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As one type of complex disease, gastric cancer has high mortality rate, and there are few

effective treatments for patients in advanced stage. With the development of biological

technology, a large amount of multiple-omics data of gastric cancer are generated,

which enables computational method to discover potential biomarkers of gastric cancer.

That will be very important to detect gastric cancer at earlier stages and thus assist

in providing timely treatment. However, most of biological data have the characteristics

of high dimension and low sample size. It is hard to process directly without feature

selection. Besides, only using some omic data, such as gene expression data, provides

limited evidence to investigate gastric cancer associated biomarkers. In this research,

gene expression data and DNAmethylation data are integrated to analyze gastric cancer,

and a feature selection approach is proposed to identify the possible biomarkers of

gastric cancer. After the original data are pre-processed, the mutual information (MI)

is applied to select some top genes. Then, fold change (FC) and T-test are adopted

to identify differentially expressed genes (DEG). In particular, false discover rate (FDR) is

introduced to revise p_value to further screen genes. For chosen genes, a deep neural

network (DNN) model is utilized as the classifier to measure the quality of classification.

The experimental results show that the approach can achieve superior performance

in terms of accuracy and other metrics. Biological analysis for chosen genes further

validates the effectiveness of the approach.

Keywords: gastric cancer, omics data, biomarkers, feature selection, deep neural network, machine learning

1. INTRODUCTION

Gastric cancer is one of the most common malignant tumors of the digestive system (Nogueira
et al., 2017). The pathogenesis is mainly relevant to helicobacter pylori infection, diet, environment,
and genetic factors. It remains one of the most deadly cancers worldwide, especially among older
males (Siegel et al., 2020). Generally speaking, early detection of cancer is crucial for increasing
the chances for successful treatment and prolonging the patient’s life. The 5-year survival rate
of early-stage gastric cancer can reach more than 95% (Song et al., 2017). However, the early
stage of gastric cancer is hard to monitor because of rare symptoms and some potential patients’
cancer may be advanced when they are first diagnosed. Therefore, early targeting and treatment are
very important in clinical practice of gastric cancer (Wang et al., 2020). In recent years, with the
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development of sequencing technology, the genome data of
cancer patients can be obtained easily. These genomic data have
been used to study the association between genetic changes and
diseases and contribute to diagnosis and prognosis. However,
these data always have the characteristics of high dimensions and
low sample size (HDLSS) (Han et al., 2019). It is hard to process
these data directly (Yan et al., 2018). Therefore, feature selection
technology is usually adopted to assist in analyzing the possible
cancer-causing genes, also called biomarkers, from massive
cancer data. The biomarkers can facilitate us to understand the
pathogenesis of diseases at a detailed molecular level and play an
auxiliary role in clinical diagnosis.

Till now, many researchers have applied the feature selection
methods to the field of gene expression data analysis (Ding
and Peng, 2005; Lu et al., 2017; Zhao et al., 2020). However,
it is incomprehensive to analyze cancer only using gene
expression data. The rapid accumulation of omics data can
provide disparate, partially independent, and complementary
information about the entire genome (Zhang et al., 2016). The
multi-omic data can lay an important foundation for mining
informative biomarkers for cancer (Ruffalo et al., 2015). Among
these omics data, DNA methylation is an important epigenetic
event that affects gene expression during the development in
various diseases such as cancer (Bird, 1986; Wang et al., 2018).
In general, DNA methylation status is more reliable than gene
expression (Paziewska et al., 2014). The combination of DNA
methylation data and gene expression data is more beneficial to
explain the pathogenesis of gastric cancer. Therefore, these two
kinds of data are utilized to identify the biomarkers of gastric
cancer in our study.

In this paper, we propose a novel gastric cancer biomarker
identification approach, referred to GCBMI, to discover the
possible biomarkers of gastric cancer. First, the gene expression
data and DNA methylation data of gastric cancer are collected
and processed. Then, fold change, statistical test, and mutual
information are utilized to identify the differentially expressed
genes of gastric cancer and the selected genes can serve as
guidelines to reduce the dimension of omics data. At last, the
DNN model is adopted as the classifier to measure the quality
of classification. Experimental results indicate that GCBMI
can obtain more favorable performance than other state-of-
art methods.

