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Abstract

Carbon (C) storage for all the components, especially dead mass and soil

organic carbon, was rarely reported and remained uncertainty in China’s forest

ecosystems. This study used field-measured data published between 2004 and

2014 to estimate C storage by three forest type classifications and three spatial

interpolations and assessed the uncertainty in C storage resulting from different

integrative methods in China’s forest ecosystems. The results showed that C

storage in China’s forest ecosystems ranged from 30.99 to 34.96 Pg C by the six

integrative methods. We detected 5.0% variation (coefficient of variation, CV,

%) among the six methods, which was influenced mainly by soil C estimates.

Soil C density and storage in the 0–100 cm soil layer were estimated to be

136.11–153.16 Mg C�ha�1 and 20.63–23.21 Pg C, respectively. Dead mass C

density and storage were estimated to be 3.66–5.41 Mg C�ha�1 and 0.68–
0.82 Pg C, respectively. Mean C storage in China’s forest ecosystems estimated

by the six integrative methods was 8.557 Pg C (25.8%) for aboveground bio-

mass, 1.950 Pg C (5.9%) for belowground biomass, 0.697 Pg C (2.1%) for dead

mass, and 21.958 Pg C (66.2%) for soil organic C in the 0–100 cm soil layer.

The R:S ratio was 0.23, and C storage in the soil was 2.1 times greater than in

the vegetation. Carbon storage estimates with respect to forest type classification

(38 forest subtypes) were closer to the average value than those calculated using

the spatial interpolation methods. Variance among different methods and data

sources may partially explain the high uncertainty of C storage detected by dif-

ferent studies. This study demonstrates the importance of using multimethod-

ological approaches to estimate C storage accurately in the large-scale forest

ecosystems.

Introduction

Forest ecosystems contain over 45% of carbon in terres-

trial biosphere and thus play a leading role in the globe

carbon cycle (Beer et al. 2010). An accurate estimate of

ecosystem C storages in forests is crucial for predicting

the national carbon-climate feedback and guiding the

implementation of mitigation policies (Beer et al. 2010;

McKinley et al. 2011; Pan et al. 2011; Yang et al. 2014).

China’s forests make up 5% of the globe total and rank

as the fifth largest area in the world (Hu et al. 2015). Fur-

thermore, the Chinese government has signed the “United

Nations Framework Convention on Climate Change” and

the “Kyoto Protocol,” pledging to increase 40 million

hectares of forest area by 2020 from the 2005, aiming to

noticeably enhance C sequestration by China’s forests

(Zeng 2014).

Several studies have demonstrated that China’s forests

act as carbon sink based on the National Forest inventory

data (Fang et al. 2001; Pan et al. 2004; Piao et al. 2005;

Xu et al. 2007; Zhao et al. 2013). Some studies indicate

that China’s forests have tremendous potential to increase

C storage through afforestation or improved forest man-

agement (Deng et al. 2014; Song et al. 2014; Wang et al.

2014). However, many studies only focused on the bio-

mass C storage in China’s forests, C storage capacity in
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other components of forest ecosystem, such as dead mass

(DMC) and soil organic carbon (SOC), has been rarely

reported (Dixon et al. 1994; Zhou et al. 2000; Ni 2001; Li

et al. 2004; Yu et al. 2010). Carbon storage in soils in

China was considerably high, accounting for 12.8% of the

global C pool, and played an important role in the global

carbon cycle (Fang et al. 1996). However, the estimates of

C storage in different components, especially SOC in Chi-

na’s forest ecosystems, are still uncertain. The uncertainty

in ecosystem C storage estimation limits our understand-

ing on whole-ecosystem carbon balance in China’s forests

and its feedback to climate warming (Luyssaert et al.

2010; Pan et al. 2011; Yang et al. 2014).

The uncertainties in ecosystem C storage estimation in

China’s forest ecosystem are mainly induced by data

sources and methods. Many scientists estimated biomass

C based on National Forest inventory (NFI) data by bio-

mass expansion factor (BEF) method (Fang et al. 1998,

2001, 2007; Pan et al. 2004; Xu et al. 2007; Zhang et al.

2013). Piao et al. (2005) and Chi (2011) assessed biomass

C based on satellite data by remote sensing method.

Other scientists estimated biomass C storage using mean

carbon density method based on field-measured data

(Dixon et al. 1994; Fang et al. 1998; Zhou et al. 2000; Ni

2001). These different data sources and methodological

issues led to large uncertainties in biomass C density esti-

mates (ranging from 32 to 114 Mg C�ha�1) and biomass

C storage estimates (ranging from 3.26 to 19 Pg C in

1980s). Even using the same NFI data during the period

from 2004 to 2008, different methods cause the estimates

of biomass C density to range from 37.94 to

50.71 Mg C�ha�1 and biomass C storage to range from

6.24 to 9.25 Pg C (Guo et al. 2010; Li et al. 2011; Zhao

et al. 2013). Compared with NFI for different time peri-

ods, periodic soil surveys have been conducted less fre-

quently. Consequently, contemporary soil carbon

measured data are often unavailable (Yang et al. 2014).

The lack of sufficient soil organic C measurements has

been the largest obstacle to elucidate the current status of

soil C storage (Yang et al. 2007; Yu et al. 2010; Pan et al.

2011). Based on historical soil survey data and the global

soil data sets in 1980s, soil organic C storage and C den-

sity in the 0–100 cm soil layer in China’s forests have

been estimated to be 16–23.21 Pg C and 115.90–
193.55 Mg C�ha�1, respectively (Dixon et al. 1994; Zhou

et al. 2000; Li et al. 2004; Xie et al. 2004; Yang et al.

2007; Yu et al. 2007). The large variability in soil carbon

observed among previous studies may be partly induced

by the lack of contemporary measurements of C stock in

forest soils (Pan et al. 2011; Yang et al. 2014). Further-

more, dead mass C in China’s forests has been very rarely

reported (Zhou et al. 2000). Therefore, estimates of C

storage remain uncertain in China’s forest ecosystems.

