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Mesoscopic theory of defect 
ordering–disordering transitions 
in thin oxide films
Anna N. Morozovska1, Eugene A. Eliseev2, Dmitry V. Karpinsky3, Maxim V. Silibin4,5, 
Rama Vasudevan6, Sergei V. Kalinin6* & Yuri A. Genenko7*

Ordering of mobile defects in functional materials can give rise to fundamentally new phases 
possessing ferroic and multiferroic functionalities. Here we develop the Landau theory for strain 
induced ordering of defects (e.g. oxygen vacancies) in thin oxide films, considering both the ordering 
and wavelength of possible instabilities. Using derived analytical expressions for the energies of 
various defect-ordered states, we calculated and analyzed phase diagrams dependence on the film-
substrate mismatch strain, concentration of defects, and Vegard coefficients. Obtained results open 
possibilities to create and control superstructures of ordered defects in thin oxide films by selecting 
the appropriate substrate and defect concentration.

Ferroelectric and multiferroic materials are the object of much fascination in physics community, both due to 
the multitude of possible applications and broad spectrum of fundamental physical phenomena they exhibit. 
Applications such as ferroelectric memories, field effect transistors, and domain wall conductance have riveted 
attention of scientific community in the last two decades1–3. Similarly, the nature of ferroelectric transitions, 
ferroelectricity in disordered systems, etc. remain a subject of active research since the discovery of ferroelec-
tricity in late 1920s4. Topological defects in ferroelectric materials and coupling between the ferroelectric and 
semiconductor subsystems are actively explored in the context of surface and domain wall conductance5–8.

From the gamut of possible behaviors, in the last decade progressively more attention is focused on multi-
ferroic materials, i.e. systems possessing two or more order parameters9–12. These functionalities significantly 
broaden the spectrum of possible applications, including oxide nanoelectronics, sensors and actuators, and IoT 
devices13–16. Furthermore, in multiferroic materials fundamentally new properties can emerge at the topological 
defects17. Examples of the former include the emergence of suppressed order parameter and associated topo-
logical defects at the domain walls, surfaces and interfaces, domain wall and vortex core conduction, incipient 
ferroelectricity and magnetism, and many others8,18,19. Remarkedly that conductive domain walls in bulk sam-
ples and thin films can act as mobile charged channels (being also mobile topological defects) opening the way 
for “domain wall nanoelectronics”20. Additional degrees of functionality of nanosized multiferroics with the 
topological defects11,21 and newly discovered low-dimensional semiconductor materials come from the strain 
engineering and straintronics concept22.

The vast majority of the research in the field explored the coupling between the primary physical order 
parameters including magnetization, polarization, and ferroelasticity8,18. However, it is well known that chemi-
cal degrees of freedom can strongly affect the ferroic behavior23. A number of groups explored the phenomena 
such as vacancy segregation at the domain walls and grain boundaries24–28, or changes in surface reactivity in 
response to polarization29,30. However, most of these works explore the responses of chemical subsystems to the 
polarization. Relatively small effort was dedicated to the exploration of chemical effects on polarization31–33, 
typically the surface electrochemistry including chemically-induced switching34–37 and emergence of ferroionic 
phases38–40. This direction has acquired particular prominence with the advent of the hybrid perovskites where 
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chemical subsystem is strongly coupled to the environment and electrode phenomena (see e.g. review41 and refs 
therein). However, the volume of research in this field is limited.

Here, we develop an initial framework for mesoscopic theory of defect ordering-disordering transitions 
in thin oxide films. We explore whether chemically induced changes in Vegard volume can be used to trigger 
and control multiferroic orderings in thin strained films (see e.g. Ref.11,21,22 and refs. therein), and what are the 
properties of such systems.

Two sub‑lattices model of point defects ordering
Here we consider the case of a thin oxide film on a substrate, taking into account the misfit strain42, while neglect-
ing the appearance of misfit dislocations. This assumption is generally valid for the films with a thickness smaller 
than a critical value (~ 10–50 nm) corresponding to dislocation nucleation43. The geometry of the problem is 
shown in Fig. 1. For high enough concentration of neutral/charged vacancies, the vacancy-ordered state can 
emerge44 leading to the appearance of an elastic/electric dipole sublattice.

Rigorously speaking, in complex oxides there may be more than two oxygen sublattices45. However, our 
simplified continuum model with a scalar order parameter is naturally limited to two sublattices. The suggested 
model is isotropic in the {x1, x2} plane together with the misfit strain. Since the symmetry breaking may spontane-
ously occur along any in-plane direction, this model is able to describe, particularly, a possible oxygen vacancy 
ordering along the x1 or the x2 axis. Thanks to the model symmetry, it is sufficient to consider exemplary cases 
of ordering along the x1 axis, corresponding to the in-plane order parameter modulation, and along the x3 axis, 
corresponding to the order parameter modulation perpendicular to the film surfaces.