The main contributions of this study are summarized
as follows:

• For gastric cancer, a novel feature selection approach is
proposed to identify the potential biomarkers. Here, DNA
methylation data is integrated with the gene expression data
effectively to obtain a comprehensive analysis to discover the
relationship between gastric cancer and potential biomarkers.

• Besides T-test and FC, mutual information is introduced as
a preliminary screening method to filter out redundant genes
and FDR is adopted to revise p_value to further screen genes.

• The experimental results suggest that our approach can
achieve improvement in different evaluation indicators than
other state-of-art methods. In addition to evaluating accuracy,
GO analysis, heatmap, and literature review are executed.

The above biological validation is able to demonstrate that
the genes selected by our approach are associated with
gastric cancer.

The remainder of this paper is organized as follows: In section
2, we review related works of feature selection methods.
The proposed approach is introduced in section 3. section
4 introduces the experimental design. Experimental results
and biological analysis are described in section 5. Finally, we
summarize the paper andmake a vision for the future in section 6.

2. RELATED WORK

With the development of sequencing technology, massive
amounts of cancer genome data have been accumulated at an
accelerated speed. A number of feature selection methods have
been extensively applied to cancer data. Traditional feature
selection methods can be divided into two categories: filter
methods and wrapper methods. Among them, the filter method
has the advantage of low time consumption. So far, some filter
methods had been well-applied to gene expression data.

Principal Component Analysis (PCA) is an effective
dimensionality reduction method (Wold et al., 1987). Ding
et al. combined feature extraction with feature selection in gene
expression data (Ding et al., 2009). The relief was utilized to
feature selection, and PCA was used to extract features. Then,
they used the support vector machines (SVM) for classification.
Experimental results illustrated that their method is effective to
reduce the classification error rate in eight cancer datasets. But
such methods cannot guarantee that the features still remain
the corresponding biological significance. For example, the
dimensionality reduction of features by PCA is equivalent to
mapping the new features on the original features, and the
features obtained after PCA are different from the original genes
(Shen and Huang, 2008). Thus, it is often difficult to interpret
the results.

Hsu et al. used extremely randomized trees (ET) to calculate
the weight of the features (Hsu and Si, 2018). Feature selection
was achieved by selecting features with high weight. Then, the
linear SVM was combined to achieve about 95% accuracy on
TCGA datasets. Lee et al. developed a novel filter method to
identify the biomarkers of lung cancer and confirmed seven
possible biomarkers (Lee et al., 2011).

In addition to filter methods, the wrapper methods utilize
classification accuracy as a measurement standard for evaluation
and find the optimal feature subset by iteration of meta-heuristic
algorithms (Rodrigues et al., 2014). A lot of meta-heuristic
algorithms had been well-applied to wrapper methods for feature
selection of cancer such as bat algorithm (BA), recursive memetic
algorithm (RMA), binary krill herd algorithm (MBKH), and so
on (Dashtban et al., 2018; Ghosh et al., 2019; Zhang et al., 2020).

Dashtban et al. proposed MOBBA-LS which utilized fisher
criterion and BA (Dashtban et al., 2018). They tested their
method on three microarray cancer datasets. The accuracy
achieved 100, 97, and 100% on leukemia, prostate, and SRBCT
datasets, respectively. Ghosh et al. developed a recursive memetic
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algorithm (RMA)model for feature selection (Ghosh et al., 2019),
and Zhang et al. proposed a pre-screening method of feature
ranking, IG-MBKH, which is based on information gain (IG) and
an improved binary krill herd (MBKH) (Zhang et al., 2020). The
above methods can obtain favorable classification accuracy on
microarray data of cancer.

