
RESEARCH Open Access

Mapping between the OBO and OWL ontology
languages
Syed Hamid Tirmizi1*, Stuart Aitken2,3, Dilvan A Moreira4, Chris Mungall5, Juan Sequeda1, Nigam H Shah6,
Daniel P Miranker1,7

From Semantic Web Applications and Tools for Life Sciences (SWAT4LS), 2009
Amsterdam, The Netherlands. 20 November 2009

* Correspondence: hamid@cs.
utexas.edu
1Department of Computer Science,
The University of Texas at Austin,
Austin, Texas 78701, USA.
Full list of author information is
available at the end of the article

Abstract

Background: Ontologies are commonly used in biomedicine to organize concepts
to describe domains such as anatomies, environments, experiment, taxonomies etc.
NCBO BioPortal currently hosts about 180 different biomedical ontologies. These
ontologies have been mainly expressed in either the Open Biomedical Ontology
(OBO) format or the Web Ontology Language (OWL). OBO emerged from the Gene
Ontology, and supports most of the biomedical ontology content. In comparison,
OWL is a Semantic Web language, and is supported by the World Wide Web
consortium together with integral query languages, rule languages and distributed
infrastructure for information interchange. These features are highly desirable for the
OBO content as well. A convenient method for leveraging these features for OBO
ontologies is by transforming OBO ontologies to OWL.

Results: We have developed a methodology for translating OBO ontologies to OWL
using the organization of the Semantic Web itself to guide the work. The approach
reveals that the constructs of OBO can be grouped together to form a similar layer
cake. Thus we were able to decompose the problem into two parts. Most OBO
constructs have easy and obvious equivalence to a construct in OWL. A small subset
of OBO constructs requires deeper consideration. We have defined transformations
for all constructs in an effort to foster a standard common mapping between OBO
and OWL. Our mapping produces OWL-DL, a Description Logics based subset of
OWL with desirable computational properties for efficiency and correctness. Our Java
implementation of the mapping is part of the official Gene Ontology project source.

Conclusions: Our transformation system provides a lossless roundtrip mapping for
OBO ontologies, i.e. an OBO ontology may be translated to OWL and back without
loss of knowledge. In addition, it provides a roadmap for bridging the gap between
the two ontology languages in order to enable the use of ontology content in a
language independent manner.

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3 JOURNAL OF

BIOMEDICAL SEMANTICS

© 2011 Tirmizi et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:hamid@cs.utexas.edu
mailto:hamid@cs.utexas.edu
http://creativecommons.org/licenses/by/2.0

Background
Two ontology based systems, the Open Biomedical Ontologies (OBO) [1] and the

Semantic Web [2,3], each associated with a large community are being developed inde-

pendently. Ontologies in biomedicine are used for organizing biological concepts and

representing relationships among them. Major results include the Gene Ontology (GO)

[4] and the Zebrafish Anatomy Ontology (ZFA) [5]. OBO format, which originated

with GO, continues to evolve in support of the needs of the biomedical community.

Over 100 OBO ontologies are available on the NCBO BioPortal [6]. Thus OBO is the

backbone for ontology tools in this domain.

The Semantic Web is an evolving extension of the World Wide Web based on ontol-

ogies. Intended to facilitate search and information integration, and built on the foun-

dations of artificial intelligence, the Semantic Web envisions the Web becoming a

global knowledgebase through distributed development of ontologies using formally

defined semantics, global identifiers and expressive languages for defining rules and

queries on ontologies. The Semantic Web has been organized in the form of a layer

cake where each layer provides a representation language of increasing expressive

power (see Figure 1). The Web Ontology Language (OWL) [7], a component of the

Semantic Web, provides the capability of expressing ontologies in multiple dialects.

OWL-DL, a Description Logics based dialect, has become its language of choice due to

the availability of reasoning tools. In the biomedical domain, some important ontolo-

gies such as NCI Thesaurus [8] and BioPAX [9] have been modelled in OWL.

Given the volume and growth of OBO content, integrating the features promised by

Semantic Web technologies with OBO content would provide significant benefit to the

biomedical community. One way to provide these features is to create a system that

allows back and forth translation of OBO ontologies between the two systems.