The spatial scale of the defect concentration fluctuations, which can be correctly considered in a continuum 
approach, should be much larger than the lattice constant (so called long-range fluctuations). Thus, to describe 
the phase ordering process, we introduce a dimensionless long-range order parameter η , related to the degree 
of ordering of point defects (oxygen or cation vacancies, or impurity atoms) and given by a disbalance of occu-
pations δna and δnb of the two sub-lattices: η = c

c0
(δnb − δna) . Here c is the concentration of defects related 

with the non-stoichiometry degree ξ; c0 is a characteristic value that usually coincides with the solubility limit, 
meaning that the defect atoms do not affect essentially the host lattice force matrix at c < c0 . As one can see, 
the scalar order parameter η is a normalized occupation degree of the sub-lattices, 0 ≤ |η| ≤ 1 . For given η, the 
relative occupation numbers for the two sub-lattices are δna = c(1− η)/(2c0) and δnb = c(1+ η)/(2c0) . The 
total occupation of two sub-lattices is constant, δna + δnb = c/c0 . Values η = ±1 correspond to the complete 
ordering of defects in either sub-lattice “b” or “a”, while η = 0 corresponds to the complete disorder (with equal 
filling of two sub-lattices).

Note that c0 < Na , where Na is the stoichiometric concentration of host atoms. In the particular case of oxygen 

vacancies, c depends on the oxygen pressure p via the defect equilibria and for certain cases cc0 ∼ ξ ∼ ln
(

p0+A(T)p
p0

)

 

(e.g. see Fig.  3 in Ref.46). Following the theory by Khachaturyan47, we assume that concentration c is 
coordinate-independent.

The defect ordering direction can be different with respect to the film surfaces. Below we will distinguish 
perpendicular [see the left side (a) in Fig. 1] and parallel [see the central part (b) in Fig. 1] orientations of the 
planes of a constant order parameter and, thus, of equal sublattice occupations.

The η-dependent free energy of a thin film is the sum of the surface and bulk energies:

(1a)F = FS + FV , FS =
αS

2
∫
SF

[

η2(x1, x2, 0)+ η2(x1, x2, h)
]

dx1dx2, FV = ∫
VF

fdx1dx2dx3

Figure 1.   Point defect ordering in ultra-thin oxide film of thickness h placed on a rigid substrate. One can 
distinguish perpendicular (a, the left side) and parallel (b, the central part) orientations of the defect ordering 
from the state with randomly distributed defects (c, the right side). Parts (a) and (b) illustrate how the harmonic 
modulations of the order parameter reveal local redistribution of defects between defect sublattices.
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where h is the film thickness, and the first term is the surface/interface energy that is not negative under the 
condition αS ≥ 0 . Hereinafter we will consider the case αS = 0 , corresponding to the so-called natural bound-
ary conditions.

The bulk density, f, of the Helmholtz free energy dependence on the order parameter η has the form:

The first term in Eq. (1b), proportional to η2 , originates from the interaction between defects from the differ-
ent sublattices. The term can be readily derived from the term δnaδnb where δna and δnb are the relative occupa-
tion numbers for the two sub-lattices. Hereinafter we will consider both cases α < 0 and α > 0 . For the former, 
defects may order spontaneously in a bulk material, while in the latter case the ordering in bulk is unfavorable, 
but can be induced by external factors (such as misfit strain).

The second term in Eq. (1b) is proportional to the entropy of the system with a minus sign, −TS42,44, since 
F = U − TS . The relative dimensionless entropy, defined as −(1− η)ln(1− η)− (1+ η)ln(1+ η) , tends to the 
minimum of −2ln2 under the condition η2 → 1 , corresponding to the complete occupation of one of the sublat-
tices ( δnb = 1 and δna = 0 , or vice versa δna = 1 and δnb = 0).We note that the entropy contribution stabilizes 
the system thermodynamically since its expansion contains all positive even powers of the order parameter.

The third and the fourth terms are the series expansion of generalized gradient energy in the derivatives 
∂η/∂xi of the order parameter. The gradient energy was introduced by Cahn and Hillard in 1958 (see e.g.48), 
since its inclusion becomes indispensable for correct description of inhomogeneous electrochemical systems with 
defect species. Below we consider the tensors gij and wijkl in isotropic approximation, gij = gδij and wijkl = wδijδkl , 
and explore the case of w > 0 . This choice is because we study the case of the defects ordering for positive cor-
relation energy.

Note that very often the higher gradient term is neglected ( w = 0 ). Rigorously it is justified only if g > 0 , 
assuming that its renormalization by the strain gradient energy is either positive or too small to change the posi-
tive sign of resulting effective gradient coefficient. Below we will show that w-term is mandatory to determine 
the threshold for emergence of the order parameter spatial modulation.

The elastic energy q
[

η, σij
]

 includes the coupling between the order parameter and the stresses σij . Following 
the theoretical formalism of Vegard strains, proposed by Freedman49, and using the strain energy by Levanyuk 
et al.50, the coupling term between the order parameter and the stresses could be also expanded as a series on 
the order parameter:

here sijkl is the elastic compliances tensor, and uij is the tensor of elastic strains. To describe the mixed mechanical 
state of the epitaxial binary oxide film on the substrate, we perform the Legendre transform by adding the term 
uklσkl . The third term in Eq.  (1c) is the chemical expansion due to the appearance of elastic defects, 
c0σij

(

V
(a)
ij δna + V

(b)
ij δnb

)

 , where the tensors V (a)
ij  and V (b)

ij  characterize the Vegard strains for defects located 
within the sublattices (a) and (b), respectively. The symmetry of V (a,b)

ij  is determined by the local site symmetry 
of defect with respect to the lattice, which could be different from the lattice symmetry (see e.g. Ref.49 considering 
different vacancies in SrTiO3). Using the expressions of the partial sublattice occupation numbers through the 
order parameter η the third term in Eq. (1c) can be further transformed to c

(

Vc
ij + ηV

η
ij

)

 with the mean value 
Vc
ij =

(

V
(a)
ij + V

(b)
ij

)

