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Periodicities (repeating patterns) are observed in many human behaviors. Their strength may capture untapped patterns that
incorporate sleep, sedentary, and active behaviors into a single metric indicative of better health. We present a framework to detect
periodicities from longitudinal wrist-worn accelerometry data. GENEActiv accelerometer data were collected from 20 participants
(17men, 3 women, aged 35–65) continuously for 64.4±26.2 (range: 13.9 to 102.0) consecutive days. Cardiometabolic risk biomarkers
and health-related quality of life metrics were assessed at baseline. Periodograms were constructed to determine patterns emergent
from the accelerometer data. Periodicity strength was calculated using circular autocorrelations for time-lagged windows.Themost
notable periodicitywas at 24 h, indicating a circadian rest-activity cycle; however, its strength varied significantly across participants.
Periodicity strength was most consistently associated with LDL-cholesterol (𝑟’s = 0.40–0.79, 𝑃’s < 0.05) and triglycerides (𝑟’s =
0.68–0.86, 𝑃’s < 0.05) but also associated with hs-CRP and health-related quality of life, even after adjusting for demographics
and self-rated physical activity and insomnia symptoms. Our framework demonstrates a new method for characterizing behavior
patterns longitudinally which captures relationships between 24 h accelerometry data and health outcomes.

1. Introduction

Human behaviors that are measured by accelerometer—
sleep, sedentary behavior, and more active behaviors—are
consistently associated with cardiometabolic risk biomarkers
and health-related quality of life [1–4]. Recently, substitution-
based and compositional models have been used to better
characterize the combined or joint impact these behaviors
may have on health [5–8]. Accelerometers can also capture
the patterns in which sleep, sedentary, and active behaviors
are accumulated. For example, physical activity accumulated
in bouts of ≥10min have stronger relationships with health
outcomes than total physical activity [9]. Discontinuous
sedentary time is less detrimental for health than sedentary
time accumulated in continuous bouts [10]. Finally, in sleep,

accelerometers can quantify measures of sleep quality (e.g.,
sleep efficiency, wake after sleep onset) which typically
provide greater predictive value of health outcomes than sleep
duration alone [11].

Despite the ability of accelerometers tomeasure behaviors
across the 24 h spectrum, less is known about metrics that
encapsulate the full 24 h that could be derived from accel-
erometer data.These metrics may identify unique patterns of
behavior that could further explain relationships with health
outcomes. One such known metric that is ascertained from
accelerometry is the rest-activity cycle that can represent
the human circadian system. Disruptions in the circadian
system consistently show profound and detrimental impacts
on health [12] and studies using accelerometry have shown
relationships with health-related quality of life and better
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survival followingmetastatic colorectal cancer chemotherapy
treatments [13, 14].

Recently, with the growth of more “wearable” accelerom-
eters that accommodate larger storage capacities, water-
proofing, and more unobtrusive wear locations, long-term
monitoring of behaviors (i.e., >1 week) throughout the 24 h
spectrumhas becomemore feasible. Indeed, consumer-based
accelerometers (e.g., Fitbit, Jawbone) are already achieving
long-term population-level data collection of these health
behaviors. With the collection of long-term data, it may now
be possible to characterize weekly, seasonal, and even annual
patterns of behaviors that encapsulate the full 24 h spectrum
that extend beyond traditional methods (e.g. accelerometry
thresholds, sleep/wake rhythms). Periodicities (i.e., repeating
patterns) are observed in many human behaviors and may
be derived from various forms of lifelog data [15]. However,
suchmethods have not been applied to long-termmonitoring
of accelerometry data. Therefore, our primary purpose of the
work reported in this paper was to develop a framework for
identifying meaningful periodicities (i.e., repeating patterns)
from longitudinal wrist-worn accelerometer data. Secondar-
ily, we sought to establish whether these periodicities were
independently associated with key cardiometabolic biomark-
ers and health-related quality of life. We applied five different
methods to calculate intensity of the rest-activity cycle and
show how each method performed in terms of correlation
with biomarkers and health-related quality of life and to see if
there was a consistent, or any kind of, pattern across the five
methods.

