

of a perceptual learning protocol, a decline in inhibition performance

occurs when the task is executed for the second time likely because

the repetition is amplifying the automation of the response tendency

triggered by more frequent GO stimuli compared to NOGO stimuli

(Dippel et al., 2017). The tendency to respond to GO stimuli is

assumed to automate with an increase in task experience (Bensmann,

Zink, Roessner, Stock, & Beste, 2019; Dippel et al., 2017; Dippel,

Chmielewski, Mückschel, & Beste, 2016; Helton, 2009). The percep-

tual learning protocol, however, seems to have a “protective effect”

since repeated task administration that likely induces a prepotent ten-

dency to respond did not modulate response inhibition performance.

The difference in inhibition performance at the first time point (before

the passive perceptual learning protocol was administered) cannot be

attributed to the tactile stimulation since the protocol was only deliv-

ered after the participants initially performed the task. At the second

time point of task execution, the groups showed comparable results

yet the performance deterioration was significantly larger in the “no

stimulation group” and the only factor that was modified between the

two time points of task execution was the execution of the passive

perceptual learning protocol. Therefore, we conclude that the percep-

tual learning protocol has a sort of a “protective” function in the way

that it prevents the heavy drop in performance associated with task

repetition or response automation. The reason might be the following:

Gain control mechanisms are likely modulated by perceptual learning

(B. Dosher & Lu, 2017). Perceptual learning likely increases the signal-

to-noise ratio of incoming sensory information (B. A. Dosher & Lu,

1998; Gold et al., 1999) and strengthens the stimulus-related signal.

Due to gain modulation principles, an increase in the signal-to-noise

ratio by enhancing the stimulus-related signal also improves the

strength of the appropriate output activation; that is, gain control

becomes stronger (Aston-Jones & Cohen, 2005; Chance, Abbott, &

Reyes, 2002; S.-C. Li, Lindenberger, & Sikström, 2001; S.-C. Li &

Sikström, 2002; Servan-Schreiber et al., 1990). This makes it easier to

perform the correct action (i.e., a fast response in GO trials and no

response in NOGO trials). Probably, the automated behavior triggered

by the GO stimulus is more likely to be interrupted because the

behavior associated with the NOGO stimulus (i.e., no motor response)

is more efficiently triggered. Therefore, the detrimental effect of

response automation is attenuated. Examining the behavioral results,

the question arises whether inhibitory processes are qualitatively dif-

ferent or whether differences between the two stimulation conditions

arise from perceptual processing differences. Clearly, effects originate

from different inhibitory processes because if only perceptual pro-

cesses were affected, an effect would also occur in GO trials. Yet, we

found no group differences in GO trials. Behavioral effects were spe-

cific for NOGO trials suggesting a modification of the inhibitory

process.

Speeding of response time was accompanied by an increase in

false alarm rates, which might be interpreted in terms of a speed-

accuracy tradeoff. Yet, both groups become faster and produce more

inhibition errors, but the crucial point is that the extent to which per-

formance is deteriorated still differs between the groups. The detri-

mental influence of task repetition is obviously attenuated by the

administration of the perceptual learning protocol since it is the only

factor that was varied between the groups. The behavioral pattern

was paralleled by a specific neurophysiological effect. The RIDE

results revealed that stimulus-related processes and not response

selection processes reflect behavioral results; that is, only the S-

cluster in the N2 time window showed a “time point x group” interac-

tion in NOGO trials, but not the C-cluster. A Bayesian analysis

supported the absence of effects in the C-cluster. It has been

suggested that conflict monitoring processes during response inhibi-

tion that are indicated by activity in the N2 time window, reflect a

composition of different coding levels: one coding level refers to per-

ceptual processes, the other to response selection processes

(Chmielewski et al., 2018; Folstein & Van Petten, 2008; Mückschel,

Dippel, & Beste, 2017). Especially in the N2 time range, perceptual

coding levels are relevant during the inhibition of responses

(Chmielewski et al., 2018; Mückschel, Dippel, & Beste, 2017) and the

data suggest that perceptual learning affects response inhibition pro-

cesses by modulating perceptual coding levels in the N2 time window.

It is likely that the use of a perceptual learning protocol facilitates

stimulus-related conflict monitoring processes during response inhibi-

tion since perceptual learning has been shown to enhance stimulus

signal strength (B. A. Dosher & Lu, 1998; Gold et al., 1999). The larger

S-cluster difference between the first and the second time point likely

reflects the modulation of perceptual processes. Stimulus-related pro-

cesses involved in conflict monitoring during response inhibition seem

to become increased through perceptual learning. That is, perceptual

learning intensified specific aspects of conflict processing during

response inhibition. This well explains the smaller extent of response

inhibition performance deterioration in the group receiving the per-

ceptual learning protocol. The enhancement of stimulus-related pro-

cesses through perceptual learning likely improves response inhibition

processes.