/2 and the difference Vη
ij =

(

V
(b)
ij − V

(a)
ij

)

/2.
It will be shown that the last term in Eq. (1c) plays a central role in the mechanism of defect ordering. It is a 

gradient-type striction due to the defect ordering that is characterized by a fourth rank tensor Bijkl.
In the continuous media approximation, the thermodynamically stable state of the film can be derived from 

the variation of the free energy (1) on η and σij, leading to the Euler–Lagrange differential equations:

here we used the identity, arctanh(η) ≡ 1
2 ln

(

1+η
1−η

)

.
The boundary conditions to Eq. (2a) are the following:

(1b)
f (x1, x2, x3) = c2

α

2
η2 +

ckBT

2
[(1− η) ln (1− η)+ (1+ η) ln (1+ η)]

+ c2
gkl

2

∂η

∂xk

∂η

∂xl
+ c2

wijkl

2

∂2η

∂xi∂xj

∂2η

∂xk∂xl
+ q

[

η, σij
]

(1c)
q
[

η, σij
]

= −
sijkl

2
σijσkl + uijσij − c0σij

(

V
(a)
ij δna + V

(b)
ij δnb

)

− c2
Bijkl

2
σij

∂η

∂xk

∂η

∂xl

= −
sijkl

2
σijσkl + uijσij − c

(

Vc
ij + ηV

η
ij

)

σij − c2
Bijkl

2
σij

∂η

∂xk

∂η

∂xl

(2a)

αc2η + ckBTarctanh(η)+ c2Bijkl
∂σij

∂xk

∂η

∂xl

− c2
(

gkl − Bijklσij
) ∂2η

∂xk∂xl
+

c2wijkl∂
4η

∂xi∂xj∂xk∂xl
− cV

η
ij σij = 0

(2b)c
(

Vc
ij + ηV

η
ij

)

+ c2
Bijkl

2

∂η

∂xk

∂η

∂xl
+ sijklσkl = uij
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The first term in Eq. (2c) originated from the variation of surface energy in Eq. (1a), and the so-called natural 
boundary conditions correspond to the case αS = 0 (surface energy is absent in this particular case). The second 
term in Eq. (2c) originated from the variation of the gradient energy in Eq. (1b), and the third term originated 
from the variation of the elastic energy Eq. (1c).

Equation (2b) should be considered along with the conditions of mechanical equilibrium ∂σij/∂xj = 0 . The 
elastic boundary conditions to Eq. (2b) are the following:

The first condition, σi3 = 0 , means that the top surface of the film ( x3 = 0 ) is mechanically free; and the 
second condition, u11 = u22 = um , means that the bottom surface of the film ( x3 = h ) is clamped to a rigid 
substrate, where um is a misfit strain induced by the film-substrate lattices mismatch.

Below we consider thicknesses h smaller than the critical thickness of misfit dislocation appearance43, typi-
cally this means that h ≤ 10 nm.

The nonlinear boundary problem (2) contains a number of material-dependent constants, the majority of 
which are poorly known even for simple binary oxides, such as ZnO, MgO, SnO2, CeO2, HfO2, and even more so 
for complex ternary oxides, such as manganites (La,Sr)MnO3, paraelectric perovskites SrTiO3, EuTiO3, KTaO3, 
ferroelectric perovskites (Ba,Sr)TiO3, (Pb,Zr)TiO3, and orthoferrites PbFeO3, pristine and rare-earth doped 
BiFeO3, etc., which all can be deficient in oxygen. Hence, prior to solving the boundary problem (2) by e.g. finite 
element modeling (FEM), requiring all tabulated parameters, these should be taken from the experimental or 
density functional studies5,6,8,19. However, to facilitate the search in the multi-parameter space and open the way 
for further FEM, here we elaborate the analytical theory.

Analytical solution in harmonic approximation
To explore the phase evolution in the system described by the free energy, Eq. (1), we consider the three-dimen-
sional Fourier series of the order parameter,

where the wave vector components klmn =
(

2π
L l, 2πL m, 2πh n,

)

 are determined by the sizes L× L× h of the con-
sidered film, and m, n, and l are integer numbers. For the order parameter η(x) to be a real (i.e. observable) value, 
the equality η̃∗l,m,n = η̃−l,−m,−n should be valid.

Following Landau theory, below we assume that only one principal mode k dominates near the order–dis-
order phase transition,

where δ is the phase shift and η0 is the offset term. Next, we assume that the approximate equality is valid for the 
order parameter derivative in Eq. (1c), namely:

Note that k is constant in the first harmonic approximation, but should be found in the self-consistent way 
in what follows.

Substitution of Eq. (3) in Eqs. (1b) and (1c) yields:

where 
∼
g (k) = gijkikj , 

∼
Bij(k) = Bijmnkmkn and 

∼
w (k) = wijmnkikjkmkn.

Symmetry of the gradient-striction tensor Bijkl is determined by the local site symmetry of defect with respect 
to the lattice. Below we assume the tetragonal symmetry of the tensor 

∼
Bij(k) , with a tetragonal axis along x3 axis 

of the film.
In the continuum approximation, the thermodynamically stable state of the film can be analyzed by the vari-

ation of the free energy (1) that acquires the form:

(2c)
[

αSη ± gc2
∂η

∂z
∓ Bij33σijc

2 ∂η

∂z

]∣

∣

∣

∣

x3=0,h

= 0.

(2d)σi3(x1, x2, 0) = 0, u11(x1, x2, h) = u22(x1, x2, h) = um.