2. Materials and Methods

2.1. Participants. Participants were drawn from a smart-
phone-based, multicomponent behavioral intervention tar-
geting changes in sleep, sedentary behavior, and more active
behaviors. The target population was US Veterans cur-
rently receiving clinical care at a regional Veterans Health
Administration (VHA) hospital in the Southwestern United
States, aged 35–65 years, measured overweight/obese (BMI
≥25 kg/m2), with a fasting glucose of ≥100mg/dL. Eligibility
criteria also included reporting of (a) insufficient physical
activity (defined as endorsing activity ranking categories ≤4
on the Stanford Brief Activity Survey [16], which closely
aligns with national physical activity guidelines), excessive
sitting (defined as ≥8 hours of sitting from the International
Physical Activity Questionnaire (IPAQ) [17]), and short sleep
duration (<7 hours/night) or mild/moderate sleep complaint
(modified version of the Insomnia Severity Index (ISI) [18]).
All participants completed telephone screening to determine
eligibility. Institutional review boards governing the local
VHA hospital and the university to which some of the
researchers were affiliated approved all study procedures. All
participants provided written informed consent.

2.2. Procedures. Participants were initially screened by tele-
phone and this was followed by an in-person visit to confirm
eligibility and complete informed consent procedures. At
this visit, participants were given a wrist-worn accelerometer

for three consecutive weeks. This period constituted the
“run-in” period of the behavioral intervention and baseline
data collection period. Participants were instructed to wear
the monitor continuously during both sleep and wake.
Participants were able to remove the accelerometer but were
encouraged to wear the monitor as continuously as possible.
As part of the run-in period, participants were asked to
self-monitor their sleep, sedentary, and active behaviors
using a customized smartphone application designed for this
purpose. After two weeks, participants were mailed a second
accelerometer and asked to return the first accelerometer in
a prepaid envelope. At three weeks, participants returned
for a second in-person visit where the second accelerom-
eter was returned and all other study measures including
questionnaires, blood draws, and clinical measurements were
completed. Participants received $25 USD for completing
study measures at this visit. Following this visit, participants
were randomized to receive active elements of the behavioral
intervention. A full description of the intervention is beyond
the scope of this investigation and is discussed elsewhere
[19], but briefly, participants were randomized into a full-
factorial 2 × 2 × 2 screening experiment where smartphone-
based interventions targeting sleep, sedentary behavior, and
physical activity were delivered for 8 weeks. All participants
maintained self-monitoring of their behaviors using the cus-
tom application during the intervention phase. Participants
also attended two additional visits during the eight weeks to
complete study-related assessments and to return/exchange
accelerometers to maintain continuous wear. To take advan-
tage of the continuous and longitudinal nature of the data,
the full accelerometer data for the run-in and intervention
periods were leveraged for this analysis and the effect of the
intervention was statistically controlled for in all analyses.