Different methods have been used to estimate C storage

in China’s forest ecosystems, including the mean carbon

density method based on field investigation data (Dixon

et al. 1994; Fang et al. 1998; Ni 2001; Guo et al. 2010),

the BEF method based on NFI data (Fang et al. 2001;

Zhao and Zhou 2006; Xu et al. 2007; Zhang et al. 2013),

remote sensing (Piao et al. 2005; Chi 2011), modeling

(Dixon et al. 1994; Li et al. 2004; Zhao et al. 2013), and

spatial interpolation (Du et al. 2010; He et al. 2013; Zhao

et al. 2014). The BEF method based on NFI data was

widely used for estimation of biomass C in the forests at

national scale. However, NFI only investigated the volume

of the stand trees, excluding the biomass of shrubs and

herbs, dead mass, or soil organic carbon. More recently,

studies on forest biomass carbon estimation combining

forest inventory data with remote sensing data have grad-

ually proliferated (Piao et al. 2005; Chi 2011; Huang et al.

2013). However, remote sensing is not appropriate to

estimate dead mass and soil organic carbon because field-

measured data are scarce. Taken together, insufficient

observations and methodological issues greatly inhibit our

estimates of all component carbon storage in China’s for-

est ecosystems. Consequently, field-investigated data have

always been used to estimate C storage, especially for soil

C and dead mass C, at the national scale by the mean C

density method. However, because field-investigated data

were scarce, the data have been integrated according to

the forest type (Ni 2001; Li et al. 2004; Xie et al. 2004;

Yang et al. 2014), administrative region (Yang et al.

2014), and spatial interpolation (Du et al. 2010; Zhao

et al. 2013). Therefore, these different scale-up methods

may have primarily contributed to the inconsistency of

results obtained by different studies (Wang et al. 2001,

2014; McKinley et al. 2011; Ni 2013).

To the best of our knowledge, few studies have con-

ducted integrated analyses of C storage including all the

elements C density of aboveground biomass (AGC),

belowground biomass (BGC), dead mass (DMC), soil

organic carbon (SOC), and the associated uncertainties

estimated by different integrative methods using field-

measured data at the national scale.

The rapid development of forest C cycling research pro-

vides a new opportunity for accurate assessments of C

storage in China’s forest ecosystems. Here, we collected

3868 field-measured data including AGC, BGC, DMC, and

SOC in China’s forest ecosystems from papers published

between 2004 and 2014 and used six integrative methods

(three forest type classification methods and three spatial

interpolation methods) to calculate the C storage of differ-

ent components in China’s forest ecosystems. This work

aimed to address two key issues: (1) providing the first

estimate of C storage for different components (AGC,

BGC, DMC, and SOC) simultaneously in China’s forest
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ecosystems based on different integrative methods at the

national scale and (2) evaluating to what extent these inte-

grative methods cause uncertainty in estimates of C storage

in China’s forest ecosystems.

Materials and Methods

Study area and forest classification

China covers a broad geographical span and has a large

climatic range extending from cold temperate to tropical

climate zones from the north to south and arid to humid

areas from the northwest to southeast. The broad climatic

gradient supports a diversity of forest ecosystems

throughout China. Most forests in China are located in

the northeast and the southwest regions (Fig. 1). Accord-

ing to the principles and bases of Chinese vegetation

regionalization, China’s forests are classified into six forest

types groups, 16 forest types, and 38 forest subtypes (Hou

et al. 1982; Chinese Academy of Sciences 2001; Li et al.

2011) (Appendix S1). Thus, C storage estimates can be

scaled up from the 16 forest types or the 38 forest sub-

types to the six forest type groups.

Dataset source

Carbon density data for different components (AGC,

BGC, DMC, and SOC) of China’s forests were derived

from field-measured data of 485 literatures published

from 2004 to 2014 in the Web of Science (http://

www.Web of Science knowledge.com) and in the China

National Knowledge Infrastructure (http://www.cnki.net/)

(Appendix S2). Study sites represented all climatic zones,

spanning cold temperate to tropical. The sites ranged

from �5.1 to 23.8°C in mean annual temperature (MAT)

and 223 to 2515 mm in mean annual precipitation

(MAP). Furthermore, we obtained the China’s forest areas

and the spatial distribution of different forest types from

the vegetation map of China (1:1,000,000 scales) (http://

www.geodata.cn/). Based on this map, the total area of

China’s forests was 1.5155 9 108 ha.

Data collection

To characterize the current state of carbon storage in Chi-

na’s forest ecosystems (excluding Hong Kang, Macao, and

Taiwan), we synthesized all the published studies on the

available field-measured data including of biomass, litter

fall mass, dead trees mass, SOC, SOM, and C density for

different components (AGC, BGC, DMC, SOC) of China’s

forests from 2004 to 2014. The published literatures were

retrieved from the Web of Science (http://www.Web of

Science knowledge.com) and the China National Knowl-

edge Infrastructure (http://www.cnki.net/). All the found

literatures were further screened by the following specific

critical criteria (Luo et al. 2014; Yang et al. 2014).

Estimates of trees biomass and C density

Tree-level biomass (oven-dried mass) was measured by

destructive harvesting and weighing of tree components

(e.g., stems, branches, leaves, and roots, kg), and which

were subsequently scaled up to the stand level (e.g., stems,

branches, leaves, and roots, oven-dried mass per unit

Figure 1. Sampling site locations for carbon

density in China’s forests from data published

between 2004 and 2014. NE: northeast China,

NC: northern China, NW: northwest China,

SW: southwest China, EC: eastern China, and

CS: central southern China.
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area, Mg�ha�1). In particular, the tree-level root biomass

was measured using the full-excavation method (Luo

et al. 2014). Stand-level tree biomass was determined

using plot clear-cutting (1% of the retrieved papers in

this study), average tree (87% of the retrieved papers),

and allometry (12% of the retrieved papers) methods.