(3a)η(x) =

∞
∑

l,m,n=−∞

η̃lmn exp
[

i
(

k
(lmn)
1 x1 + k

(lmn)
2 x2 + k

(lmn)
3 x3

)]

,

(3b)η(x) ∼= η0 + η̃ exp (ikx)+ c.c. ≡ η0 + 2|η̃| cos [(kx + δ)],

(3c)
∂η

∂xm

∂η

∂xn
∼= 2kmkn

∣

∣

∣

∼
η
∣

∣

∣

2

(1− cos[2(kx + δ)])

(4a)
gijc

2

2

∂η

∂xi

∂η

∂xj
∼= c2g̃ |η̃|2(1− cos [2(kx + δ)]),

(4b)
Bijmn

2
σijc

2 ∂η

∂xm

∂η

∂xn
∼= c2B̃ij(k)σij|η̃|

2(1− cos [2(kx + δ)]),

(4c)
wijklc

2

2

∂2η

∂xi∂xj

∂2η

∂xk∂xl
∼= c2w̃|η̃|2(1+ cos [2(kx + δ)]),
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As a next step, one can use a Galerkin procedure in the free energy (5a) with respect to the second harmonics 
assuming statistical averaging, equivalent to the spatial averaging in ergodic case. Such averaging “excludes” the 
contributions from the second and higher harmonics to cos[2(kx + δ)]2n+1 due to a periodicity of trigonometric 
functions. Assuming the absence of correlations between the offset term η0 and cos[2(kx + δ)] , all cross-terms 
proportional to η2m+1

0 cos[2(kx + δ)]2n+1 vanish after the averaging. Next, the terms proportional to η2m+1
0  also 

vanish, while the even terms η2m0  do not contain any useful information about defect ordering. Thus, one can 

regard that �η2� ∼
∣

∣

∣

∼
η
∣

∣

∣

2

∼ η2 , where the brackets 〈...〉 designate the averaging, and obtain:

Minimization of (5b), ∂�f �
∂η

= 0 and ∂�f �
∂σij

= 0 , instead of the Euler–Lagrange Eq. (2), yields the algebraic equa-
tions of state:

Near the phase transition, arctanh(η) ≈ η +
η3

3  in Eq. (6a).
Assuming that the anisotropic Vegard tensor is diagonal (or at least can be diagonalized), that is true for many 

cases49, one can write Vc
ij = Vc

iiδij and Vη
ij = V

η
ii δij . Using this approximation, elastic solution for a thin oxide film 

on a rigid substrate is derived for cubic symmetry far from the structural domain walls. Zero components are 
σ33 = σ13 = σ23 = σ12 = 0 , u12 = u13 = u23 = 0 , and nonzero components are:

T h e  c o n v o l u t i o n s  
∼
B11 = B11k

2
1 + B12

(

k22 + k23
)

 ,  
∼
B22 = B11k

2
2 + B12

(

k21 + k23
)

 a n d ∼
B33 = B11k

2
3 + B12

(

k21 + k22
)

 are included in Eq. (7), and the Voight notations for B1111 ≡ B11 and B1122 ≡ B12 
are used hereinafter.

Note, that in a freestanding film the stresses are zero σij = 0 ,  and elastic strains are 
uij = c

(

Vc
ij + η0V

η
ij

)

+
∼
Bijc

2η2.
Below we will suppose that η0 = 0 and introduce the designations.

where the sum Vm has the sense of partial molar volume, and the difference Vn reflects the anisotropy impact.

Defect order–disorder transition
Long‑range ordering parallel to the film surfaces.  Here we consider the case when the only nonzero 
component of wave vector is k3, meaning that the harmonic modulation of the long-range order parameter 
η ∼

∣

∣

∣

∼
η
∣

∣

∣
cos[k3x3 + δ] looks like planes parallel to the film surfaces x3 = 0, h (see Fig. 3a, left). Since η is propor-

tional to the difference of defect sub-lattice occupations δna − δnb , this means the modulation of the sub-lattice 
occupation perpendicular to the film surfaces.

For the case the free energy density Eq. (1) has the following form (see Supplementary Materials):

(5a)

F =

∫

VF

dx

[

α

2
c2η2 + c

kBT

2
[(1− η)ln(1− η)+ (1+ η)ln(1+ η)]− σijc

(

Vc
ij + V

η
ij

(

η0 + 2

∣

∣

∣

∼
η
∣

∣

∣cos[(kx + δ)]

))

−
sijkl

2
σijσkl + uklσkl + c2

∼
g (k)

∣

∣

∣

∼
η
∣

∣

∣

2

(1− cos[2(kx + δ)])+ c2
∼
w (k)

∣

∣

∣

∼
η
∣

∣

∣

2

(1+ cos[2(kx + δ)])

−c2
∼
Bij(k)σij

∣

∣

∣

∼
η
∣

∣

∣

2

(1− cos[2(kx + δ)])

]

(5b)

〈

f
〉

∼
α

2
c2η2 + c

kBT

2
[(1− η) ln (1− η)+ (1+ η) ln (1+ η)]

− c
(

Vc
ij + η0V

η
ij

)

σij −
sijkl

2
σijσkl + uklσkl + c2g̃(k)η2 + c2w̃(k)η2 − c2B̃ij(k)σijη

2

(6a)c
(

α + 2
∼
g +2

∼
w −2

∼
Bijσij

)

η + kBTarctanh(η) = 0,

(6b)c
(

Vc
ij + η0V

η
ij

)