2.3. Measures

2.3.1. Lifelog Accelerometry. Movements during sleep and
wake were monitored objectively and continuously through-
out the study period using the GENEactiv accelerometer
(Activinsights, Kimbolton, UK). The GENEActiv is an open
source, wave-form wrist-worn accelerometer that is fully
waterproof, allowing the monitor to be worn continuously,
24 h a day, without the need to be removed during water
activities or be shifted from hip to wrist for daytime and
nighttime measurement. Since the GENEactiv provides con-
tinuous forms of data recordings for periods of at least 1
month, it can be considered a valid form of lifelogging.
Data captured on board the device were initially sampled
at 40 hz and summarized to 60 s epochs using a gravity-
subtracted sum of vector magnitudes provided through the
Activinsights software package [20]. Periods of nonwear were
screened for and removed based upon variability in the mon-
itor temperature outputs (i.e., low variability indicates lack
of normal fluctuation in temperatures indicated of human
wear) and visual inspection. Additional removal occurred for
overlapping wear periods that occurred when the monitors
were in transit by post.
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2.3.2. Cardiometabolic Outcomes. Clinical assessments of
waist circumference and blood pressure were taken. Waist
circumference was measured at the end of normal expiration
at the level of the iliac crest by wrapping a flexible measuring
tape snugly around the waist with the tape parallel to the
floor. Blood pressure wasmeasured twice (fiveminutes apart)
in the seated position after 10 minutes of rest with a sin-
gle, regularly calibrated, automated blood pressure machine
(Casmed 740). Laboratory-based biomarkers were measured
following a >9 h fast. A full lipid profile with total cholesterol,
high-density lipoprotein (HDL), and low-density lipopro-
tein (LDL) as well as high-sensitivity C-reactive protein
(hsCRP), triglycerides, plasma glucose, and insulin levels was
measured. All assays were processed in the VHA clinical
laboratory.

2.3.3. Health-RelatedQuality of Life. A single “general health”
quality of lifemetric was derived from the RAND-36measure
[21], which is similar to those of theMedical Outcomes Study
SF-36 [22].

2.3.4. StudyCovariates. Sociodemographic andhealth behav-
ior/status variables considered as potential confounders
induced age, gender, race/ethnicity (Caucasian, African-
American, Hispanic, and Asian American), leisure-time
physical activity (assessed with a metabolic equivalent score
from the walking, moderate, and vigorous leisure activities
items from the IPAQ [17]), and insomnia symptoms (assessed
with a total score from the ISI [18]). Intervention effects were
also adjusted for in all models based upon the 2 × 2 × 2
factorial experiment.

2.3.5. Power Spectral Density (PSD) Estimation. PSD estima-
tion can be used to detect significant periodicity or repeating
cycles in any kind of signal, including lifelog data. Our
previous work showed detected periodicities in several lifelog
datasets using various PSD estimation methods [15]. When
it is applied to any form of lifelogging, the periodogram can
be used to detect the natural cycles that occur in lifestyle,
behavior, and activities. Periodicity can be observed in many
natural phenomena, such as circadian rhythms associated
with our sleep, for example. Intuitively, we think of our
routine daily lives as composed of various forms of recur-
ring events with obvious periodicities around daily, weekly,
monthly, seasonal, and annual cycles. In any kind of spectral
analysis of a lifelog, we expect to see periodicity around these
frequencies. However, without the help of lifelogging devices
and the resulting lifelog of data, analyzing the periodicity of
human life is not a practical proposition.

(1) Periodogram. A periodogram is a visualization of the
PSD for a continuous spectrum of frequencies calculated
from a stream of data values. Periodogram is widely used
to estimate spectrum of both discrete and continuous sig-
nals in engineering, astronomy, biology, and physics [23].
When periodograms are applied to lifelogs, they can reveal
the cycles which form a natural part of human behavior.
Periodograms work best when the lifelog data is sampled at

a regular frequency and is continuous, withoutmissing values
[24]. Missing data was minimal in this application.

Suppose our complete input data sequence is formalized
as 𝑥(𝑛), 𝑛 = 0, 1, . . . , 𝑁 − 1. The normalized Discrete Fourier
Transform (DFT) of the sequence is defined as
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where the subscript 𝑘/𝑁 denotes the frequency that each
coefficient captures. Suppose that𝑋 is the DFT of a sequence
𝑥(𝑛).The periodogram𝑃 is provided by the squared length of
each Fourier coefficient:
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Notice here that 𝑘 ranges from 0 to (𝑁−1)/2. In order to find
the 𝑘 dominant periods, we need to pick the 𝑘 largest values
of the periodogram. This works well for short to medium
length periods but, for long periods with low frequencies,
performance is worse because each value in the periodogram
𝑁 indicates the power at frequency interval [𝑁/𝑘,𝑁/(𝑘 −
1)] which is too wide to capture large periodicity. Thus, the
accuracy of periodicity detection at low frequency will be
lower than at higher frequency. For lifelogging, this means
there is difficulty in detecting patterns measured in years.
Another difficulty when using periodograms is spectrum
leakage [25], which causes frequencies that are not integer
multiples of the DFT bin width to disperse over the entire
spectrum which could result in false alarms being detected
in the periodogram. Despite this, the periodogram is still an
acceptable way to guarantee the accuracy of detected periods
with short to medium frequency.