Stand-level biomass for the AGC and BGC of trees was

estimated from the sum of these components based on

tree numbers and sample plot dimensions (Luo et al.

2014). However, for allometric equation studies, we only

collected reliable stand-level biomass data that applied

unique allometric equations developed specifically for each

individual study (Luo et al. 2014). It should be noted that

our stand-level biomass data of trees excluded biomass

data estimated using the BEF method and modeling meth-

ods. Furthermore, the C contents for stems, branches,

leaves, and roots were extracted from data measured by

the original studies. When the C content was not directly

measured, it was estimated as 45% of dry matter (Levine

et al. 1995; Wang et al. 2001). Thus, we used biomass and

the coefficient of C content to calculate the C density for

each component of the trees at stand level.

Estimates of understory vegetation biomass and C
density

The aboveground biomass of understory vegetation types

(saplings, shrubs, and herbs) was measured using quadrat

destructive harvesting methods, while root biomass was

measured using full-excavation methods. Subsequently,

stand-level aboveground biomass or root biomass for

each understory types was calculated from the oven-dried

mass of the components and the quadrat area. The C

contents of understory vegetations were extracted from

the data measured by the original studies. When the C

content was not directly measured, it was estimated as

45% of dry matter (Levine et al. 1995; Wang et al. 2001).

Thus, we used biomass and the coefficient of C content

at stand level to calculate the C density of understory

vegetation.

Estimates of AGC and BGC

AGC and BGC were calculated using equations (1) and

(2).

AGC ¼ ðBS � CS þ BB � CB þ BBr � CBr þ BL � CLÞ
þ ðAGBSh � CSh þ AGBH � CHÞ ð1Þ

where BS, BB, BBr, BL, AGBSh, and AGBH represent the

biomass of the stem, bark, branch, leaf of trees, and AGB

of shrubs and herbs, respectively (Mg�ha�1). CS, CB, CBr,

CL, CSh, and CH represent the C content (%) of the stem,

bark, branch, leaf of trees, aboveground shrubs and herbs,

respectively.

BGC ¼ Broot�A � Croot�A þ Broot�Sh � Croot�Sh þ Broot�H

� Croot�H ð2Þ

where Broot-A, Broot-Sh, and Broot-H represent the root bio-

mass of trees, shrubs, and herbs, respectively

(Mg C�ha�1), and Croot-A, Croot-Sh, and Croot-H represent

the C content (%) of the roots for trees, shrubs, and

herbs, respectively.

Estimates of dead mass and C density

Dead mass in forests includes litter (dead plant organs,

e.g., fine branches, leaves, flowers, seeds, and coarse

woody debris) and dead trees (standing dead trees and

fallen dead trees) in various stages of decay. The mass of

litter was determined using quadrat harvesting methods

and was subsequently scaled up to the stand level based

on quadrat area. The mass of dead trees was measured

using average tree and allometry methods and was subse-

quently scaled up to the stand level based on dead tree

numbers and sample plot dimensions. Total dead mass at

the stand level was the dead mass sum of stand-level litter

and dead trees. The C contents of litter and dead trees

were extracted from the measured data in the original

studies. When the C content was not directly measured, it

was estimated as 45% of dry matter (Levine et al. 1995).

Thus, we calculated DMC at stand level using

equation (3).

DMC ¼ BLitter � CLitter þ BDead trees � CDead trees (3)

where DMC, BLitter, and BDead trees are dead mass C den-

sity (Mg�ha�1), litter mass (Mg�ha�1), and mass of dead

trees (Mg�ha�1), respectively. CLitter and CDead trees repre-

sent the C content (%) of the litter and dead trees,

respectively.

Estimates of SOC density (SOC)

Data on SOC and soil organic matter (SOM) content,

soil bulk density, and soil layer depth were extracted

from papers published between 2004 and 2014. Our

dataset excluded recently disturbed forest plots (e.g., cut-

ting, fire, and fertilizer). Only data from untreated plots

was used from manipulation experiments. The SOC

value was calculated using the SOM value by a conver-

sion coefficient of 0.58. If soil bulk density data was not

directly reported in the published papers, the soil bulk

density was calculated using the equation (Paul et al.

2002).
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BD ¼ 100

ð%OM=BDOMÞ þ ðð100�%OMÞ=BDmin soilÞ (4)

where %OM is the percent soil organic matter, BDOM is

the bulk density of the organic matter (assumed to be

0.244), and BDmin soil is the mineral soil bulk density

(assumed to be 1.64) (Paul et al. 2002)

When the soil sample depth was lower than 100 cm,

we used the empirical relationship between soil C content

and depth to fit to the 100 cm soil layer. This empirical

relationship between soil C content and depth had been

established among 74 terrestrial ecosystems in China,

using the long-term monitoring data from the Chinese

Ecosystem Research Network (Chai et al. 2015). Here, we

randomly selected 445 sites from this dataset to validate

the accuracy of the prediction and found that the pre-

dicted SOC values were almost perfectly correlated with

the measured values in the 0–100 cm soil layer

(y = 0.9835x + 3.636, n = 445, R2 = 0.9774, P < 0.0001,

Appendix S7). SOC was calculated using equation (5).

SOC ¼
Xn

i

Hi � BDi � SOCi � ð1� CiÞ (5)

where SOC, Hi, BDi, SOCi, and Ci are soil organic carbon

density (Mg�ha�1), soil depth (cm), bulk density

(g�cm�3), and percentage of rock fraction >2 mm (%),

respectively (Yang et al. 2014).

Overall, the dataset contained 3868 records of C density

at the plot scale, including 2452, 2315, 1100, and 1162

detailed records on AGC, BGC, DMC, and SOC, respec-

tively. Furthermore, plot information was also extracted,

including latitude, longitude, altitude, MAT, MAP, domi-

nated tree species, forest origin, and stands age. Any miss-

ing geographical coordinates were digitized from Google

Maps (http://maps.google.com).The spatial distribution of

the sampling plots is shown in Figure 1. Detailed informa-

tion about the collected data and literature sources is

provided in the Appendices (Appendices S3–S6).