+
∼
Bijc

2η2 + sijklσkl = uij ,

(7a)σ11 =
um

s11 + s12
−

s11

(

Vc
11 + η0V

η
11 +

∼
B11cη

2
)

− s12

(

Vc
22 + η0V

η
22 +

∼
B22cη

2
)

s211 − s212
c,

(7b)σ22 =
um

s11 + s12
−

s11

(

Vc
22 + η0V

η
22 +

∼
B22cη

2
)

− s12

(

Vc
11 + η0V

η
11 +

∼
B11cη

2
)

s211 − s212
c,

(7c)u11 = u22 = um,

(7d)

u33 =
(

Vc
33 + η0V

η
33

)

c+
∼
B33c

2η2+
s12

s11 + s12

[

2um −
(

Vc
11 + Vc

22 + η0V
η
11 + η0V

η
22

)

c −
(∼
B11 +

∼
B22

)

c2η2
]

.

(7e)Vm = Vc
11 + Vc

22,Vn = Vc
11 − Vc

22,
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where the coefficients αp = (2um−Vmc)
2

4(s11+s12)
+

c2V2
n

4(s11−s12)
 , βpr = α + 2

(∼
g +

∼
w
)

− 2
∼
B22

2um−Vmc
s11+s12

 , γpr =
12

∼
B
2

22
s11+s12

 , and 
∼
B22 = B12k

2
3 , 

∼
g= gk23 and 

∼
w= wk43 . We refer the case with subscript "pr".

Omitting the η-independent term αp , the free energy density (8a) can be expanded in power series in η as

The derivation of Eq. (8) is given in Supplementary Materials51. Note that the renormalized coefficient before 
η4 should be positive to ensure the stability of the phase described by the free energy (8b), otherwise higher 
terms should be included in the expansion. Since s11 > |s12| for all elastically stable solids, the condition γpr ≥ 0 
is always valid.

The equilibrium values of the order parameter obtained from minimization of the energy (8b) and the cor-
responding free energy have the form:

Long-range order exists if βprc + kBT < 0.

Long‑range ordering perpendicular to the film surface.  We further consider the case when the only 
nonzero component of the wave vector is k1, , meaning that the harmonic modulation of the long-range order 
parameter η ∼

∣

∣

∣

∼
η
∣

∣

∣
cos[k1x1 + δ] looks like planes perpendicular to the film surfaces x3 = 0, h (see Fig. 3a, mid-

dle). Since η is proportional to the difference of defect sub-lattice occupations δna − δnb , this means the modula-
tion of the sub-lattice occupations parallel to the film surfaces.

The free energy density f in Eq. (1b) of the oxide has the following form in this case:

where βpp = α + 2
(∼
g +

∼
w −

(∼
B11 +

∼
B22

)

2um−Vmc
2(s11+s12)

+
(∼
B11 −

∼
B22

)

Vnc
2(s11−s12)

)

 and γpp = 6

(

∼
B
2

11+
∼
B
2

22

)

s11−2
∼
B11

∼
B22s12

(

s211−s212
)  

with 
∼
B11 = B11k

2
1 , 

∼
B22 = B12k

2
1 , 

∼
g= gk21 and 

∼
w= wk41 . We denote this case with subscript "pp".

Omitting the η–independent term αp , the free energy density (9a) can be expanded in powers of η as

Note that the renormalized coefficient before η4 should be positive, otherwise higher terms should be included 
in the expansion. Thus, the inequality γppc4 + ckBT > 0 should be verified. Since s11 > |s12| for all elastically 
stable solids, and 

∼
B
2

11 +
∼
B
2

22 ≥ 2
∣

∣

∣

∼
B11

∼
B22

∣

∣

∣
 the condition γpp > 0 is always valid, and so γppc4 + ckBT > 0 at finite 

temperatures.
The equilibrium values of the order parameter obtained from minimization of the energy (9b) and corre-

sponding energy have the form similar to Eq. (8c):

Long-range order exists if βppc + kBT < 0 . The derivation of Eq. (9) is given in Supplementary Materials51.
Note that, in the ordered phases, elastic dipoles may become polar due to the surface-induced piezoelectric 

coupling that, in turn, originates from the inversion symmetry breaking near the film surfaces. At the same time, 
the out-of-plane polar phase is affected by the strong depolarization field originated from the sharp gradient of 
polarization decay away from the surfaces.

Structural phase diagrams.  The temperatures of transitions between defect-disordered and defect-
ordered phases for parallel and perpendicular orientations of the planes of a constant order parameter can be 
determined from equations

(8a)f [η] = αp +
βpr

2
c2η2 +

γprc
4

12
η4 + c

kBT

2
[(1− η)ln(1− η)+ (1+ η)ln(1+ η)]

(8b)δf [η] ≈
(

βprc
2 + ckBT

)η2

2
+

(

γprc
4 + ckBT

3

)

η4

4
.

(8c)η
pr
S = ±

√

−3
βprc + kBT

γprc3 + kBT
, δfpr

[

η
pr
S

]

= −
3c

4

(

βprc + kBT
)2

γprc3 + kBT
.

(9a)f [η] = αp +
βpp

2
c2η2 +

γppc
4

12
η4 + c

kBT

2
[(1− η)ln(1− η)+ (1+ η)ln(1+ η)]

(9b)δf [η] ≈
(

βppc
2 + ckBT

)η2

2
+

(

γppc
4 + ckBT

3

)

η4

4
.