(2) Least-Squares Spectral Analysis. Past work [23] has shown
that the Lomb-Scargle periodogram that handles missing
data values can be successfully applied to generate peri-
odograms from noncontinuous lifelog data.

Least-squares spectral analysis or LS periodogram is a
very different method developed by Lomb and Scargle based
on work by Barning and Vanicek to handle continuous
data with missing parts [26, 27]. To formalize the problem,
suppose we have a data sequence with 𝑁 data points: 𝑋

𝑛
=

𝑋
𝑡
𝑛

, 𝑛 = 0, 1, . . . , 𝑁 − 1. The mean and variance of the data
sequence need to be calculated first.

The Lomb-Scargle periodogramhas the following expres-
sion:
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where 𝐶 could be 1/2 or 1/2𝜎2 and 𝜏 is defined as
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(3) Periodogram of Autocorrelation Function. In statistics,
correlation is basically used to measure how similar two
sequences are.This quantitative measurement of similarity of
signal 1 and signal 2 can be defined as

𝑟
12
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1
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𝑁−1
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A cross-correlation between time shifted sequences can be
defined as
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All possible 𝑘-shifted time series could generate another
sequence of numbers only changing with 𝑘, which is called
full cross-correlation. The correlation between a signal and
the time shifted version of itself is called an autocorrelation.
A lag operator is used to generate the time shifted signal and
“0 lag” equals to mean-square signal power. Autocorrelation
can be defined as
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We can observe that if the signal is periodic, the normalized
autocorrelation is also periodic. Based on this, it is interesting
to use the periodogram of the autocorrelation as a PSD
estimator. The following equation is used to calculate the
periodogram of autocorrelation function:
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Periodicity Strength. Since 24 h/circadian periodicity is ob-
served and significant in almost all lifelog data generated by
human subjects, we would like to use the lifelog to compute
the strength of the circadian periodicity for each participant
at different points in time. Based on the PSD calculated from
the input data, we try to estimate the periodicity strength at
given times using different methods and thereafter compare
those strengths with markers of cardiometabolic risk and
health-related quality of life.

We use the following denotation to explain how we
calculate the strength of periodicity.

F denotes the DFT of signal 𝑥(𝑛), 𝑛 = 0, 1, . . . , 𝑁 − 1,
and F󸀠 denotes the inverse transformation. 𝑆 stands for the
strength of periodicity. The autocorrelation was calculated
using five different approaches, described as follows:
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Method 1 uses power carried by 1/day frequency as the
strength of circadian periodicity, namely, the correlation
between signal and sinusoid with daily periodicity. Methods
2 and 3 use A

1
and A

2
to calculate autocorrelation, respec-

tively. Using the result of autocorrelation as input to compute
periodogram, we thereafter use power of daily periodicity
as strength of the circadian periodicity. It should be noted
that A

1
is normalized autocorrelation. Method 4 uses the

maximum power in the periodogram to represent strength
of periodicity, though in this case it is not assured that daily
periodicity will carry maximum power all the time. Finally,
Method 5 calculates a sinusoid with daily periodicity that is
correlated to the data most and then computes root-mean-
square error (RMSE) between the signal and the most-fit
sinusoid with daily period.

