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Major depression (MD) is a severe mental illness that creates a heavy social

burden, and the potential molecular mechanisms remain largely unknown.

Lots of research demonstrate that the olfactory bulb is associated with

MD. Recently, gas chromatography-mass spectrometry-based metabolomic

studies on depressive rats indicated that metabolisms of purine and lipids

were disordered in the olfactory bulb. With various physicochemical properties

and extensive concentration ranges, a single analytical technique could not

completely cover all metabolites, hence it is necessary to adopt another

metabolomic technique to seek new biomarkers or molecular mechanisms

for depression. Therefore, we adopted a liquid chromatography-mass

spectrometry metabonomic technique in the chronic mild stress (CMS) model

to investigate significant metabolic changes in the olfactory bulb of the

mice. We discovered and identified 16 di�erential metabolites in the olfactory

bulb of the CMS treatments. Metabolic pathway analysis by MetaboAnalyst

5.0 was generated according to the di�erential metabolites, which indicated

that the tryptophan metabolism pathway was the core pathogenesis in the

olfactory bulb of the CMS depression model. Further, the expressions of

tryptophan hydroxylase (TpH) and aromatic amino acid decarboxylase (AAAD)

were detected by western blotting and immunofluorescence staining. The

expression of TpH was increased after CMS treatment, and the level of

AAAD was unaltered. These results revealed that abnormal metabolism of the

tryptophan pathway in the olfactory bulb mediated the occurrence of MD.
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Introduction

Major depression (MD) is a severe mental illness that

creates a heavy social burden. The disease influences exceeding

300 million people yearly, which is an important reason for

disability worldwide (Hamel et al., 2019). The human brain

is so complicated that depressive pathogenesis is still largely

unknown, although much effort has been made (Robinson,

2018). Current antidepressant therapy carries out lots of

side effects in most depressed patients (Cipriani et al.,

2018). Therefore, it is emergent to find a new way to

study the pathogenesis of depression and seek new targets

for antidepressants.

Metabolomics employs liquid chromatography-mass

spectrometry (LC-MS), gas chromatography (GC)-MS, and so

on to analyze micromolecule of biological samples qualitatively

and quantitatively for exploring the pathophysiological

mechanism of life process (Ding and Mohan, 2016; Wishart,

2016). Metabolomics has been widely used to study the

pathogenesis of depression (Ling-Hu et al., 2021; Pu et al.,

2021). An increasing body of evidence suggests that olfactory

bulb dysfunction is closely associated with depression. The

olfactory bulb volume and olfactory sensitivity in MD patients

are reduced (Negoias et al., 2010). Olfactory bulb volume could

predict the therapeutic outcome of MD patients (Negoias et al.,

2016), and the lowered olfactory sensitivity could partly be

predicted by high depression scores (Pause et al., 2001). The

reduced neurogenesis and olfactory receptor neurons, and

increased apoptosis in the olfactory bulb were discovered in the

rodent model of depression (Yang et al., 2011a,b; Li et al., 2015;

Cheng et al., 2016). Recently, a GC-MS-based metabolomic

study on the olfactory bulb of depressive rats indicates that

purine and lipid metabolism are disordered (He et al., 2020). As

various physicochemical properties and extensive concentration

range, a single analytical technique could not completely cover

all metabolites (Williams et al., 2006), so it is necessary to

adopt other metabolomic techniques to seek new biomarkers or

molecular mechanisms for depression. This complementation

was vital to seek biomarkers and study pathogenesis in MD

(Zheng et al., 2013a,b).

FIGURE 1

Time schedule for the CMS procedure and behavior tests. CMS,

chronic mild stress.

Therefore, based on previous GC-MS research, we adopted

LC-MS metabonomic method to explore meaningful metabolic

changes in the olfactory bulb of chronic mild stress (CMS)

depression mice model (Huang et al., 2020). Further, the

probable abnormal metabolism of the tryptophan pathway was

confirmed. The main purpose of this research is to discover

several novel metabolic changes in the olfactory bulb of

depression model mice and search for new mechanisms and

therapeutic targets for depression.