Carbon storage estimates using integrative
methods

To assess the influence of different integrative methods

on C storage estimates in the scaling-up process in this

study, we adapted three forest type classification methods

and three spatial interpolation methods (Table 1).

Carbon storage estimates by forest type
classification methods

Forests have horizontal and vertical distribution patterns,

which are influenced by climate (temperature and precipi-

tation), topography, soil types, and management history

(Fang et al. 2012; Reich et al. 2014). Therefore, forests

could be artificially divided into different types at differ-

ent scales (Hou et al. 1982; Chinese Academy of Sciences

2001). Thus, C storage in China’s forest ecosystems could

be calculated from the different forest types and corre-

sponding area at different scales (Table 1 and

Appendix S1). Consequently, the process of scaling-up is

of significance, presenting a challenge for using site-scale

C storage estimates for large-scale estimates.

For the statistical and comparative analyses, China’s

forests were classified at three different scales: six forest

type groups, 16 forest types, and 38 forest subtypes based

on the regionalization of vegetation in China (Hou et al.

1982; Chinese Academy of Sciences 2001), the vegetation

map of China at 1:1,000,000 scale (http://www.geo-

data.cn/), and the forest type divisions from the technical

specifications of the national forest inventory (Li et al.

2011). Then, C storage for the different forest compo-

nents was analyzed according to six forest type groups

(M1), 16 forest types (M2), and 38 forest subtypes (M3),

respectively (Appendix S1 and Table 1).

Carbon storage estimates by spatial interpolation
methods

The geostatistical principle assumes that forest distribu-

tion gradually changes with latitude, longitude, and alti-

tude (Fang et al. 2012; Reich et al. 2014); that is, biomass

and C storage at one sampling site may have the highest

similarity to that at the nearest site. Based on this

assumption, spatial interpolation methods have been

widely used to estimate forest biomass C and SOC (Malhi

et al. 2006; Sales et al. 2007; Rossi et al. 2009; Du et al.

2010; Zhao et al. 2014). In practice, we selected three spa-

tial interpolation methods to estimate C storage in Chi-

na’s forest: Kriging interpolation (M4), inverse distance

weighted interpolation (M5), and empirical Bayesian krig-

ing interpolation (M6) (Table 1). Among these methods,

M5 only considers the distance, whereas M4 and M6 con-

sider both the spatial orientation and the distance.

For statistical and comparative analyses, China’s forests

were divided into six geological regions according to

China administrative divisions: northeast China (NE),

northwest China (NW), northern China (NC), southwest

China (SW), eastern China (EC), and central southern

China (CS) (Fig. 1).

Data analysis

The coefficient of variation (CV, %) was used to assess

the variance of the six methods for estimating C storage

(Oren et al. 2006; Liang et al. 2010; Yu et al. 2011),
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which was defined as the ratio of the standard deviation

to the mean. AGC, BGC, DMC, and SOC in the

0–100 cm soil layer were estimated by the mean C density

method based on three forest type classifications and geo-

statistical methods by the three spatial interpolation

methods. Carbon storage estimated from the 16 forest

types and 38 forest subtypes was scaled up to C storage

of the six vegetation type groups by area-weighted meth-

ods. Spatial interpolation methods were applied using

ArcGIS (Version 10.2, ESRI Inc. Redlands, CA). The t-test

was used to obtain the 95% confidence level of C storage

estimated from six methods (R i386 3.2.1; R Foundation

for Statistical Computing, Vienna, Austria).

Results

Carbon density and storage estimates by
forest classifications methods

The C density estimated by three forest type classifications

varied greatly among different components in the six for-

est type groups (Table 2, Appendix S8-S10, and Fig. 2).

AGC ranged from 37.04 to 76.91 Mg C�ha�1 and was

highest in CTCF and lowest in DBF. The highest and low-

est CV values for AGC resulting from the three forest

type classifications were in CTCF (12.72%) and CMBF

(0.54%), respectively. BGC ranged from 9.16 to

16.33 Mg C�ha�1, with the highest and lowest CV values

for BGC occurring in DBF (18.26%) and CMBF (1.49%),

respectively. DMC ranged from 2.63 to 10.05 Mg C�ha�1,

with the highest and lowest CV values for DMC occurring

in DBF (12.70%) and WCF (0.62%), respectively. SOC

ranged from 89.33 to 215.83 Mg C�ha�1 and was highest

in CTCF and lowest in TCF. The highest and lowest CV

values for SOC were obtained in DBF (13.03%) and

CMBF (0.14%).

Carbon storage differed in the different forest type

groups. The greatest C density of the forest ecosystem

was in CTCF (275.83–315.08 Mg C�ha�1), while the low-

est was in TCF (143.46–153.97 Mg C�ha�1). Carbon stor-

age was the highest in CTCF (8.32–9.50 Pg C) and lowest

in CMBF (0.54–0.55 Pg C) (Table 2). The C density of

all the components estimated from 38 forest subtypes was

greater than that of 16 forest types and six forest type

groups.

At the national scale, the ranges of estimated C density

for AGC, BGC, DMC, and SOC were 52.29–57.15, 11.60–
13.01, 4.38–4.67, and 136.11–148.75 Mg C�ha�1, respec-

tively. The CV values resulting from three forests type

classifications were greatest in BGC, followed by SOC and

AGC (Fig. 2). Overall, the total C storage in China’s for-

est ecosystems (including AGC, BGC, DMC, and SOC in

the 0–100 cm soil layer) was 30.99–33.88 Pg C with a

mean CV value of 4.58% estimated by the three forest

type classification methods.

Carbon density and storage estimates using
spatial interpolation methods

The C density estimated by three spatial interpolation

methods differed among different components in the six

regions (Table 3 and Fig. 3). AGC ranged from 42.05 to

75.44 Mg C�ha�1, with the highest and lowest CV values

for AGC resulting from the three spatial interpolations

occurring in NW (9.73%) and NC (0.66%), respectively.