The sLORETA data showed that S-cluster modulations were asso-

ciated with activation differences in the superior and middle frontal
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gyrus (BA6) as well as the motor cortex (BA4). These prefrontal and

motor areas have frequently been found to be associated with

response inhibition processes (Bari & Robbins, 2013). Especially the

medial part of BA6 (i.e., pre-SMA and SMA) has repeatedly been

shown to be involved in response inhibition (Bari & Robbins, 2013;

Chen et al., 2009; C. R. Li et al., 2006; Swick et al., 2011) and has also

been associated with conflict monitoring processes (Rushworth,

Kennerley, & Walton, 2005; Rushworth, Walton, Kennerley, &

Bannerman, 2004). Conflict monitoring processes are likely to be

modulated in the current study, as indicated by S-cluster amplitude

modulations in the N2 time window. BA6 revealed stronger activation

in the group receiving the perceptual learning protocol compared to

the group receiving no such protocol. This corroborates our interpre-

tation that perceptual learning intensified specific aspects of conflict

processing during response inhibition. Interestingly, the superior fron-

tal gyrus has already been associated with S-cluster modulations dur-

ing inhibitory control (Mückschel, Dippel, & Beste, 2017) and it has

been speculated that this is due direct neuroanatomical connections

with sensory cortical areas. Crucially, direct neuroanatomical connec-

tions exist between somatosensory areas and the motor cortex and

SMA (Ackerley & Kavounoudias, 2015; Borich et al., 2015; Cho-

uinard & Paus, 2006). This is important since somatosensory percep-

tual learning likely modulates processing in somatosensory cortices

(Dinse et al., 2003). However, due to the neuroanatomical connec-

tions between somatosensory areas and frontal areas of the cortical

response inhibition network, it is plausible that inductions of plasticity

in somatosensory areas affect response inhibition in superior frontal

structures.

It is important to consider that standard ERPs did not reflect mod-

ulations explaining the behavioral data. There was no effect of per-

ceptual learning, which was supported by a Bayesian analysis of the

data. Effects are probably absent at the ERP level because especially

for the N2 time window it has been shown that stimulus-related and

response-related signals are intermingled (Chmielewski et al., 2018;

Folstein & Van Petten, 2008; Larson et al., 2014; Mückschel, Dippel, &

Beste, 2017), which was also suggested by the RIDE data analysis.

Since perceptual learning seems to specifically modulate stimulus cod-

ing levels during inhibitory control it is reasonable that no effects can

be observed when coding levels are not properly dissociated from

each other in neurophysiological signals. This is an important, method-

ologically relevant result from the current study that should be consid-

ered in other studies examining the effects of perceptual learning on

cognitive control processes. Regarding these methodological aspects,

the variability of neurophysiological processes is important to con-

sider. Perceptual learning protocols likely affect gain control mecha-

nisms by improving the signal-to-noise ratio (B. Dosher & Lu, 2017).

Importantly, there is a close relation between signal-to-noise ratio and

variability in neural processes (Bensmann, Roessner, Stock, & Beste,

2018; Buckley & Toyoizumi, 2018; Servan-Schreiber et al., 1990;

Yousif et al., 2016; Ziegler, Pedersen, Mowinckel, & Biele, 2016) that

is also affecting inhibitory control (Pertermann, Mückschel, Adelhöfer,

Ziemssen, & Beste, 2019). It is, therefore, important to consider

intraindividual variability when being interested in the effects of pro-

tocols inducing neural plasticity on cognitive (control) processes.

To summarize, this study investigated the role of passive percep-

tual learning in the context of cognitive control and response inhibi-

tion in particular. We show that a perceptual learning protocol

attenuates the detrimental effect of response automation during

inhibitory control. Temporally decomposed EEG data show that

stimulus-related and not response selection processes during conflict

control are linked to these effects. The superior and middle frontal

gyrus (BA6), as well as the motor cortex (BA4), are associated with the

effects of perceptual learning on response inhibition. Reliable neuro-

physiological effects were not evident on the basis of standard ERPs,

which has important methodological implications for perceptual learn-

ing research. The results detail how lower level sensory plasticity pro-

tocols affect higher-order cognitive control functions. Since it is

plausible to assume that learning effects are already achieved after a

shorter stimulation period, it would be of interest for future studies

how a modulation of the duration of the stimulation protocol may

affect results to increase the efficiency of perceptual learning.
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