Materials and methods

Animals

Thirty C57BL/6J mice (male; weight, about 22 g; age: 8

weeks) were obtained from Beijing Vital River Laboratory

Animal Technology Co., Ltd. The mice were kept in a standard

environment for feeding. Before the experiment begins, the mice

were fed adaptively for 1 week. Then, the mice were weighed

and randomly divided into the CMS group (n= 15) and Control

(CON) group (n = 15). The schedule of CMS was according to

the previous research with few alterations (Crowley et al., 2004;

Xie et al., 2022). All experimental procedures were ratified by

the Institutional Animal Care and Use Committee of Wuhan

University (IACUC Issue No.WDRM20210123) and carried out

based on the Declaration of the Health Guide for Care and Use

of Laboratory Animals formulated by Wuhan University.

CMS treatment

As shown in Figure 1, the mice were exposed to CMS

for 4 weeks before the behavioral tests. Stressors mainly

include food deprivation (24 h), water deprivation (1 day),

wet bedding (1 day), inversion of dark/light cycle (12 h), cage

tilting (45◦, 1 day), tail pinching (2min), and shaking cage

(horizontal, 5min). The CMS mice were given a stressor

every day randomly and 2 days in a row without the

same stressor.

Forced swimming test (FST)

FST was conducted based on previous research (Xie

et al., 2022). In general, the mice were separately placed

in glass cylinders (height, 25 cm; diameter, 12 cm) full of

18 cm of water (25◦C) for testing. The mice were put in

the cylinder for 6min, and the duration of immobility was

calculated in the last 4min. Immobility was defined as floating

or remaining motionless, which means the absence of all

movement except motions required to maintain the head above

the water.
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Tail suspension test (TST)

The TST was conducted to assess behavioral despair of

mice as previously described (Crowley et al., 2004). The

mouse’s tail was held in place with tape and its head 30 cm

above the ground. The immobile time was recorded by video

system in the 6min experimental process. The state that

the mice were motionless without any struggle was defined

as immobility.

Open field test (OFT)

Locomotor activity and exploratory behavior were evaluated

by OFT based on previous research (Xie et al., 2022). In

general, the mice were separately placed in the apparatus

(transparent plastic square: 45 cm × 45 cm). The mice

were put in the open field center and recorded for 5min

after the beginning of the experiment. The whole activity

of the animal was monitored by a video system. The

video system was used to calculate the total distance and

rearing frequency.

Sample collection and preparation

Isoflurane was used to anesthetize mice when the behavioral

experiments were finished. Once the righting reflexes of mice

disappeared, they were rapidly sacrificed and the olfactory bulb

was collected.

LC/MS analysis

We adopted an LC/MS metabolomic method to conduct

this research and the specific procedure was described in

previous studies (Dong et al., 2018; Chen et al., 2019; Xie

et al., 2022). The detailed information was described in

the Supplementary materials.

Histological and immunofluorescence
analysis

The olfactory bulbs were embedded in paraffin after 4%

paraformaldehyde solution overnight.

Hematoxylin–eosin was used to stain the slices. Every

5th section of them was preserved and taken photos by an

Olympus light microscope. The maximal cross-sectional areas

and diameter of the olfactory bulb were calculated, which

were estimated by the Photo Imaging System according to

the sections.

For immunofluorescence analysis, the olfactory bulb slices

were dewaxed and potched by phosphate buffer saline (PBS).

The olfactory bulb tissue slices were blocked for 30min

in bovine serum albumin (BSA) (3%) and fetal bovine

serum (2 in 0.2% Triton X-100/PBS) after antigen retrieval,

and incubated with a primary antibody (4◦C, overnight)

for tryptophan hydroxylase (TpH) (abcam 52,954; dilution,

1:300) and aromatic amino acid decarboxylase (AAAD)

(abcam 142,497; dilution, 1:500). Then, the slices were

incubated in a biotinylated secondary antibody and an avidin-

biotinylated horseradish peroxidase complex solution, ordinally.

4,6-diamidino-2-phenylindole (DAPI) (1:500, 5min) was used

to stain nuclei. Negative controls were conducted by omitting

the primary antibody and presented with negligible background

fluorescence. At last, peroxidase activity was detected by a

diaminobenzidine staining kit and observed in the Photo

Imaging System (five fields of different samples).

Western blot assay

BCA Protein Assay Kit was adopted to detect the total

protein concentration of the olfactory bulb. Then, the proteins

were separated by sodium dodecyl sulfate–polyacrylamide

gel electrophoresis and transferred to polyvinylidene fluoride

membranes, furtherly. The membranes were incubated with

the primary antibodies (overnight, 4◦C): TpH (dilution,

1:2,000), AAAD (dilution, 1:1,500), and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) (dilution, 1:2,000). Then,

the membranes were washed by TBST (3 times/10min)

and reacted with horseradish peroxidase-conjugated secondary

antibodies (1:15,000) (room temperature, 1 h). The ChemiDoc

XRS + System was used to detect the immunoreactive bands.