(9c)η
pp
S = ±

√

−3
βppc + kBT

γppc3 + kBT
, δfpp

[

η
pp
S

]

= −
3c

4

(

βppc + kBT
)2

γppc3 + kBT
.

(10a)

Tpp[um, c, k1] = −
βppc

kB
≡ −

c

kB

(

α + 2
(

gk21 + wk41
)

− k21
(B11 + B12)

s11 + s12
(2um − Vmc)+ k21

Vn(B11 − B12)

s11 − s12
c

)

,
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We further explore the equilibrium period of η-modulation, related to the wave vector k. In equilibrium the 
condit ions  ∂Tpp

∂ki
=

∂Tpr
∂ki

= 0 should be  fu l f i l led 52.  Thus ∂Tpp
∂k1

= − 2c
kB
k1

(

2g − (B11+B12)(2um−Vmc)
s11+s12

+Vn(B11−B12)
s11−s12

c + 4wk
2
1

)

= 0 for the constant η-planes perpendicular to the film surfaces, and 
∂Tpr
∂k3

= − 2c
kB
k3

(

2g − 2B12
2um−Vmc
s11+s12

+ 4wk23

)

= 0 for the constant η-planes parallel to the film surfaces.
From these conditions the components of the modulation vector acquire the form:

It is instructive to rewrite and analyze expressions (11) in a dimensionless form, namely 
k1
k0

= ±
√

−
g

|g|
−

ga
|g|

+ b1u and k3k0 = ±
√

−
g

|g|
+ b3u , where k0 =

√

|g|
2w  is a characteristic wave number, 

u = um − cVm/2 is a dimensionless “effective” strain; b1 = B11+B12
|g|(s11+s12)

 and b3 = 2B12
|g|(s11+s12)

 are dimensionless 

gradient-related parameters. Below we will analyze the positive roots k1,3 > 0 only, since the negative ones 
describe the same physical states. Here we also introduced anisotropy term ga = (B11 − B12)

cVn
2(s11−s12)

.
Figure 2 illustrates the square-root like dependences of the dimensionless wave-vector components, k1/k0 

and k3/k0 , on the effective strain u for g > 0 (red and magenta curves) and g < 0 (black and blue curves). Note 
that positive w determines the existence of the modulation and its characteristic wave number.

The transition temperatures, corresponding to the η-modulation vectors given by Eq. (11), are

The conditions of the equilibrium between the ordered phases can be obtained from the equality of the cor-
responding free energy densities, Eqs. (8c) and (9c), namely.

allowing for the conditions of the long-range orders existence

(10b)Tpr[um, c, k3] = −
βprc

kB
≡ −

c

kB

(

α + 2
(

gk23 + wk43
)

−
2k23B12(2um − Vmc)

s11 + s12

)

.

(11a)k1 = ±

√

−
1

4w

(

2g − (B11 + B12)
2um − cVm

s11 + s12
+

cVn(B11 − B12)

s11 − s12

)

,

(11b)k3 = ±

√

−
1

2w

(

g −
B12(2um − Vmc)

s11 + s12

)

.

(12a)Tpp(um, c) = −
c

kB

[

α −
1

4w

(

2g − (B11 + B12)
2um − cVm

s11 + s12
+ (B11 − B12)

cVn

s11 − s12

)2
]

(12b)Tpr(um, c) = −
c

kB

[

α −
1

2w

(

g − B12
2um − Vmc

s11 + s12

)2
]

(13a)
(

βprc + kBT
)2

γprc3 + kBT
=

(

βppc + kBT
)2

γppc3 + kBT
,

Figure 2.   The dependence of the wave-vector component k1/k0 and k3/k0 on the effective strain (um − cVm/2) 
calculated from Eq. (11) for g > 0 (red and magenta curves) and g < 0 (black and blue curves), parameters 
b1 = 200 and b3 = −160.
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Note that the expressions (11) for k-vector components should be substituted in Eqs. (13).
Equation (13a) can be solved with respect to temperature in the following form:

The signs “ ± ” in  Eq. (14a) correspond to two different roots, which have physical sense if correspond to 
T ≥ 0. These roots should further satisfy two conditions (13b). Depending on the parameters it appeared possible 
at least for the largest root of Eq. (14a). Since the sign of denominator in Eq. (14a) is not fixed, both signs in the 
numerator, +Det

[

βpp,βpr
]

 or −Det
[

βpp,βpr
]

 , are possible depending on the parameters. Hence, the number 

(13b)βprc + kBT < 0,βppc + kBT < 0.

(14a)T =
c

kB

(

βpr
2 − βpp

2
)

+ 2c2
(

βprγpp − βppγpr
)

± Det
[

βpp,βpr
]

4
(

βpp − βpr
)

− 2
(

γpp − γpr
)

c2
,

(14b)Det
[

βpp,βpr
]

=

√

(

βpp − βpr
)4

+ 4
(

βpp − γppc2
)(

βpr − γprc2
)(

βpp − βpr
)2
.

Figure 3.   (a) Geometry of the problem and schematics of different phases characterized by different directions 
of the order parameter η modulation. The OP|| phase is characterized by a periodic change η ∼

∣

∣

∣

∼
η
∣

∣

∣cos[k3x3 + δ] 
perpendicular to the substrate plane x3 = h . The OP⊥ phase is characterized by a periodic change 
η ∼

∣

∣

∣

∼
η
∣

∣

∣cos[k1x1 + δ] parallel to the substrate plane x3 = h . The disordered DP phase is characterized by η = 0 . 