BGC ranged from 10.5 to 16.64 Mg C�ha�1, with the

highest and lowest CV values for BGC being in NC

(12.28%) and CS (1.24%), respectively. DMC ranged

Table 1. Description of six integrative methods for C storage estimation in China’s forest ecosystems.

No. Methods Assumption

Forest type classifications

at different scales

M1 Six forest type groups1 Forests show different characteristics resulting from climate

(temperature and precipitation), topography, soil, and management

history (Fang et al. 2012; Reich et al. 2014). Forests therefore can be

artificially divided into different types (Chinese Academy of Sciences

2001). On basis of the assumption, C storage in China’s forests can

be calculated by the forest type classification and corresponding area

at different scales

M2 Sixteen forest types

M3 Thirty-eight forest subtypes

Spatial interpolation M4 Kriging interpolation The geostatistical principle assumes that forest distribution gradually

changes with climate, latitude, longitude, and altitude (Fang et al.

2012; Reich et al. 2014); that is, biomass C or soil C storage from one

sampling site will be most similar to these of the nearest site. On the

basis of this assumption, spatial interpolation methods can be used

to estimate forest biomass C or soil C storage in China

M5 Inverse distance

weighted interpolation

M6 Empirical Bayesian kriging

interpolation

1Carbon storage estimated by 16 forest types and 38 forest subtypes can be scaled up to C storage of six forest type groups by area-weighted

methods.
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Table 2. Carbon density and storage in China’s forest ecosystems estimated by the three forest type classifications.

Six forest type group1 Methods1

Carbon density (Mg C�ha�1)

AGC2 BGC DMC SOC Ecosystem

Mean SE Mean SE Mean SE Mean SE Mean SE

Cold and temperate coniferous forests M1 59.75 2.01 13.09 0.52 8.76 0.64 194.23 5.13 275.83 5.57

M2 76.91 3.89 15.67 0.94 7.94 1.08 213.93 11.93 314.45 12.64

M3 75.20 4.21 15.72 1.06 8.33 1.28 215.83 13.04 315.08 13.81

Coniferous mixed broadleaf forests M1 70.78 5.17 14.89 1.19 10.05 0.98 189.98 12.06 285.70 13.21

M2 71.44 6.86 15.28 1.46 9.72 0.93 189.52 12.16 285.96 14.68

M3 71.44 6.86 15.28 1.46 9.72 0.93 189.52 12.16 285.96 14.68

Deciduous broadleaf forest M1 38.83 1.38 10.31 0.39 2.63 0.19 116.57 4.67 168.34 4.89

M2 37.04 1.78 9.87 0.52 2.73 0.23 106.97 5.55 156.61 5.86

M3 46.56 4.33 13.62 2.62 3.31 0.33 137.63 10.89 201.12 12.52

Temperate coniferous forests M1 38.59 2.13 10.54 0.86 5.65 0.75 99.19 4.78 153.97 5.36

M2 38.59 2.13 10.54 0.86 5.65 0.75 99.19 4.78 153.97 5.36

M3 37.10 3.55 11.57 2.08 5.46 1.26 89.33 6.02 143.46 7.80

Warm coniferous forests M1 54.05 1.81 10.28 0.32 3.76 0.21 119.93 2.22 188.02 2.89

M2 54.05 1.81 10.28 0.32 3.76 0.21 119.93 2.22 188.02 2.89

M3 50.94 3.49 9.16 0.63 3.72 0.39 122.39 6.54 186.21 7.54

Evergreen broadleaf forests M1 68.27 2.66 15.08 0.65 3.37 0.17 134.69 3.38 221.41 4.35

M2 67.12 4.82 16.15 1.26 3.63 0.42 149.41 6.91 236.31 8.66

M3 70.91 5.91 16.33 1.55 4.03 0.52 143.81 8.22 235.08 10.44

National total M1 52.29 1.89 11.59 0.45 4.48 0.31 136.11 3.92 204.47 4.45

M2 55.00 2.71 12.13 0.67 4.38 0.44 139.14 6.04 210.65 6.78

M3 57.15 4.28 13.00 1.51 4.67 0.60 148.75 9.48 223.57 10.84

Six forest type group3 Area (108 ha) Methods3

Carbon storage (Pg C)

AGC2 BGC DMC SOC Ecosystem

Mean SE Mean SE Mean SE Mean SE Mean SE

Cold and temperate

coniferous forests

0.3015 M1 1.801 0.061 0.395 0.016 0.264 0.019 5.855 0.155 8.316 3.748

M2 2.318 0.117 0.472 0.028 0.239 0.033 6.449 0.360 9.480 3.704

M3 2.267 0.127 0.474 0.032 0.251 0.039 6.507 0.393 9.498 3.622

Coniferous mixed

broadleaf forests

0.0191 M1 0.135 0.010 0.028 0.002 0.019 0.002 0.362 0.023 0.544 0.238

M2 0.136 0.013 0.029 0.003 0.019 0.002 0.361 0.023 0.545 0.232

M3 0.136 0.013 0.029 0.003 0.019 0.002 0.361 0.023 0.545 0.236

Deciduous broadleaf forest 0.4704 M1 1.826 0.065 0.485 0.018 0.124 0.009 5.483 0.220 7.918 5.719

M2 1.743 0.084 0.464 0.024 0.128 0.011 5.032 0.261 7.367 5.217

M3 2.190 0.204 0.641 0.123 0.155 0.016 6.474 0.512 9.460 4.694

Temperate coniferous forests 0.0389 M1 0.150 0.008 0.041 0.003 0.022 0.003 0.386 0.019 0.599 0.382

M2 0.150 0.008 0.041 0.003 0.022 0.003 0.386 0.019 0.599 0.382

M3 0.144 0.014 0.045 0.008 0.021 0.005 0.347 0.023 0.558 0.322

Warm coniferous forests 0.4702 M1 2.542 0.085 0.483 0.015 0.177 0.010 5.640 0.104 8.841 4.584