Multiple-omics data can enable to provide a more
comprehensive analysis of the entire genome. Among them,
DNA methylation is one of the important epigenetic regulatory
mechanisms (Luo et al., 2020). Especially, it is considered as a
molecular factor that controls and regulates gene expression
levels near the CpG sites. Its status is closely associated with
diverse diseases and is generally more stable than gene expression
(Ding et al., 2019). Therefore, the function of DNA methylation
data was widely recognized. Increasing feature selection
methods, which are based on gene expression data and DNA
methylation data, were proposed.

For Alzheimer’s disease, Park et al. proposed a biomarker
prediction model, which integrated multi-omic data (Park
et al., 2020). They used the Limma package to select possible
biomarkers. Experimental results showed that their method can
achieve better accuracy than using single data, and some chosen
genes were reported in AlzGene database.

Mallik et al. proposed a method to identify biomarkers of
cancer based on omics data (Mallik et al., 2017). The maximal
relevance and minimal redundancy (mRMR) and parameter test
like T-test were used to select the genes. The results suggested
that their method had stable performance on different classifiers
and classification accuracy can achieve about 95 and 90% in gene
expression data and DNA methylation data, respectively.

Wang et al. proposed a feature selectionmethod based on gene
expression data and DNA methylation data of the six types of
cancer (Wang et al., 2020). Their method can be divided into
three steps. First, the correlation between gene expression profile
and methylation profile of each gene was calculated to screen
genes initially. Then, the genes were further filtered by T-test and
FDR value. Finally, the genes selected in first two steps are filtered
by Elastic Net. Finally, support vector machine was utilized as the
classifier. The accuracy can be as high as 98% for the training set
and 97% for the independent test set.

3. THE PROPOSED APPROACH

In this section, the proposed approach GCBMI is introduced.
The overall workflow of GCBMI is shown in Figure 1. GCBMI
consists of three stages: data pre-processing, selection of
DEG and data combination, and using deep neural network
as the classifier.

3.1. Data Pre-processing
In this section, we regularize the gene expression data, and then
merge the individual gene expression data files. In addition,
on the basis of annotation file of the gene chip, the column
(feature) name of each sample is converted to the gene name,
and the label column is added. In the annotation file of the
gene chip, the gene name corresponding to each probe is stored.
If a gene corresponds to multiple probes, we take the median
of expression value as new expression value of the gene. After

that, the genes with null values are further removed. In order to
eliminate the influence of outliers, the dataset is standardized by
z-score according to the following formula (Zhang et al., 2014).
Finally, the datasets are divided into training set and test set in
our experiment.

x′ =
x− x

σ

(1)

where x and x
′
represent a column of data before and after

standardization. x and σ represent the mean and standard
deviation of a column of data in training set.

Likewise, DNA methylation data are also processed
accordingly to eliminate the influence of outliers.

3.2. Selection of Differentially Expressed
Genes and Data Combination
In this section, how to identify DEG in our approach is
introduced. For gene expression data, the characteristics of
high dimension and low sample size make it hard to construct
a prediction model directly and may lead to the over-fitting
(Ma and Zhang, 2019). For this issue, an appropriate method
is required to reduce the size of feature space and the risk
of over-fitting.

In GCBMI, the DEG and the differentially methylated
positions (DMP) are utilized to train the model. The overall
process contains three steps as follows.

First, MI (Liu H. et al., 2009) is applied to select TopN genes
for gene expression data andDNAmethylation data, respectively.
It is a classic filter method of feature selection, which has been
successfully applied to many feature selection problems (Peng
and Fan, 2017). In order to avoid redundancy, the MI is adopted
to filter out irrelevant genes. N is set to 3,000 through the
subsequent experiments.