(b)–(e) Phase diagrams in dependence on the normalized defect concentration c/c0 and misfit strain um 
calculated for negative α, different signs of coefficient g and striction coefficients Bij (indicated above the plots) at 
room temperature T = 293 K. Parameters: αc20 = −6× 104 J m−3, 

∣

∣g
∣

∣c20 = 10−17 J/m, wc20 = 3× 10−37 J m, 
s11 = 4× 10−12 Pa−1, s12 = −1× 10−12 Pa−1, Vm = 30 Å3, while striction coefficients B11c20 = 5× 10−26 J m2, 
and B12c20 = −2× 10−26 J⋅m2, and maximal (steric limit) concentration of defects is c0=1025 m−3.
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and selection of the roots in Eq. (14a) should be established numerically depending on the number and values 
of the fitting parameters.

It can be shown that, at the chosen parameter values, one of the roots (14a) is close to the expression 
(

Tpp(um, c)+ Tpr(um, c)
)

/2 . Hence, for βpp ≈ βpr expression (14a) can be expanded in series on the small dif-
ference 

(

βpp − βpr
)

 powers, namely

When a strong inequality 
∣

∣γpp − γpr
∣

∣ << γpp takes place, the second term in parenthesis in Eq. (14c) could be 
either close to unity (sign “ − ”) or much higher than unity (sign “ + ”). It is seen that in the case of sign “ − ” the 
solutions (14b)-(14c) will not satisfy both of relations (13b) simultaneously. The other root in Eq. (14a) deviates 
more significantly from the value 

[

Tpp(um, c)+ Tpr(um, c)
]

/2 , thus, in this case, conditions (13b) will be satisfied.
Using Eqs. (10)-(14) we plotted phase diagrams of the system and corresponding modulation amplitudes and 

wave vectors, shown in Figs. 3, 4 and 5, respectively. Note that the ordered phases OP⊥ and OP|| have different 
orientation of the order parameter modulation amplitude, η(x1) and η(x3) , with respect to the film surfaces.

Figure 3a represents the scheme of the η(x1, x3) distribution in the ordered (OP⊥ and OP||) and disordered 
(DP) phases. The ordered phases OP⊥ and OP|| are characterized by periodic changes of η = c

c0
(δnb − δna) , 

which are proportional to the difference of the sublattices “a” and “b” occupation numbers, δnb − δna . The total 
concentration “c” remains constant, since the sum δna + δnb is independent on η . The OP|| phase is characterized 
by a periodic change η ∼

∣

∣

∣

∼
η
∣

∣

∣
cos[k3x3 + δ] , corresponding to the long-range modulation of the defect sub-lattices 

“a” and “b” occupation perpendicular to the substrate plane x3 = h . The OP⊥ phase is characterized by a periodic 
change η ∼

∣

∣

∣

∼
η
∣

∣

∣
cos[k1x1 + δ] , corresponding to the long-range modulation of the defect sub-lattices “a” and “b” 

occupation parallel to the substrate plane x3 = h . The disordered DP phase is characterized by η = 0 , correspond-
ing to the equal filling of both sub-lattices. Note that the modulation periods, 2πk1  and 2πk3  , should be significantly 
larger than the lattice constant for the validity of the continuum approach, and so Fig. 3a illustrates only these 
long-range modulations of the order parameter η(x) , but not the distance between the defect sub-lattices planes.

Figures 3 and 4 are phase diagrams of an ultra-thin film in dependence on the misfit strain um and the dimen-
sionless defect concentration c/c0 calculated for negative and positive α, respectively. Corresponding modulation 
wave vectors, k⊥ and k||, are shown in Fig. 5a,b, respectively.

Figure 3b–e, calculated for negative α, demonstrate the presence of OP⊥, OP|| and DP phases, whose bounda-
ries depend on the gradient g and striction Bij coefficients, which are different for Fig. 3b–e. The ultrathin almost 
vertical dark green stripe between OP|| and OP⊥ phases located at small |um| < 0.1% in Fig. 3b,c is the coexistence 

(14c)T ≈
c

kB

�

βpp − βpr
�



−
1

2
+

γppc
2 − βpp ±

�

�

γppc2 − βpp
��

γprc2 − βpr
�

�

γpp − γpr
�

c2



.

Figure 4.   Phase diagrams in dependence on normalized defect concentration c/c0 and misfit strain um 
calculated for different signs of gradient coefficient g and striction coefficients Bij (indicated above the plots), and 
α > 0 . Other parameters are the same as in Fig. 3.
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region of the ordered phases, where the wave vector becomes very small, k → 0 . This phase is absent for the 
diagrams in Fig. 3d,e, which have a tricritical point, where OP⊥, OP|| and DP phases coexist. The tricritical point 
{um = 0, c/c0 = 0.63} is almost independent on g and Bij signs. The OP||-DP and OP⊥-DP boundaries are curved 
for all diagrams. DP phase occupies mountain-shape region with the “top” at {um = 0, c/c0 = 0.63}, which hill-
sides start at small misfits. The region of its stability gradually decreases with |um| increase. At that the noticeable 
asymmetry between compressive ( um < 0 ) and tensile ( um > 0 ) misfit strains is evident and related with positive 
Vegard effect ( Vm > 0 ). It can be deduced from Fig. 3b–e, that the change of the Bij sign leads to an interchange 
between the OP|| and OP⊥ phases with different orientation of η-ordering, stemming from the chemo-strictive 
coupling between the strain um and defect concentration c, expressed by the coupling terms B11+B12