The protein expression was normalized by GAPDH.

Statistical analysis

SPSS 18.0 was adopted to analyze the data. Means ±

S.E.M. was used to convey quantitative data. Student’s t-

tests were adopted to process the data of behavior test and

protein expression, and P < 0.05 was regarded as statistical

significance. MetaboAnalyst 5.0 was adopted to achieve the

significant pathways for capturing the disturbed metabolic

pathway (P < 0.05).

Results

CMS model establishments

We employed the indicators (body weight, OFT, FST,

and TST) to evaluate the quality of the CMS model. The
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FIGURE 2

Evaluating the results of the CMS depression model. (A) Body weight before and after the CMS; (B,C) Total distance of central zone and rearing

frequency in OFT; (D,E) The immobile time in FST and TST; (F) Olfactory bulb maximal cross-sectional area and diameter. Data are expressed as

means ± S.E.M. *P < 0.05, **P < 0.01 as compared with control group. CMS, chronic mild stress; OFT, open field test; TST, tail suspension test;

FST, forced swimming test. n = 15 for weight and behavior test and n = 3 for olfactory bulb maximal cross-sectional areas and diameter.

body weight of CMS mice was less than CON mice after

CMS, while no significant differences were discovered

between them at baseline [Figure 2A, t(10) = 1.56, P < 0.05].

In OFT, the number of locomotor and rearing activities

in mice subjected to CMS for 4 weeks was decreased

significantly compared to CON mice [Figures 2B,C, t(10)

= 5.81, P < 0.01, t(10) = 3.26, P < 0.01]. Regarding

FST and TST, the immobility time in CMS mice was

increased compared to CON mice [Figures 2D,E, t(10) =

3.28, P < 0.01, t(10) = 4.56, P < 0.01]. In addition, we

found the maximum cross-section area of the olfactory

bulb in CMS mice was reduced compared to CON

mice [Figure 2F, t(4)= 2.89, P < 0.01].

Metabolomic analysis and di�erential
metabolite identification

The data acquired through LC-MS were subjected to

multivariate analyses (including negative ionization and positive

ionization). The clear differences were shown by PCA

scores plot in CMS and CON groups (Figure 3A). Further,

statistical difference was indicated by OPLS–DA score plots

between CMS mice and CON mice (R2X = 0.866, R2Y

= 0.821, and Q2 = 0.913) (Figure 3B). At last, a total

of 16 differential metabolites were identified between them

(Table 1). CMS mice were characterized by an increased level

of uric acid (UA), methacholine, sorbitol, inosine, taurine,

acetone, ribitol, and metanephrine compared with controls,

as well as a reduced level of phosphatidylcholine (PC) O-

34:2, PC[20:0/22:1(13Z)], tryptophan, 5-hydroxytryptamine (5-

HT), 5-hydroxy-L-tryptophan (5-HTP), fructose-6-phosphate,

spermidine, and glucose.

Metabolic pathway analysis by metabo
analyst 5.0 and verification

We used Metabo Analyst 5.0 to analyze the metabolic

profiling and found that all metabolites of CMS mice

and CON mice were shown in the hierarchical clustering

heatmap (Figure 3C). Then, we used Metabo Analyst 5.0

to perform metabolic pathway analysis according to the

16 differential metabolites. Three differentially metabolic

pathways are discovered (Figure 3D, P < 0.05): (1) Tryptophan

metabolism (impact = 0.38, P < 0.05), (2) Linoleic acid

metabolism (impact = 0.43, P < 0.05), and (3) Taurine and

hypotaurine metabolism (impact = 0.19, P < 0.05). The results

indicated that the tryptophan metabolism pathway of the

olfactory bulb was involved in the underlying pathogenesis of

depression. In general, tryptophan formates indoleamine, which

produces 5-HTP by TpH and 5-HT by AAAD (Maffei, 2020).