Second, FC and T-test are adopted to do identify DEG and
DMP. What is more, the FDR is applied to revise the p_value.
Taking DEG as an example, FC value for each selected genes
in the first step is calculated. Since the data obey the normally
distributed by Z-score standardization. Parametric statistics like
T-test can work well on this kind of data. Then, Levene-
test (Ankarali et al., 2009) is applied to verify whether the
samples with variance homogeneity or not. If they have variance
homogeneity, performing the standard T-test (Gauvreau and
Pagano, 1993) to calculate p_value. Otherwise, the Welch’s T-
test (Algina et al., 1994) is executed to calculate the p_value.
After that, the FC value and significant p_value for each gene
are obtained. Finally, FDR is utilized to revise p_value to further
screen candidate genes. A suitable threshold for FC value,
p_value, and FDR are set to filter genes. And then we can obtain
DEG. Similarly, DMP can be obtained. As shown in Figure 1, in
gene expression data, the |FC| > 2.1 and p_value < 0.05.The
|FC| > 1.8 and p < 0.05 in DNA methylation data. The FDR
threshold value of both experimental datasets is set as 0.01. A
hypothesis is made that if the gene is differentially expressed and
occur hypermethylated and hypomethylated in different samples.
This gene may have a potential relationship with gastric cancer.
So the overlapping genes in DEG and DMP are the possible
biomarkers of gastric cancer.
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FIGURE 1 | The workflow of gastric cancer biomarker identification approach (GCBMI).

Finally, in order to extend training samples, all possible
pairs of gene expression data and DNA methylation data for
tumor and normal samples are utilized to merge into a new
dataset. As shown in Figure 2, Cartesian product (Emelyanov
and Ponomaryov, 2017) is performed on the gene expression

data and DNA methylation data. The gene expression data and
methylation data that labeled as tumor are combined into new

tumor samples, and which labeled as normal are combined
into new normal samples. In this way, the gene expression
matrix and DNA methylation matrix are combined into a

new expression matrix. This matrix has a large sample size.
For example, in one of the cross-validation, the training set
of gene expression data has 214 samples, which contains 112
tumor samples and 102 normal samples. DNA methylation data
have 237 samples, which contains 160 tumor samples and 77
normal samples. After the combination, we will obtain 17,920
tumor samples and 7,854 normal samples. Taking them as new
tumor samples and normal samples, so the new training set
contains 25,774 samples, including 17,920 tumor samples and
7,854 normal samples.

3.3. Using Deep Neural Network as the
Classifier
DNN model has excellent classification performance compared
with traditional classifiers in previous studies, such as (Chen et al.,
2020; Singh and Yamada, 2020). Here, the DNN also adopted
as the classifier and the parameters of the DNN are determined
through experiments.

In this section, the structure of the network is introduced.
Our DNN model consists of three parts: input layer, hidden
layer, and output layer. The input layer consists of two parts,
corresponding to gene expression data and DNA methylation
data, respectively. Then we add six hidden layers that applied
ReLU as the activation function. Each layer contains 100 nodes
and a additional bias nodes. The dropout is added for each hidden
layer to avoid overfitting, which refers to drop some neurons
randomly according to a certain probability during the learning
iteration. It is equivalent to train a sparser network than the
original network. Each of iterations is training a different network
model to prevent overfitting. Finally, since our data only have two
categories, the output layer with one node is sufficient. Sigmoid
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FIGURE 2 | The process of combining data.

function is adopted as the activation function of the output layer
to make the output value between 0 and 1.

In the DNN model, the loss function is binary cross entropy
and cost function is the reduced average value of cross entropy.
Adam algorithm is applied to optimize the parameters of the
network model. The formula of the loss function and cost
function are as follows:

L(ŷ, y) = −ylog(ŷ)− (1− y)log(1− ŷ) (2)

J(w, b) =
1

m

m∑

i=1

(−yilog(ŷi)− (1− yi)log(1− ŷi) (3)

where y and ŷ represent the true value and the predicted value
of a sample. ŷ is the result of sigmoid regression. m is the total
number of samples and i represents the index of the sample. w
and b represent weights and biases, respectively.

4. EXPERIMENTAL SETTING

The experiments can be divided into two parts. First, we compare
GCBMI with other state-of-art methods. The ET (Hsu and Si,
2018), Elastic Net (Wang et al., 2020), IG-MBKH (Zhang et al.,
2020), and MOBAA-LS (Dashtban et al., 2018) are selected as the
baselines. A detailed description of the comparison methods is
as follows:

• ET was proposed by Hsu et al. They used ET to calculate the
weight of the features and select features with high weight.
SVM was combined to evaluate the feature subsets. This
method achieved about 95% accuracy on TCGA datasets.