s11+s12
(um − cVm/2) 

and 2B12
s11+s12

(um − cVm/2).
The OP||-OP⊥ boundary is almost vertical, and its small slope weakly depends on the Vm value. The OP⊥ phase 

exists for compressive misfit strain um < 0 at B11 + B12 < 0 , and for tensile misfit strain um > 0 at B11 + B12 > 0 . 
The OP|| phase exists for compressive misfit strain um < 0 at B11 + B12 > 0 , and for tensile misfit strain um > 0 
at B11 + B12 < 0 . The color maps of the order parameter amplitudes [ η(x1) and η(x3) ] and wave vectors (k⊥ and 
k||) calculated for α < 0 , g > 0 , B11 + B12 > 0 are shown in Fig. 5a,c, respectively. The continuous transition 
from OP|| to OP⊥ phase occurs at um = 0 . Notably that k⊥ = k||= 0 in the region um ≈ 0 . The values of η and k 
gradually increase with |um| increase.

The change of α sign critically affects the phase diagrams, as is shown in Fig. 4. The most pronounced effect 
is the appearance of the wide DP region between the ordered OP⊥ and OP|| phases, so that the tricritical point 
is absent for all concentrations “c”. Note that the DP exists in the regions of misfits |um| ≤ 2% and this region 
grows with defect concentration decrease. The width of the DP region slightly increases with |um| increase. The 
change of the Bij sign leads to the interchange between the OP|| and OP⊥ phases, while the effect of the coefficient 
g is negligibly small in this case [compare Fig. 4a,b with 4c-d]. The OP⊥ phase exists for high compressive misfit 
strain um < −2.5% at B11 + B12 < 0 , and for tensile misfit strain um > +2.5% at B11 + B12 > 0 . The OP|| phase 

Figure 5.   Order parameter amplitudes η(x1) and η(x3) (a,b) and wave vectors (c,d) in dependence on 
normalized defect concentration c/c0 and misfit strain um calculated for negative α (a,c) and positive α (b,d); 
g > 0 , and B11 + B12 > 0 . Numerical values of parameters are the same as in Fig. 3.
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exists for compressive misfit strain um < −1.9% at B11 + B12 > 0 , and for tensile misfit strain um > +1.9% at 
B11 + B12 < 0 . The color maps of the order parameter amplitudes [ η(x1) and η(x3) ] and wave vectors (k⊥ and 
k||) calculated for α > 0 , g > 0 , B11 + B12 > 0 are shown in Fig. 5b,d, respectively. The OP|| to OP⊥ phases are 
separated by a wide region of the DP phase located at |um| ≤ 2% . The values of k are nonzero at the DP-OP|| and 
DP-OP⊥ boundaries. The values of η and k gradually increase with |um| increase.

Note that the values of the order parameter η and the components of the wave vector, k1 and k3 , were cal-
culated on the basis of numerical minimization of the more complex free energy functional [see Eqs. (8a) and 
(9a)], for which the series expansion was not used. It turned out that the differences between the approximate 
expressions (11) and the results of numerical calculations are insignificant for the wave vector. Also, to describe 
the phase transitions between the ordered and disordered phases, expressions (12) exactly correspond to numeri-
cal calculations, since these transitions are the second-order phase transitions and, the order parameter can be 
considered small near the transition points.

Note that phenomenological parameters listed in the caption to Fig. 3 were selected in such a way so as to 
satisfy the physical conditions αc0 ∼= kBTroom , 

√

|α|/g ≥ k0 , 
√

∣

∣g
∣

∣/w < k0 , while sij and c0 values are typical for 
oxides. As for the striction coefficients Bij, these are chosen so that the combinations of parameters, 
B11+B12
s11+s12

(um − cVm/2) and 2B12
s11+s12

(um − cVm/2) , are of the same order as 
∣

∣g
∣

∣ . To summarize the section, results 
shown in Fig. 3, 4 and 5 indicate that one can control the defect ordering-disordering by changing their concen-
tration c/c0 and misfit strain um at fixed values of the other parameters.

Finally it may be interesting to compare the defect ordering with the cycloid ordering in a strained multi-
ferroic BiFeO3 thin films (see e.g. Ref.11,21,22 and refs. to original papers therein). Actually, the strain-induced 
singularity of the cycloid period and phase diagram with various spin cycloid orientations in BiFeO3 can be 
topologically analogous to the one considered in Figs. 3, 4 and 5 proving that chiral incommensurate phases of 
defect ordering (allowed by the theoretical formalism) can exist in the strained film.

Conclusion
We have analyzed the ordering of defects (e.g. oxygen vacancies) in thin oxide films in the framework of the con-
tinuum Landau-type theory. We derived analytical expressions for the energies of various defect-ordered states 
and calculated and analyzed phase diagrams dependence on the film-substrate misfit strain and concentration 
of defects for different gradient, striction and Vegard coefficients.

We have found that two defect-ordered phases, which are characterized by either parallel or perpendicular 
defect ordering in planes and corresponding wave vectors, can be stable. The stability conditions are determined 
by the misfit strain and the defect concentration at fixed values of the other parameters. The ordered phases 
border with the defect-disordered phase. Hence, we have shown that it is possible to control the defect ordering-
disordering by changing their concentration and the film-substrate misfit strain (compressive or tensile). Thus, 
the obtained results open possibilities to create and control superstructures of ordered defects in thin oxide films 
by selecting the appropriate substrate and defect concentration.
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