At last, we adopted immunofluorescence and western blot to

detect the expressions of TpH and by AAAD for verification.We

discovered that the protein expression of TpH was increased in

the olfactory bulb of CMSmice compared with CONmice, while

the protein expression of AAAD was unchanged [Figures 4A–E,

t(4)= 1.55, P < 0.05, t(4)= 4.69, P < 0.01].
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FIGURE 3

Multivariate statistical analysis and metabolic pathway analysis. (A) Principal component analysis (PCA) scores plot derived from LC/MS of the

chronic mild stress (CMS) and healthy control (CON) groups. (B) Pair-wise orthogonal projections to latent structures discriminant (OPLS–DA)

scores plot derived from LC/MS of the CMS and CON groups. (C) Clustering analysis for the di�erential metabolites. (D) Pathway analysis; a,

tryptophan metabolism; b: linoleic acid metabolism; c: taurine and hypotaurine metabolism. n = 6.

Discussion

The main findings of this study

Lots of evidence suggest that olfactory bulb dysfunction

is associated with depression. Olfactory bulb volume in

MD patient was reduced and recovered after antidepressant

treatment (Negoias et al., 2010, 2016). In this research,

we first discovered the maximum cross-section area of the

olfactory bulb in CMS mice was reduced. Then, we used

LC/MS (metabolomics techniques) to study the metabolic

alterations of the olfactory bulb. We discovered 16 metabolites

categorized into three influenced pathways by OPLS-DA

analysis and MetaboAnalyst. The metabolic disturbance of

olfactory (including tryptophan metabolism, linoleic acid

metabolism, and taurine and hypotaurine metabolism) was

regarded as the main pathway that mediated the onset of

depression. Eight differential metabolites were increased and 8

were decreased, which may be therapeutic targets of depression.

The previous metabolomic study of the olfactory bulb by

GC-MS found that 19 metabolites were altered in CMS rats

compared to CON rats (He et al., 2020). These metabolites

were highly associated with the disturbances of purine and

lipids metabolism.

Three influenced metabolic pathways were relevant to

differential metabolites. Our results indicated that disturbance

of these metabolites may refer to promoting depressive-like

phenotypes and olfactory bulb disorder in CMS mice. The
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TABLE 1 List of di�erential metabolites between CMS group and CON group.

Number Differential metabolites VIP Abundance t(10) P

CMS CON

1 Uric acid 2.06 3.54 ± 0.18 2.06 ± 0.16 4.91 **

2 Methacholine 1.87 8.64 ± 0.63 6.67 ± 0.87 1.53 *

3 Sorbitol 1.97 2.75 ± 0.15 2.21 ± 0.15 2.69 **

4 Inosine 2.08 2.06 ± 0.16 1.39 ± 0.087 6.45 **

5 Taurine 1.74 10.75 ± 1.38 8.76 ± 0.83 1.61 *

6 Acetone 2.53 15.34 ± 1.37 4.06 ± 0.36 5.52 **

7 Ribitol 1.97 0.46 ± 0.024 0.22 ± 0.015 3.56 **

8 Metanephrine 1.65 1.21 ± 0.13 0.24 ± 0.018 3.12 **

9 PC O-34:2 2.08 21.87 ± 1.26 27.6 ± 1.97 2.68 **

10 PC(20:0/22:1(13Z)) 1.92 23.34 ± 1.48 33.35 ± 2.86 2.08 **

11 Tryptophan 1.67 1.57 ± 0.12 2.88 ± 0.23 4.36 **

12 5-HT 2.53 4.08 ± 0.58 5.7 ± 0.61 1.39 *

13 5-HTP 1.75 26.98 ± 1.56 33.24 ± 2.86 7.67 **

14 Fructose-6-phosphate 2.54 0.21 ± 0.017 1.05 ± 0.13 6.28 **

15 Spermidine 2.17 0.68 ± 0.033 1.28 ± 0.11 3.86 **

16 Glucose 1.79 4.98 ± 0.69 7.27 ± 0.86 1.26 *

CMS, chronic mild stress; CON, control; PC, phosphatidylcholine; 5-HT, 5-hydroxytryptamine; 5-HTP, 5-hydroxy-L-tryptophan; *P < 0.05; **P < 0.01.

FIGURE 4

The protein expression of tryptophan hydroxylase (TpH) and aromatic amino acid decarboxylase (AAAD) in the olfactory bulb of chronic mild

stress mice. (A–C) The protein level of TpH and AAAD by immunofluorescence; (D, E) The protein level of TpH and AAAD by Western blot. n = 3.
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FIGURE 5

Summary of the olfactory bulb metabolites involved in the

disturbance of tryptophan-5-HT pathway in chronic mild stress

mice. 5-HT, 5-hydroxytryptamine; 5-HTP,

5-hydroxy-L-tryptophan.

abnormal tryptophan metabolism has been reported to associate

with MD and depression model (Wang et al., 2021; Tian et al.,

2022). What’s more, we first found that linoleic acid metabolism

and taurine and hypotaurine metabolism mediated the onset

of depression.