• Elastic Net was a novel method that integrates the Pearson
correlation coefficient, T-test, and FDR. The data are based on
gene expression data and DNA methylation data. In six types

of omics-data, the accuracy can up to about 98% by combing
with SVM.

• IG-MBKH was presented and applied to feature selection for
high-dimensional datasets. This method combined IG and
krill herd algorithm and they used K-Nearest Neighbor (KNN)
classifier to evaluate the classification accuracy. The accuracy
of classification on nine different cancer datasets was more
than 90%.

• MOBAA-LS is based on fisher criterion and BA. The accuracy
achieved 100, 97, and 100% on leukemia, prostate, and SRBCT
datasets, respectively.

Second, we investigate the prediction performance of DNN in
biomarker identification for gastric cancer and how our method
using different classifiers can affect the classification accuracy.
We undertake experiments to compare our method using DNN
classifier compared with using the traditional classifiers, such as
KNN (Tahir et al., 2007), SVM (Vieira et al., 2013), and Naive
Bayesian (NB) (Bielza and Larrañaga, 2014).

4.1. Dataset
We select the GEO database, which is an authoritative database
of cancer applied in many previous studies (Zouridis et al., 2012;
Wang et al., 2013) as the benchmark database. And the gene
expression data GSE29272 (Li et al., 2014) and DNAmethylation
data GSE30601 (Lei et al., 2013; Kurashige et al., 2016) of gastric
cancer are downloaded to construct our experiment dataset. As
shown in Table 1, there are 268 samples of gene expression
data including 134 tumor samples, 134 normal samples, and
13,515 features. And DNA methylation data contains 203 tumor
samples, 94 normal samples, and 14,476 features.

4.2. Parameter Setting
The experiments are conducted on Intel Dual Core CPU,
8 GB RAM, Windows 7 operating system. The procedure

Frontiers in Genetics | www.frontiersin.org 5 March 2021 | Volume 12 | Article 644378

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. A Novel Biomarker Identification Approach

TABLE 1 | Benchmark dataset.

Dataset Gene expression DNA methylation

GEO ID GSE29272 GSE30601

Normal samples 134 203

Tumor samples 134 94

Features 13515 14476

TABLE 2 | Parameter setting.

Methods Parameter setting

GCBMI MI: n = 3,000; Gene expression: |FC| > 2, p < 0.05, FDR <

0.01; DNA methylation: |FC| > 1.8, p < 0.05, FDR < 0.01

ET Default parameters

IG-MBKH N = 20; Iterations = 400; TopM = 80; Nmax = 4; Vf = 0.02;

Dmax = 0.005

Elastic Net p < 0.05, FDR < 0.01, ElasticNetCV (cv = 10)

MOBBA-LS opN = 500, Population = 20, iteration = 300, alpha = 0.9,

sigma = 0.7, injRate = 0.01, extRate = 0.01

is implemented under the programming environment Python
version 3.6. The feature selection algorithms, statistical detection
methods, and classifiers are provided by the Scikit-learn package
and scipy package and the DNN is built by Keras package. Related
parameters are given as follows: DNN is set as described in the
Section 3.3; SVM: degree = 3, gamma = auto, kernel = “rbf,”
cache_size = 200; KNN: K = 5. The parameters of methods are
set according to the original literature (Dashtban et al., 2018; Hsu
and Si, 2018; Wang et al., 2020; Zhang et al., 2020). The specific
settings are shown in Table 2.

According to Park et al. (2020), all experiments use five-fold
cross validation. The dataset is divided into five parts, and one
part is taken as the test set in order and the rest parts are taken
as the training set in each cross validation. After the Cartesian
product is executed, there are average 8,053 normal samples,
17,400 tumor samples as training set, and 496 normal samples,
1,079 tumor samples as test set. The accuracy, precision, recall,
F1-score and Area Under Curve (AUC) are utilized to evaluate
the classification results of the model (Tanzi et al., 2020). These
evaluation indicators are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Prediction =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1− Score =
2 · Prediction · Recall

Prediction+ Recall
(7)

The positive samples are tumor samples and the negative samples
are normal samples. True positive (TP) indicates the number

TABLE 3 | Performance comparison on different metrics (the accuracy, precision,

recall, F1-score, and AUC value are average).