This paper describes precisely such a round-trip and the methodology that was fol-

lowed in the course of its creation. The results in this paper represent a community

effort to create a standard transformation mapping, initiated by the OBO foundry. One

goal was to reconcile a number of independent efforts. In addition to this paper, a

summary of this collaboration is in additional file 1 that lists the transformation

choices of the respective contributors and a mediated set of transforms, called the

‘common mapping’. Supplemental material on the mapping is also available [10]. The

final results produce OWL-DL, as validated by WonderWeb OWL Ontology Validator

[11]. A full implementation was done in Java, and is a part of the Gene Ontology

Figure 1 Layer cakes for OBO and the Semantic Web. A layer cake for OBO, with some examples and a
comparison with the Semantic Web layers; the mapping between the two layer cakes is generally quite
straightforward, which makes it easy to understand the constructs in OBO and their mappings in OWL.

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 2 of 16

project source [12], hosted at sourceforge.net. It provides a lossless roundtrip mapping

for OBO ontologies, i.e. ontologies that are originally in OBO can be translated into

OWL and back into OBO.

A basis for reconciling the efforts was an observation that the Semantic Web layer

cake itself could serve as a guideline for studying the representation of ontologies in

OBO and creating the transformation system. We found that most of OBO can be

decomposed into layers with direct correspondence to the Semantic Web layer cake.

Compared to an approach that deals with each construct individually, we found that

this method gave a better organization to our work and enabled us to identify matches

and mismatches between the two languages more efficiently. Discussions became a two

step process where it was first determined if an OBO construct had a clear correspon-

dence to a Semantic Web layer, with respect to its intended expressive power, and if

so, to which level it belonged. It followed that constructs that fell into the same

equivalence class should be handled similarly. Deep discussion could be limited to

those OBO constructs that could not be easily situated in this structure. These include,

(1) local identifiers in OBO compared to global identifiers in OWL, (2) various kinds

of synonym elements in OBO, and (3) defining subsets of OBO ontology. Even these

constructs can be expressed in OWL-DL, albeit not by obvious construct substitution.

We conclude that OWL-DL is strictly more expressive than OBO.

An additional consequence of this work is that, in effect, it defines a subset of OWL-

DL that captures the expressive power of OBO and can be seen as a way of introdu-

cing formal semantics to OBO. We include a discussion of how OWL tools can be

restricted to this subset so as to assure that ontologies developed with OWL tools may

be translated to OBO. Similarly and perhaps more importantly, how to assure that

OWL tools do not break OBO ontologies that have been translated to OWL such that,

after using OWL tools, an updated ontology may be returned to OBO form. The

exception handling in the Java based OWL to OBO translator was developed such that

the translator itself serves double duty as a validator for this subset of OWL. At least

two biomedical ontology tools, OBO-Edit [13] and Morphster [14] already exploit this

translator.

OWL and OBO continue to evolve. OWL 2 [15] has recently been ratified by the

World Wide Web Consortium, and a new version of OBO (1.3) is under active devel-

opment [16]. Given that the older versions of these languages still support most ontol-

ogies, we have focused on those versions. However, later in the paper we provide a

discussion on the new versions and their impact on the transformation system.

Related work

Each of the authors of this paper, as well as Mikel Egana, Erick Antezana, and LexBio

group at Mayo Clinic, contributed some earlier independent effort at creating a trans-

formation system [17-19]. The results of these efforts are documented in our spread-

sheet as well. No single effort survived in its entirety in the common mapping.

Another independent and important effort was that of Golbreich et al [20,21] (here-

after Golbreich) that was not included in the standardized mappings. Golbreich devel-

oped a BNF grammar for OBO syntax, as well as a mapping between OBO and OWL

1.1 (now known as OWL 2). The differences between the Golbreich work and the com-

mon mapping effort presented in this paper comprise a difference of methodology and

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 3 of 16

practical focus. Golbreich’s work laid out valuable syntactic groundwork to formalize the

semantics of a large subset of OBO. Much like most of the other first efforts, a complete

transformation system was not specified. This particular effort deferred resolving OBO

annotations, synonyms, subsets, and deprecation tags. Golbreich’s work also did not

address the mapping of local identifiers in OBO into global identifiers. However, the

transformations that are specified by Golbreich are largely consistent with the common

mappings.