M2 2.542 0.085 0.483 0.015 0.177 0.010 5.640 0.104 8.841 4.584

M3 2.395 0.164 0.431 0.030 0.175 0.018 5.755 0.308 8.756 4.289

Evergreen broadleaf forests 0.2154 M1 1.471 0.057 0.325 0.014 0.073 0.004 2.902 0.073 4.770 2.757

M2 1.446 0.104 0.348 0.027 0.078 0.009 3.219 0.149 5.091 2.757

M3 1.528 0.127 0.352 0.033 0.087 0.011 3.098 0.177 5.065 2.243

Total 1.5155 M1 7.925 0.286 1.757 0.069 0.678 0.047 20.628 0.593 30.987 17.429

M2 8.335 0.411 1.839 0.101 0.663 0.067 21.086 0.916 31.923 16.366

M3 8.660 0.649 1.971 0.229 0.708 0.090 22.542 1.437 33.882 15.405

1M1, C storage was directly estimated by six forest type groups. M2, C storage was estimated by 16 forest types and scaled up to six forest type groups

by area-weighted method. M3, C storage was estimated by 38 forest subtypes and scaled up to six forest type groups by area-weighted method.
2AGC, aboveground vegetation biomass carbon density; BGC, belowground vegetation biomass carbon density; DMC, dead mass carbon density;

SOC, soil organic carbon density in the 0–100 cm soil layer.
3M1, directly estimated C storage by six forest type group. M2, C storage was estimated by 16 forest types and scaled up to six forest type groups by

area-weighted method. M3, C storage was estimated by 38 forest subtypes and scaled up to six forest type groups by area-weighted method.

ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 3135
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from 2.68 to 7.23 Mg C�ha�1, with the highest mean CV

value of 19.61% resulting from estimates by three inter-

polations, while the highest and lowest CV values for

DMC were in NW (32.77%) and EC (5.08%), respec-

tively. SOC ranged from 101.74 to 199.92 Mg C�ha�1,

with the highest and lowest CV values for SOC occurring

in NE (10.98%) and CS (1.18%), respectively. The C den-

sity of AGC and BGC increased with decreasing latitude

(from the north to the south) and was the lowest in NC

and highest in SW. In contrast, The C density of DMC

and SOC increased with increasing latitude (from the

south to the north), with the greatest values occurring in

NE and SW, while lowest values occurring in NW

(Fig. 4).

In general, AGC, BGC, DMC, and SOC at the national

scales ranged from 57.12 to 58.63, 13.41 to 13.63, 3.66 to

5.41, and 139.04 to 153.17 Mg C�ha�1, respectively. Total

C storage ranged from 32.35 to 34.96 Pg C with a mean

CV value of 4.36% based on three spatial interpolation

methods.

Carbon storage in China’s forest ecosystems
and its uncertainty

The C density estimates for different components in Chi-

na’s forest ecosystems based on six integrative methods

were shown in Figure 5. AGC, BGC, DMC, SOC, and

total C density ranged from 52.29 to 58.63, 11.59 to

13.47, 3.66 to 5.41, 136.11 to 153.16, and 204.47 to

230.67 Mg C�ha�1, respectively (Fig. 5). Soil organic C

density showed the greatest variation (17.06 Mg C�ha�1)

among all C components based on six integrative

methods.

When combining all of the forest areas, C storage in

China’s forest ecosystems (including AGC, BGC, DMC,

and SOC in the 0–100 cm soil layer) ranged from 30.99

to 34.96 Pg C, with a mean value of 33.16 Pg C (95%

confidence interval of 31.43–34.89 Pg C), and CV value

of 5.0% estimated by six integrative methods. In general,

C storage estimated by three spatial interpolation meth-

ods was greater than that estimated by three forest type

classification methods. The estimate of M3, which classi-

fied forests into 38 types (33.88 Pg C), was closest to the

average of the C storage estimated by six integrative

methods (33.16 Pg C).

Total C storage in China’s forest ecosystems was com-

posed of 25.8% AGC (8.557 Pg C), 5.9% BGC

(1.950 Pg C), 2.1% DMC (0.697 Pg C), and 66.2% SOC

(21.958 Pg C). The R:S ratio was 0.23, while C storage of

SOC was 2.1 times higher than that of biomass C

(AGC + BGC).

Discussion

Influence of integrative methods on forest
C storage estimates

This study provided the first assessment of the C density

and C storage in all of the main components of China’s

forest ecosystems at the national scale using six integrative

methods. We detected 5.0% variation in of C storage esti-

mation of China’s forest ecosystems when using the six

integrative methods. However, the level of uncertainty

appeared to vary among the different components of the

forest ecosystem, with the highest and lowest variation

being obtained for DMC and AGC, respectively. One rea-

son for the high variation of DMC was caused by three

spatial interpolation methods. One possible explanation is

that large variation in the DMC data (ranging from 0.01

to 58.70 Mg C�ha�1) may have a greater influence on the

spatial interpolation methods (Yu et al. 2011). However,

this highest variation had little effect on the C storage

estimates of forest ecosystems because DMC only

accounted for 2.1% of total C storage. In contrast,

although the variation in SOC estimates was 5.3% based

on the six integrative methods, SOC estimates played an

important role in estimating forest ecosystem C accurately

because it accounted for 66.2% of C storage in China’s

forest ecosystems.

Based on six integrative methods, the estimates of C

density of SOC in the 0–100 cm soil layer were 136.11–

Figure 2. Coefficient of variation (CV %) of carbon density in the

different components of China’s forest ecosystems. Data were

calculated using three vegetation classification methods. AGC, C

density in aboveground biomass; BGC, C density in belowground

biomass; DMC, C density in dead mass; SOC, soil organic C density in

the 0–100 cm soil layer. DMCF, deciduous broadleaf forest; EBF,

evergreen broadleaf forest; CMBF, coniferous mixed broadleaf forest;

CTCF, cold temperate coniferous forest; TCF, temperate coniferous

forest; WCF, warm coniferous forest.