Methods Accuracy Precision Recall F1-score AUC

GCBMI + DNN 0.9870 0.9971 0.9836 0.9903 0.9891

ET + SVM 0.9259 0.8571 1.0 0.9230 0.9333

Elastic Net + SVM 0.8922 0.9003 0.9433 0.9210 0.8598

IG-MBKH + KNN 0.9518 0.9730 0.9166 0.9437 0.9483

MOBBA-LS + SVM 0.94 0.9477 0.9327 0.9401 0.9412

The bold values represent the highest value of each metrics.

of tumor samples that have been correctly classified, false
positive (FP) indicates the number of normal samples which
are misclassified as tumor samples, true negative (TN) indicates
the number of correctly classified normal samples, and false
negative (FN) indicates the number of tumor samples, which are
misclassified as normal samples.

5. RESULTS AND DISCUSSION

5.1. Comparison of Other State-of-Art
Methods
In this section, GCBMI is compared with other state-of-art
methods, and the experimental results are shown in Table 3.
The accuracy of GCMBI achieved is 98.7%. The Elastic net also
applies omics data, but the accuracy of GCBMI is 9% higher than
the Elastic net. The performance of two wrapper methods IG-
MBKH and MOBBA-LS are similar in our experiment. In terms
of accuracy, these two methods are about 5% lower than our
approach. The accuracy of extremely randomized trees achieved
is 93%. What is more, in terms of precision and recall, GCBMI
also has the highest precision and the second highest recall. This
indicates FP and FN appear less frequently and the classification
performance of GCBMI is superior to other state-of-art methods.

F1-score and AUC value are often applied to evaluate the
stability and robustness of models. The two indicators of GCBMI
can achieve about 99%. It is 5–7% higher than other state-of-
art methods. In order to display the advantages of our method
more intuitively, the histogram of experimental results is plotted
in Figure 3.

Overall, GCBMI can get better performance on different
evaluation indicators than other feature selectionmethods, which
indicates that the genes identified by GCBMI havemore sufficient
capacity to classify gastric cancer. The high F1-score and AUC
value also illustrate that our model has better stability. The
experimental results suggest that combined omics data are
meaningful, and it may reveal some causal relationships between
different biological layers.

5.2. The Impact of Classifiers on
Performance
In this section, the impact of different classifiers is evaluated on
our feature selection method. Table 4 displays the experimental
results, which indicates that DNN model compared with the
other three classifiers has better performance in different
evaluation indicators. The performance of KNN is similar to
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FIGURE 3 | The experimental results of gastric cancer biomarker identification approach (GCBMI) compared with other methods.

TABLE 4 | Results with different classifiers (the accuracy, precision, recall,

F1-score, and AUC value are average).

Classifiers Accuracy Precision Recall F1-score AUC

DNN 0.9870 0.9971 0.9836 0.9903 0.9891

KNN 0.9776 0.9934 0.9729 0.9830 0.9795

SVM 0.9819 0.9878 0.9826 0.9862 0.9803

NB 0.9651 0.9698 0.9777 0.9737 0.9557

The bold values represent the highest value of each metrics.

SVM and NB is worst but still reaches 96%. The performance
of our method is stable in different classifiers. GCBMI integrates
gene expression data and DNAmethylation data and expands the
number of samples. In this way, the DNN model can be trained
better and achieves superior results than other classifiers.

On the whole, when compared with the KNN, SVM, and
NB, our deep neural network model has better performance
in different metrics, which indicates the validity of our feature
selection approach. All the experimental results indicate that
DNN model is a more appropriate classifier to feature selection
in our approach. Figure 4 shows the histogram of the average
accuracy, F1 score, and AUC value of GCBMI with different
classifiers, respectively. The classification advantage of DNN
model has been shown in it, which has demonstrated the
effectiveness of GCBMI.