Definitions

Ontology

In knowledge-based systems, an ontology is a vocabulary of concepts and describable

relationships among them [22]. Ontologies are extensively used in areas like artificial

intelligence [23,24], the Semantic Web [7,25-27] and biology [4-6] as a form of knowl-

edge representation. They generally describe individual objects (or instances), classes of

objects, attributes, relationship types, and relationships among classes and objects

within a domain.

OBO ontologies

An ontology in OBO consists of two parts; the first part is the header that contains

tag-value pairs describing the ontology, and the other part contains the domain knowl-

edge described using term and typedef (more commonly known as a relationship type)

stanzas [28]. A stanza generally defines a concept (term or typedef) and contains a set

of tag-value pairs to describe it. To the terms and typedefs defined in OBO ontologies

are assigned local IDs and namespaces.

The OBO format is human friendly, and useful GUI-based tools like OBO-Edit are

available for building ontologies in it [13]. We deal with OBO version 1.2, and refer to

it as simply OBO in this paper.

Semantic Web ontologies

The Semantic Web ontologies give well-defined meaning to the content on the World

Wide Web and enables computers and people to work in cooperation. Some key tech-

nologies that form the Semantic Web are:

1. Resource Description Framework (RDF) [29] can express meaning of data using

triples. A triple is a binary predicate that defines a relationship between two

entities.

2. The Semantic Web uses Universal Resource Identifiers (URIs). This means that

each entity gets a globally unique identifier.

3. RDF Schema (RDF-S) and Web Ontology Language (OWL) are ontology

languages. RDF-S allows description of valid classes and relationship types for an

application, and some properties like subclasses, domains, ranges etc. OWL further

allows describing constraints on instances and provides both ontology level and

concept level annotations, set combinations, equivalences, cardinalities, deprecated

content etc.

A common syntax for representing ontologies on the Semantic Web is RDF/XML.

OWL is based on RDF and RDF-S, and on occasion, we use OWL as an encompassing

term for all these languages.

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 4 of 16

Results
OBO and the Semantic Web layers

The Semantic Web was envisioned as an expressive hierarchy that is often illustrated

as a layer cake [3] (see Figure 1c). At the beginning of this research it was our conjec-

ture that the precise organization of the hierarchy transcends the Semantic Web and

could be used, retroactively, to formalize the structure of other data and concept mod-

elling systems. Thus, as a first step towards the creation of a transformation mechan-

ism between OBO and OWL, we created a layer cake for OBO whose structure

mirrored that of the Semantic Web layer cake. This allowed us to identify straightfor-

ward mappings as well as the cases that do not match as well. We term this the ‘two

layer cakes’ methodology. This methodology has also been successfully applied towards

the transformation of SQL databases into OWL ontologies [30].

OBO layer cake

We methodically examined each of the constructs of OBO. We find that most of OBO

can be decomposed into layers with direct correspondence to the Semantic Web: OBO

Core, OBO Vocabulary, and OBO Ontology Extensions (see Figure 1a, 1b).

1. OBO Core: In OBO, a concept can either be a term (class) or a typedef (rela-

tionship type). OBO Core deals with assigning IDs and ID spaces to concepts, and

representing relationships as triples.

2. OBO Vocabulary: OBO Vocabulary allows annotating concepts with metadata

like names and comments. It also supports describing sub-class and sub-property

relationship types, as well as the domains and ranges of typedefs.

3. OBO Ontology Extensions: In addition to concept-level tags, OBO Ontology

Extensions (OBO-OE) layer defines tags for expressing metadata on the entire

ontology as well. It also allows defining synonyms, equivalences and deprecation of

OBO concepts. OBO-OE layer can also express specific properties of OBO terms

(e.g. set combinations, disjoints etc.), and typedefs (e.g. transitivity, uniqueness,

symmetry, cardinalities).

Table 1 provides assignments of OBO constructs to appropriate layers in the OBO

layer cake.

Since we mostly have an exact mapping of layers between the two languages (see

Figure 1), deciding which constructs to use for each kind of transformation is simpli-

fied. OBO Core tags can be transformed using RDF. OBO Vocabulary tags require

using RDF Schema constructs. OBO Ontology Extensions tags require constructs

defined in OWL.

Incompatibilities between OBO and OWL

We classify incompatibilities between the two languages into one of the two categories.