3136 ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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153.17 Mg C�ha�1, which was similar to the estimated

data reported by previous studies (136.0–
157.51 Mg C�ha�1) in China’s forest ecosystems (Dixon

et al. 1994; Ni 2001; Yang et al. 2007; Yu et al. 2007).

The C density of forest vegetation was estimated to be

63.89–72.09 Mg C�ha�1, which is similar to that obtained

by previous studies (67.64–71.73 Mg C�ha�1; Fang et al.

1998; Ni 2001) based on the mean C density method.

The aboveground biomass C density ranged from 52.29

to 58.63 Mg C�ha�1 with an average of 56.46 Mg C�ha�1,

which compared well with previous estimates

(56.75 Mg C�ha�1) based on GLAS and MODIS remote

sensing method reported by Chi (2011). However, it

remains impossible to estimate soil C storage in China’s

forest ecosystems accurately by remote sensing methods.

To maintain the consistency of methods used to estimate

the C density of AGC, BGC, DMC, and SOC, this study

used the mean C density method and spatial interpolation

method to estimate forest ecosystem C storage in China,

although the linkage between field investigation and

remote sensing should improve estimate of AGC to some

extent.

Our results demonstrated that the spatial interpolation

methods generally produced higher estimates (224.75

Mg C�ha�1) of forest ecosystem C density than that of

the forest type classification methods (212.90 Mg C�ha�1).

One explanation for this difference is that the spatial

interpolation methods may be affected more by the num-

ber of sampled sites and nearby sites (Yu et al. 2011),

particularly those with higher C density (Malhi et al.

2006; Sales et al. 2007). However, SOC estimates based

on inverse distance weighted interpolation (M5) and

empirical Bayesian kriging interpolation (M6) methods

produced similar results estimated by 38 forest subtype

classification method (M3). Rossi et al. (2009) indicated

that that SOC estimates based on spatial interpolation

methods produced similar results to the vegetation type

method. For all methods, estimates of China’s forest

ecosystems C storage using 38 forest subtypes produced

the closest value to the mean of the six methods. Theoret-

ically, C storage estimates should be more accurate with

the more refined the vegetation classification (Luyssaert

et al. 2010; Ni 2013). These findings demonstrate that

multiple approaches, especially the multiple-scale integra-

tive method, should be used to estimate the C storage in

large-scale forest ecosystems.

Carbon storage estimated in Chinese forest
ecosystems

Carbon storage in China’s forest ecosystems was esti-

mated to be 30.99–34.96 Pg C based on the six integra-

tive methods, with the AGC, BGC, DMC, and SOC

components, representing 7.93–8.89, 1.76–2.07, 0.68–0.82,
and 20.63–23.21 Pg C, respectively. This study is the first

to simultaneously evaluate C storage in the different com-

ponents of forest ecosystems in China.

Difference and limitation existed in previous studies

estimated C storage at the national scale in China’s forest

ecosystems (Table 4). One reason for these difference and

limitation was the use of the different data sources and

the different methods (Baccini et al. 2012; Ni 2013; Wang

et al. 2014). Previous studies mainly used NFI data (Fang

et al. 2001; Xu et al. 2007; Guo et al. 2010; Li et al. 2011;

Zhang et al. 2013), global mean vegetation C (Dixon

et al. 1994; Li et al. 2004; Ni 2001), field-measured data

(Fang et al. 1998; Zhou et al. 2000; Ni 2001), and remote

sensing data (Piao et al. 2005; Chi 2011) to estimate the

biomass C density in China’s forests, respectively. Conse-

quently, these estimates varied from 40.14 to

114.0 Mg C�ha�1. The use of different data sources

may lead to different estimates of C storage. Piao et al.

(2005) estimated China’s forest biomass C to be

45.31 Mg C�ha�1 based on NFI data and satellite data

from 1981 to 1999. Chi (2011) estimated AGC of China’s

forests to be 56.75 Mg C�ha�1 using GLAS and MODIS

data and field-measured data from 2006 to 2010 based on

remote sensing method, with this value being similar to

our result of AGC (56.46 Mg C�ha�1). Even when using

NFI data at the same time, BEF method with different

model parameters and different forest type classification

generate different biomass C estimates, ranging from 6.24

Figure 3. Coefficient of variation (CV %) of carbon density in the

different components of China’s forest ecosystems. Data were

calculated from three spatial interpolation methods. AGC, C density

in aboveground biomass; BGC, C density in belowground biomass;

DMC, C density in dead mass; SOC, soil organic C density in the 0–

100 cm soil layer. NE: northeast China, NW: northwest China, NC:

northern China, SW: southwest China, EC: eastern China, and CS:

central southern China.
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to 7.81 Pg C (Guo et al. 2010; Li et al. 2011; Zhang et al.

2013). At present, there are few studies about BGC in

China’s forest. Previous studies used R:S ratio as a good

parameter to infer BGB at the regional scale. However,

this ratio also generates uncertainty, due to differences in

forest types and regions (Luo et al. 2012). Our study indi-

cated that R:S ratio in China’s forests at national scales

was 0.23, which is similar to the ratio (0.233) reported by

Luo et al. (2012).

Compared with biomass C estimated in China’s forests,

the studies about the DMC and SOC were much fewer.

Carbon density of dead mass in China’s forest (8.21

Mg C�ha�1) was only reported by Zhou et al. (2000),

which was higher than the value (4.60 Mg C�ha�1) esti-

mated in our study. The reason may be that Zhou et al.

(2000) only used 720 field sampling sites, lower than

1100 sampling sites in our study. Soil C is the key C

components in forest ecosystem and has had greater

uncertainty in China’s forests (Fang et al. 2007; Yu et al.