5.3. Gene Analysis
In our experiment, the overlapped genes are recorded, which
are shown in Table 5. In each fold of cross-validation, about
20 genes are selected. These genes are the intersections of DEG
and DMP. Among them, eight genes appear in each intersection

and they are thought to be biomarkers of gastric cancer. In this
section, the selected genes are further analyzed to understand the
biological relevance.

Through literature retrieving, we can find the coding protein
of PGC is a digestive enzyme produced by the stomach and it is
themain component of the gastric mucosa. Polymorphism of this
gene is associated with gastric cancer susceptibility. Serum levels
of this enzyme are used as the biomarker for certain stomach
diseases, including Helicobacter pylori associated gastritis (Sun
et al., 2009). Moreover, Liu et al. discovered PGC was positively
expressed in normal gastric mucosa (100%), and the expression
rate was 6.45% in gastric cancer (Liu D. et al., 2009). The
results suggested that PGC has important application value in the
diagnosis of gastric cancer.

For gene PSCA, relevant research demonstrated that proteins
encoded by PSCA play an important role in cell proliferation.
In addition to being highly expressed in the prostate, it is
also expressed in differentiating gastric epithelial cells. This
gene includes a polymorphism that results in an upstream start
codon in some individuals; this polymorphism is thought to be
associated with a risk for gastric cancers (Bahrenberg et al., 2000;
Sakamoto et al., 2008).

Except for PGC and PSCA, gene PDGFD as a member of
PDGF family (Huang et al., 2014), its signaling pathway has
been considered as a new target for the treatment of gastric
cancer (Wang et al., 2009). Besides, gene KCNE2 is expressed
mainly in the cytoplasm of parietal cells. Kuwahara et al.
discovered that the loss of KCNE2 expression could cause gastric
adenocancer (Kuwahara et al., 2013).

For these eight genes identified, in order to observe their
expression level, gene expression heatmap is constructed. As
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FIGURE 4 | The experimental results of gastric cancer biomarker identification approach (GCBMI) with different classifiers.

TABLE 5 | Selected genes from integrating gene expression and DNA methylation dataset.

K-fold Number of overlapping

genes

Selected genes

K = 1 17 FAHD2A,PGC,FIGF,PPAP2B,FOXA1,IFITM2,HOXC10, GPRC5C,CLEC3B,FBN1,LIF,C5,PSCA,PDGFD,KCNE2,

RORC,C3

K = 2 19 PGC,FIGF,NID2,PPAP2B,IFITM2,RAB31,RORC,GPRC5C,FSCN1,TEAD4,CLEC3B,RAB17,IGFALS,C5,PSCA,PD

GFD,KCNE2,COL4A1,C3

K = 3 17 FAHD2A,PGC,PPAP2B,FOXA1,IFITM2,IGFALS,GPRC5C, TEAD4,DNM1,ORM1,PTPRN2,FBN1,PSCA,PDGFD,

KCNE2,RORC,C3

K = 4 24 PGC,FIGF,PDGFRB,PSMA7,TEAD4,C5,RORC,ADA, IFITM1,FAHD2A,PPAP2B,IGFALS,SLC1A2,GPRC5C,

CLEC3B,CAPN9,KCNE2,PSCA,IFITM2,FSCN1,RPRM, PDGFD,SERPINA4,FBN1

K = 5 17 IFITM1,PGC,FIGF,PPAP2B,KCNE2,IFITM2,HOXC10, GPRC5C,CAPN9,FBN1,HRAS,C5,PSCA,PDGFD,

SERPINA4,RORC,C3

Overlapped genes in 5-CV 8 PGC,RORC,GPRC5C,PDGFD,KCNE2,PSCA,IFITM2, PPAP2B

shown in Figure 5, the expression levels of these eight genes in
all samples are demonstrated. The first half of the heatmap are
normal samples, and others are tumor samples. Basically, the
result shows that these genes have different expression in normal
and tumor samples. Some of these genes differed significantly
between the two classes and may have some relationship with
gastric cancer.