Tryptophan-5-HT pathway

Tryptophan is an essential acid used for synthesizing

proteins. It is also the precursor of the neurotransmitter

serotonin (Slominski et al., 2002). The monoamine

neurotransmitters (including 5-HT) can modulate mood,

cognition, and so on (Young, 2007). In general, tryptophan

formates indoleamine, which produces 5-hydroxytryptophan by

TpH and 5-HT by AAAD (Maffei, 2020). The detailed metabolic

steps of the tryptophan-5-HT pathway are summarized

in Figure 5.

The metabolic disturbance of tryptophan and 5-HT was

vital for MD. Plasma tryptophan levels in depression (including

MD, suicidal MD patients, and depression model rats) were

reduced (Messaoud et al., 2019, 2021; Li et al., 2020),

and reversed after antidepressant treatment (Ciocan et al.,

2021). In addition, tryptophan supplementation could improve

symptoms of depression in MD patients (Gonzalez et al.,

2021). The decreased 5-HT transporter availability was observed

in depressed patients (Staley et al., 2006). The plasma 5-HT

level was reduced in depression patients and increased after

antidepressant administration (Blardi et al., 2002), and the

plasma 5-HT level of responders was increased compared to

nonresponders (Celada et al., 1992). The 5-HT level of the

prefrontal cortex and hippocampus was downregulated in the

acute and chronic stress-induced depression model (Jia et al.,

2017; Zhang et al., 2018). In this study, we discovered that the

levels of metabolites (including tryptophan, 5-HTP, and 5-HT)

were reduced in the olfactory bulb of CMS mice. Then, we

discovered that the protein expression of TpHwas increased and

AAADwas unchanged in the olfactory bulb of CMSmice. These

results suggested that TpH may be an intervention target for

olfactory bulb metabolism abnormality mediating depression.

PC

PC, a kind of phospholipids, is the main component

of biomembrane and synthesizes choline. Clinical research

indicated that plasma PC concentrations of depression patients

were associated with the severity of depression (Demirkan

et al., 2013). Plasma PC levels showed a positive correlation

with depression status in postmenopausal women (Huang

et al., 2021). Serum PC in the olfactory bulbectomy-induced

depression model was increased, (Yan et al., 2021) while some

PCs [PC (32:1), PC (37:4) and its like] in plasma of depressed rats

were reduced (Chen et al., 2014). These differences may be due

to the difference between the depression model and depressive

phenotype. PC supplementation efficiently reversed the disorder

of hippocampal neurogenesis by inhibiting circulating TNF-

α levels (Tokés et al., 2011). The neuroplasticity of neural

stem cells was damaged by inflammatory stress and could be

restored by PC (Magaquian et al., 2021). The neurogenesis of

the olfactory bulb was reduced (Yang et al., 2011a). Therefore,

the reduced PC level of olfactory bulb mediated neurogenesis

disorder in CMS mice.

UA

The levels of serum and plasma UA in patients with

depression and CMS rats were lower than in control, which was

a depression biomarker (Peng et al., 2016; Xiong et al., 2016;

Meng et al., 2020; Yuan et al., 2021; Ceresa et al., 2022). Plasma

UA-adjusted mean levels were lower in current major depressive

disorder compared to remitted disorders and controls (Black

et al., 2018). The plasma UA levels showed a negative correlation

with the risk of depression in patients and antidepressant

use (Wium-Andersen et al., 2017). The plasma UA levels of

comorbid unipolar depression were increased compared with

the unipolar depression and healthy control (Ozten et al.,

2015). The research indicates that increased serum UA levels in

depressed patients have a positive correlation with hypomanic

episodes or subsequent manic (Dos Santos Oliveira et al., 2019).

The rates of hyperuricemia and serum UA levels in bipolar were
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significantly increased compared with the control (Albert et al.,

2015). Therefore, the reduced UA level of the olfactory bulb may

be a biomarker for CMS mice.

Conclusion

We employed LC/MS metabolomics techniques to achieve

metabolic profiling in the olfactory bulb of CMS mice. We

discovered that tryptophan-5-HT pathway metabolism was

disordered in the olfactory bulb of depression mice and TpH

may be an intervention and treatment target for depression.

Futher, we first discovered that linoleic acid metabolism

and taurine and hypotaurine metabolism mediated the onset

of depression.
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