If we consider the informal formulation of spectrum
estimation as estimating how the total power is distributed
over the frequency, the definition of intensity of periodicity
can be thought of as the power corresponding to a certain
periodicity or several periodicities. Method 1 comes directly
from the definition of power spectral density, which uses
DTFT to calculate how power is distributed over frequency
directly and here in method 1 we only take the power carries
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by 24-hour periodicity. Methods 2 and 3 derive from another
definition of power spectrum which shows that spectrum
can be achieved as the DTFT of the autocorrelation. Method
3 is normally used to calculate autocorrelation in signal
processing.The reason we also useMethod 2 is because when
we lag signal to calculate autocorrelation, the bigger the lag
is, the less number of points is involved in the calculation.
Method 2 is trying to eliminate this effect by using averaged
value. Both of Methods 2 and 3 use power of circadian
periodicity as the intensity. Method 4 is using power of
frequency with maximum power as intensity. The reason we
are using this method is that we are trying to see how the
frequency with maximum power would be correlated with
biomarkers. In particular, it is interesting to see the result
between Methods 1 and 4. Method 5 uses a different way
to calculate how the signal is different from the 24-hour
periodicity.The rest of themethods use correlation as ametric
to quantify the difference whileMethod 5 uses summed error
as the metric to quantify the deviation.

An intensity graph is generated by using a sliding window
with selected window and overlapping sizes to visualize
the intensity/strength of the periodicity [28]. Within each
window, we calculate the strength of the circadian periodicity
using Method 1; thus we can see the intensity/strength of
periodicity over time.

Descriptive Analyses and Relationships with Cardiometabolic
and Health-Related Quality of Life Outcomes. We calculated
descriptive statistics to represent the sample includingmeans,
SDs, frequencies, and percentages. Multiple linear regression
analysis was used to identify which periodicity strength
metrics were associated with the cardiometabolic and quality
of life outcomes. Partial correlation coefficients, after adjust-
ment for age, gender, race/ethnicity, leisure-time physical
activity, insomnia symptoms, and intervention assignment,
were used to characterize this relationship. Analyses were
conducted using SAS Enterprise Guide 6.1 (SAS Institute,
Inc.). Inferential testing was conducted at a 𝑃 < 0.05

significant level; however, due to the relatively small sample
size and exploratory nature of the study, moderate effect
size correlations and 𝑃’s < 0.10 were also considered. We
considered an 𝑟 effect size of >0.25 to be “moderate” in
strength [29].

3. Results

3.1. Participants. Table 1 provides demographic information
regarding the final sample of participants. In total, 24
participants were enrolled for this analysis; however, four
were excluded due to not presenting for the study measure
completion following the initial three weeks of accelerometer
wear.The final sample (𝑁 = 20) were middle-aged, primarily
men and Caucasian, inactive, and with moderate levels of
insomnia symptoms. Continuous accelerometer wear time
varied from 13.9 (minimum) to 102.0 (maximum) days (mean
wear: 64.4 ± 26.2 days). Nonwear time was minimal across
the 24 h period in the sample (0.03 ± 0.07 percent of days).
Of the 24 participants, 15 had complete data (58.8 ± 26.4
days). The remaining nine participants had 73.6 ± 23.1 days

Table 1: Participant demographics (𝑁 = 20).

Age, M ± SD 49.7 ± 9.1
Men,𝑁 (%) 17 (85.0)
Race/ethnicity,𝑁 (%)
Caucasian 14 (70.0)
African-American 3 (15.0)
Hispanic 2 (10.0)
Asian American 1 (5.0)

Leisure-time physical activity (MET-min/week),
M ± SD 878.6 ± 1680.9

Insomnia symptoms (ISI), M ± SD 14.8 ± 6.4
ISI = Insomnia Severity Index (range: 0–28).

of data collection and 9.2% ± 9.0% days of missing data.
Overallmissing data across the full data collection periodwas
3.5% ± 7.1%.