2010; Yang et al. 2014). Previous studies often used the

secondary National Soil Survey data in 1980s and Global

Dataset to estimate SOC at the national scales (Dixon

et al. 1994; Ni 2001; Li et al. 2004; Yang et al. 2007; Yu

et al. 2007). Different data sources and different vegeta-

tion classifications resulted in different estimated SOC,

ranging from 115.90 to 193.55 Mg C�ha�1 (Table 4). Fur-

thermore, different soil depths were used in the different

estimations, which made these estimates incomparable

with other studies. Thus, it was important to overcome

these limitations to estimate soil C and its distribution

with accuracy (Yang et al. 2007). In our study, SOC

down to 1 m soil depth accounted for 66.2% C storage

in China’s forest ecosystems. Soil organic C density in the

0–100 cm soil layer was estimated to be 136.11–

Figure 4. Spatial distribution of carbon density (Mg C�ha�1) in AGC (A), BGC (B), DMC (C), and SOC (D) in China’s forest ecosystems. The data

were averaged from three spatial interpolation methods. AGC, C density in aboveground biomass; BGC, C density in belowground biomass;

DMC, C density in dead mass; SOC, soil organic C density in the 0–100 cm soil layer.

ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 3139

S. Peng et al. Carbon Storage in China’s Forest Ecosystems



153.17 Mg C�ha�1 in China’s forest ecosystems based on

six integrative methods, which was similar to the results

(136.00–157.51 Mg C�ha�1) reported in previous studies

(Dixon et al. 1994; Ni 2001; Yang et al. 2007; Yu et al.

2007).

Another reason for difference in C density estimates

was that field observations for BGC, DMC and SOC were

insufficient in forest ecosystems (Pan et al. 2011; Ni

2013). Because of the lack of field investigation on soil C,

the proportion of soil C storage in total forest ecosystem

has been roughly estimated as 10% in global forests (Pan

et al. 2011) and 30% in European forests (Luyssaert et al.

2010). In China, Forest biomass C storage was furtherly

estimated using NFI data during different periods (Fang

et al. 2001; Xu et al. 2007; Guo et al. 2010; Li et al. 2011;

Zhang et al. 2013). However, DMC and SOC were rarely

studied in China’s forest ecosystems. Compared with NFI

data across various periods, periodic surveys of soil in

China’s forests had not been conducted, which limits the

estimates of soil C and results in great uncertainty on the

C storage in China’s forest ecosystems (Xie et al. 2004;

Fang et al. 2007; Yang et al. 2007, 2014). Thus, more soil

surveys and sampling sites measuring SOC are required

in forest ecosystems (Yu et al. 2007; Rossi et al. 2009;

Yang et al. 2014). Our study also supported that simulta-

neous field observations of C storage in AGC, BGC,

DMC, and SOC in China’s forest ecosystems should be

strengthened in the future.

In addition, different forest type classifications may

produce different estimates of C storage because of

changes in C density and forest type areas (Luyssaert

et al. 2010; Ni 2013). In our study, three forest classifica-

tions (six forest type groups, 16 forest types, and 38 forest

subtypes) at coarse, median, and fine scales caused esti-

mates of AGC to range from 52.29 to 57.15 Mg C�ha�1,

while that of BGC ranged from 11.59 to

13.00 Mg C�ha�1, and that of SOC ranged from 136.11 to

148.75 Mg C�ha�1. Ni (2013) and Zhang et al. (2013)

indicated that C storage changes with changes of vegeta-

tion classification schemes. Theoretically, C storage esti-

mates should be more accurate with the more refined the

vegetation classification (Luyssaert et al. 2010; Ni 2013).

In our study, the estimate of C storage based on 38 forest

subtypes, which covered most of the dominant tree spe-

cies in China’s forests, was the closest to the mean value

at the national scale.

Our findings provide the first evidence demonstrating

that integrative methods have an important influence on

estimates of forest C storage at the national scale. Yet,

previous studies only used one method for the estimates

Figure 5. Estimation of carbon density and

storage based on the six integrative methods.

See Table 1 for a description of the methods.

(A) aboveground biomass C density (AGC),

(B) belowground biomass C density (BGC),

(C) dead mass C density (DMC), (D) soil

organic C density in the 0–100 cm soil layer

(SOC), (E) ecosystem C density, and (F)

ecosystem C storage. In panel (F), the red line

indicates mean C storage, and the rectangular

area is the variation range at the 95%

confidence level estimated by t-test.
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of C storage in forest ecosystems. Thus, we suggest that

multiple approaches should be used to improve the accu-

racy of C storage in forest ecosystems.

Conclusions

Variation between different integrative methods has

noticeable impacts on the accuracy of C storage estimates

in forest ecosystems at national scales. Variation in total

C storage estimates of China’s forest ecosystems was

approximately 5.0% when using six integrative methods

in this study. The level of uncertainty differed among

different forest C components, with the highest values

being obtained for DMC and SOC. Carbon storage in

China’s forest ecosystems combined was estimated to be

30.99–34.96 Pg C, based on the six integrative methods,

with the AGC, BGC, DMC, and SOC components repre-

senting 7.93–8.89, 1.76–2.07, 0.68–0.82, and 20.63–
23.21 Pg C, respectively. Among the three forest classifi-

cation methods, the C storage estimate based on the 38

forest subtype classification (M3) was closer to the mean

value at the national scale. Similarly, the accuracy of C

storage estimates by Kling interpolation (M4) was closer

to mean value than inverse distance weighted interpola-

tion (M5) and empirical Bayesian kriging interpolation

(M6) methods. In general, C storage estimates obtained

from the three spatial interpolation methods tended to

be higher than those obtained from the forest type classi-

fication methods. Overall, the 38 forest subtype classifica-

tion scheme at the national scale (M3) generated the

closest data to mean estimated C storage value for Chi-

na’s forest ecosystems. The findings of this study demon-

strate that the underlying influences of integrative

methods should be emphasized in future studies. In con-

clusion, to our knowledge, this work presents the first

assessment of C storage in relation to the various com-

ponents of China’s forest ecosystem at the national scale,

which may help toward understanding the potential roles

of Chinese forests in responding to global climate

warming.
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