What is more, the enrichment analysis is conducted by
DAVID database for selected genes. As shown in Table 6,
biological significance of the genes are reported through
Gene Ontology (GO). “GO:0008284 positive regulation of cell
proliferation,” “GO:0046597 negative regulation of viral entry
into host cell,” “GO:0030335 positive regulation of cell migration”
are common biological activities in human cancer (Dyrskjøt

et al., 2009). Among them, there have some items about platelet,
some studies have suggested that gastric cancer may lead to
changes in platelet count and morphology (Matowicka-Karna
et al., 2013). In addition, some studies also have been pointed out
that interferon (Ferrantini et al., 2007) and other related factors
may have relationship with the occurrence of cancer.

6. CONCLUSION

In this work, we propose a novel feature selection approach,
GCBMI, which uses gene expression and DNA methylation data
for identifying the biomarkers of gastric cancer. GCBMI consists
of three main parts, namely data pre-processing, selection
of differentially expressed genes and data combination, and
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FIGURE 5 | Heatmap of eight overlapped genes.

TABLE 6 | GO analysis of selected genes.

Category Term p-value Gene

GOTERM_BP_DIRECT GO:0071560 cellular response to transforming growth factor beta stimulus 0.003912643 CLEC3B,FBN1, PDGFD

GOTERM_BP_DIRECT GO:0043406 positive regulation of MAP kinase activity 0.005625548 HRAS,PDGFRB, PDGFD

GOTERM_BP_DIRECT GO:0008284 positive regulation of cell proliferation 0.01138237 LIF,HOXC10,HRAS, PDGFRB,PDGFD

GOTERM_BP_DIRECT GO:0002576 platelet degranulation 0.016395992 ORM1,CLEC3B, SERPINA4

GOTERM_BP_DIRECT GO:0035456 response to interferon-beta 0.017024892 IFITM1,IFITM2

GOTERM_BP_DIRECT GO:0035455 response to interferon-alpha 0.018899122 IFITM1,IFITM2

GOTERM_MF_DIRECT GO:0048407 platelet-derived growth factor binding 0.020021643 COL4A1,PDGFRB

GOTERM_MF_DIRECT GO:0005102 receptor binding 0.026443684 LIF,C3,C5,PDGFRB

GOTERM_MF_DIRECT GO:0005161 platelet-derived growth factor receptor binding 0.02720561 PDGFRB,PDGFD

GOTERM_BP_DIRECT GO:0036120 cellular response to platelet-derived growth factor stimulus 0.033768846 PDGFRB,PDGFD

GOTERM_BP_DIRECT GO:0046597 negative regulation of viral entry into host cell 0.033768846 IFITM1,IFITM2

GOTERM_BP_DIRECT GO:0030335 positive regulation of cell migration 0.047784333 HRAS,PDGFRB, PDGFD

GOTERM_BP_DIRECT GO:0048008 platelet-derived growth factor receptor signaling pathway 0.053858697 PDGFRB, PDGFD

deep neural network as the classifier. Differential expression
analysis, statistical test, and MI are integrated to obtain
comprehensive view to implement the biomarkers identification
after data pre-processing. MI is introduced to filter out irrelevant
gene, and FC and T-test are utilized to select differentially
expressed genes. In particular, FDR is applied to revise the
p_value to further screen genes. After that, Cartesian product
is performed to expand samples. Moreover, GCBMI adopts
DNN as the classifier to evaluate the classification ability of
selected genes. Experimental results on GEO dataset indicate
that the proposed approach outperforms other state-of-the-art

feature methods. The results of biological relevant verification
indicate the status of the selected gene as the biomarkers of
gastric cancer.

What is more, the performance of combined with omics
data tends to be more superior than using a single omics data
alone. In the future, some other omics data will be combined
such as copy number variation (CNV) data to identify cancer
biomarkers, and our methods will be applied to other fields as
well (Liu et al., 2020). Besides, some measures will also be taken
to improve our method so that its classification performance can
be improved further.
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