3.2. Identification of Periodicities. Figure 1 outlines the meth-
odological steps for identifying periodicities and visualizing
periodicity strength. Panel (a) provides visualization of the
sum of vector magnitudes (1min epochs) along the 𝑦-axis
and time along the 𝑥-axis over the course of the monitoring
period. Sleep and wake periods are evident visually from
these data. Panel (b) displays a periodogram calculated from
1m epochs. The 𝑥-axis is frequency and 𝑦-axis is energy of
the frequency, namely, how strong the corresponding fre-
quency is. In Figure 1, we observe strong circadian periodicity
followed by a 12 h periodicity which is the harmonic of the
circadian. No within-day or weekly patterns were observed.
Panel (c) plots time (𝑥-axis) by the strongest periodicity
observed over the 3-day time lagged window. 𝑦-axis of
Panel (c) is the frequency that carries maximum power
within a window. In this example, the 24 h periodicity held
consistently for the majority of 3-day windows with small
breaks at the beginning of the monitoring period. Panel
(d) describes the strength of the periodicity using Method
1 (𝑦-axis) over time (𝑥-axis). The strength/intensity of the
24 h circadian periodicity changes throughout the lifelogged
observation period, showing, for example, a weaker period of
regular circadian cycle from day 0 to day 14 and again from
day 32 to day 44.

3.3. Periodicity Strength Metrics. Table 2 presents descriptive
statistics and intercorrelations among the five methods for
calculating periodicity. Methods 1–4 displayed very high
correlations among methods. In particular, Method 1 was
strongly correlatedwithMethod 4 andMethod 2was strongly
correlated with Method 3. Method 5 was not strongly corre-
lated (𝑟’s < 0.40) with any of the other methods. Normalized
versions of these metrics were calculated and similar pattern
of results was observed (not pictured).

3.4. Associations with Cardiometabolic and Quality of Life
Outcomes. Table 3 presents descriptive data for cardiomet-
abolic and quality of life outcomes and partial correlation
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Figure 1: Exemplar data of 24 h behavioral periodicities over 70 consecutive days of wrist-worn accelerometry. 1min = 1 minute; for more
details, see text.

Table 2: Means, standard deviations, and Pearson correlations
among five periodicity strength metrics (𝑁 = 20).

Method 1 Method 2 Method 3 Method 4 Method 5
Mean 0.20 0.10 0.10 0.23 0.45
SD 0.24 0.22 0.21 0.24 0.15
Method 1
Method 2 0.93
Method 3 0.93 0.99
Method 4 0.98 0.90 0.92
Method 5 0.29 0.14 0.19 0.38

coefficients for each of the periodicity strength metrics and
cardiometabolic and quality of life outcomes. The profile
of participants’ descriptive data suggests that the sample
was at moderate to high risk for cardiometabolic risk dis-
eases. The strongest and most consistent correlations were
observed between the periodicity strength metrics and LDL-
cholesterol and triglycerides outcomes. Consistent—yet only
moderate in strength—relationships were observed for hs-
CRP and health-related quality of life. HDL-cholesterol,
plasma glucose, and insulin were not consistently associated
with the periodicity strength metrics. As expected (due to
high intercorrelations), Methods 1–4 displayed very similar
pattern of results. In contrast to Methods 1–4, Method 5
displayed a moderately strong relationship with systolic BP
and HDL-cholesterol and no relationship with hs-CRP or
triglycerides.

4. Discussion

The purpose of this study was to develop a framework
for identifying periodicities (i.e., repeating patterns) from
longitudinal wrist-worn accelerometer data and to establish
whether these periodicities were independently associated
with key markers of cardiometabolic health and health-
related quality of life. The resultant periodograms demon-
strated a consistent 24 h pattern representing a typical rest-
activity cycle; however, the strength of this 24 h rest-activity
pattern varied within and between individuals. Using varying

methods of quantifying periodicity strength, we found pre-
liminary evidence that the strength of the rest-activity cycle
was associated with key cardiometabolic risk biomarkers
and health-related quality of life independent of self-rated
physical activity and insomnia symptoms.

Despite different methodologies in characterizing the
rest-activity cycle and health outcomes, this study is con-
sistent with other studies. Mormont et al. [13] examined
the rest-activity cycle in metastatic colorectal cancer patients
using an autocorrelation coefficient at 24 h and a dichotomy
index that compared activity in bed and out of bed. These
metrics were positively correlated with improved quality of
life, response to treatment, and survival. In a follow-up to this
study, Innominato et al. [14] further clarified the importance
of the rest-activity cycle, as measured via accelerometry, by
demonstrating the stronger correlations observed between
the rest-activity cycle metrics compared to mean counts of
physical activity for health-related quality of life and survival
outcomes in metastatic colorectal cancer patients. Our study
extends these findings in some important ways. First, these
studies sampled behavior over 3-4 consecutive days. There-
fore, our investigation substantially lengthens themonitoring
period and therefore provides a clearer picture of habitual
24 h rest-activity cycles. Second, we have explored these
relationships and found associations with a broader set of
health outcomes in a group at elevated cardiometabolic risk.
Finally, our framework for the development of periodograms
and metrics to characterize periodicity strength represents a
more sophisticated and nuanced approach that may provide
a more precise determination of the 24 h rest-activity cycle.

One of the most interesting findings from the cur-
rent investigation was the differences and similarities in
correlation of the various periodicity strength metrics and
health outcomes. Methods 1–4 yielded very similar results
due to high intercorrelations among these related methods
for quantifying periodicity strength. Methods 1–4 computed
correlation as the sum of products (𝑠 ∗ 𝑟) over all points,
𝑠
𝑖
, in the pattern against corresponding points 𝑟

𝑖
, in the

original signal. This tells us how close the shape is between
the original signal and the detected pattern. These metrics
were consistently and strongly correlated with cardiovascular
physiology outcomes such as LDL-cholesterol, triglycerides,
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Table 3: Partial correlation coefficients, between cardiometabolic biomarkers and health-related quality of life indices, and periodicity
strength metrics (𝑁 = 20).

M ± SD Periodicity strength metrics
Method 1 Method 2 Method 3 Method 4 Method 5

Waist circumference, in 66.82 ± 35.10 0.28 0.27 0.25 0.30 ‡

Systolic BP, mmHg 138.6 ± 17.13 ‡ ‡ ‡ ‡ 0.57∗

Diastolic BP, mmHg 89 ± 16.32 ‡ ‡ ‡ ‡ ‡

Total cholesterol, mg/dL 177.4 ± 50.51 0.52† 0.68∗∗ 0.57∗ 0.46† 0.47†

HDL cholesterol, mg/dL 33.9 ± 11.76 ‡ ‡ ‡ ‡ 0.51†

LDL cholesterol, mg/dL 109.7 ± 37.64 0.45† 0.57∗ 0.46† 0.40 0.42
hs-CRP, mg/dL 7.76 ± 5.60 0.47† 0.38 0.30 0.53† ‡

Triglycerides, mg/dL 168.7 ± 74.06 0.77∗∗ 0.86∗∗∗ 0.81∗∗∗ 0.75∗∗ ‡

Plasma glucose, mg/dL 117.2 ± 50.69 ‡ ‡ ‡ ‡ ‡

Insulin, pmol/L 44.58 ± 73.01 ‡ ‡ ‡ ‡ ‡

Health-related quality of life 47.25 ± 13.03 0.37 0.54∗ 0.55∗ 0.37 0.52†
∗∗∗
𝑃 < 0.001; ∗∗𝑃 < 0.01; ∗𝑃 < 0.05; †𝑃 < 0.10; ‡𝑟 < 0.25 and 𝑃 > 0.0.

All models are adjusted for age, gender, race/ethnicity, leisure-time physical activity, insomnia symptoms, and intervention assignment.

and inflammation (hs-CRP). In contrast, Method 5 pro-
duced a different profile of correlation with health outcomes.
Method 5 computed correlation as the root-mean-square
error of the difference (𝑠 − 𝑟) between corresponding points
in the original data and the pattern. This tells us the sum
of absolute differences between the pattern and the original
signal. This metric was associated with HDL-cholesterol and
systolic blood pressure, while Methods 1–4 were not. While
it is not directly clear why these unique correlates were
identified for the various periodicity strength metrics, it does
suggest that nuances in the rest-activity cycle may uniquely
contribute to cardiometabolic disease risk.

4.1. Strengths and Limitations. An important strength of
this study was the long-term, longitudinal nature of the
collection of accelerometry data. Typically, accelerometer
data are collected for seven or fewer consecutive days.
These analyses demonstrate a novel methodology for har-
nessing longitudinal accelerometry data with demonstrated
additional explanatory power for health outcomes beyond
what has typically been reported in reports of accelerometry
data and health outcomes. An additional strength was the
minimal missing accelerometer data. While the methods
employed here were relatively robust to missing data, the
trivial missing data demonstrates the feasibility of collecting
long-termmonitoring data. A final strength of this study was
the reliance on a completely open-source, raw data collection
methodology with no proprietary algorithms. An important
limitation of this preliminary study was the relatively small
sample size and limited duration of the monitoring period.
While there was substantial within- and between-person
variability in periodicity strength observed, a larger sample
may have yielded stronger and more definitive patterns in
the rest-activity cycle. Relatedly, the sample was exclusively
those with elevated cardiometabolic risk and the results may
not generalize to a healthy population. Furthermore, while
the length of the monitoring was indeed longer than typically
what is reported, longermonitoring periodsmay have yielded

more interesting month, seasonal, or annual patterns of data
as have been observed in other forms of lifelog data [15].
Additionally, while the periodicity strength metrics were
calculated based on longitudinal data, the cardiometabolic
and health-related quality of life metrics were measured con-
currently, and therefore the relationships reported represent
cross-sectional associations. Finally, these data were collected
in the context of a behavioral intervention. While the effect
of this intervention was statistically adjusted for, residual
confounding may exist.

4.2. Future Directions. Logical next steps for this work are
threefold. First, replication of these methods in larger and
more diverse samples is warranted. This may include the use
of existing cohorts where raw data collection protocols of 24 h
accelerometry are in place (even protocols that only include
seven days of wear) with health-related outcomes measured
in a cross-sectional or longitudinal fashion (e.g., US National
Nutrition and Health Examination Survey, UK Biobank).
Second, if these metrics are further shown to be related to
health outcomes, it becomes critical to understand whether
these metrics may be amenable to behavioral intervention
and by what means this may be possible. It is not known
whether thismetricmay bemore sensitive to changes in sleep,
sedentary behavior, physical activity, some combination of
these behaviors, or some alternative strategy not currently
being considered. Given this metric’s independence from
physical activity and sleep, it may require novel intervention
strategies. Further clarification is needed for why these
metrics were associated with certain biomarkers and not
others, as well as why there was such variability in the
strength of these associations with various biomarkers. Care-
fully laboratory-based studies that seek to experimentally
manipulate the rest-activity cycle (and consequently change
periodicity strength) may be useful in understanding the
physiological mechanisms underlying these relationships.
Finally, because of the cross-sectional nature of the current
study, causality cannot be established, and therefore it is
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imperative that these relationships be followed longitudinally
where periodicity strength is experimentally manipulated
in a manner to invoke changes in cardiometabolic risk
biomarkers. This would provide greater clarity regarding the
overall direction of the mechanistic effects.

5. Conclusion

The use of periodograms and periodicity strength represents
a novel methodology for understanding long-term monitor-
ing of 24 h accelerometry data.This analytical framework can
be used with minimally processed accelerometer data and, in
this sample, demonstrated moderate to strong independent
associations with key cardiometabolic and health-related
quality of life outcomes. This framework and preliminary
workmay be useful as long-termmonitoring of accelerometer
data across the 24 h becomesmore commonplace in epidemi-
ological and intervention research.
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