First, in certain cases, the semantic equivalent of a construct in one language is missing

from the other language. Second, sometimes the semantics of constructs in OBO are

not sufficiently well-defined to map to a formally defined OWL construct, which forces

us to define new vocabulary in OWL in order to allow the lossless transformation.

1. Entities in OWL have globally unique identifiers (URIs). On the other hand,

OBO allows local identifiers. Transforming OBO into OWL requires transforming

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 5 of 16

the local identifiers in an OBO ontology into URIs. Also, in order to make the

roundtrip possible, it is necessary to extract the local identifier back from the URI.

2. OBO language has the ‘subset’ construct, which does not have an equivalent con-

struct in OWL. An OBO subset is a collection of terms only, and is defined as a part

of an ontology. An ontology can contain multiple subsets and each term can be a

part of multiple subsets. In order to make the transformation possible, we need to

define an OWL construct equivalent to OBO subset, and some relationship concepts

to represent terms being in a subset, and a subset being a part of an ontology.

3. There are multiple kinds of synonym tags in OBO, e.g. related, narrow, broad,

exact etc. The differences between these constructs are not formally documented.

This requires defining new concepts in OWL, which can perhaps be mapped to

new or already existing constructs in OWL.

Elements of OBO “missing” in Semantic Web are few, and can still be constructed in

OWL. Thus, OBO ontologies may be translated to Semantic Web. However, in order

to make the roundtrip possible, we find it important to store some ancillary informa-

tion about the OBO ontology in the OWL file, e.g. a base URI etc., so it can be trans-

lated back without any loss of knowledge. It is important to note that even changing a

local identifier within the whole knowledgebase is counted as loss of knowledge from

the original source, even if the overall structure of the ontology remains intact.

The presence of such incompatibilities requires us to make some complex choices

regarding the transformation process. Our solutions to these problems are explained in

detail later.

OBO and sub-languages of OWL

OWL has three increasingly expressive sublanguages; OWL Lite, OWL DL and OWL

Full. Each of these sublanguages extends its simpler predecessor with richer constructs

that affect the computational completeness and decidability of the ontology.

Our investigation shows that a major portion of the OBO Ontology Extensions maps

to OWL Lite and provides similar level of expressiveness. Overall, OBO features are a

strict subset of OWL DL.

In OBO, the definition of a term, or a typedef, is rigid and not as expressive as OWL

Full. OWL Full allows restrictions to be applied on the language elements themselves

[7,26]. In other words, an OWL Full Class can also be an OWL Full Property and an

Instance and vice versa. Such features are not supported in OBO.

Recall, the primary concern is the use of the Semantic Web technology and tools for

OBO ontologies. Thus, that OBO is less expressive than OWL is the convenient direc-

tion of containment. It does mean that round trips cannot be supported unless the

editing of any OBO ontology while in their OWL representation is restricted. We talk

about editing of transformed ontologies while in OWL language in a later section.

Table 1 Layer cake assignments for OBO constructs

OBO Core: id, idspace, relationship

OBO Vocabulary: name, definition, comment, is_a, domain, range

OBO Ontology Extensions: format-version, version, date, saved-by, auto-generated-by, namespace, default-
namespace, subsetdef, alt_id, relationship, subset, synonym, is_obsolete, is_cyclic, is_transitive, is_symmetric,
import, synonymtypedef, intersection_of, union_of, disjoint_from, replaced_by, consider, inverse_of,
transitive_over

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 6 of 16

While transforming OBO ontologies into OWL, we must ensure producing a repre-

sentation that can be used by description logic based inference engines. One of the

intended goals of our transformation is to produce OWL DL, and not OWL Full.

Transformation metadata and rules

In this section, we present some of the rules for the transformation of OBO ontologies

into OWL. For more complex transformations we describe the transformations and

explain our approach.

In order to facilitate the transformation, we have defined a set of OWL meta-classes

that correspond to the vocabulary of OBO tags. Complete listing of mappings between

OBO and OWL are available in additional file 1.

Simple transformation rules

Most of the transformations follow simple rules. For most header and term/typedef

tags, there is a one-to-one correspondence between OBO tags and OWL elements,

either pre-existing or newly defined. In this section, we list the elements with this kind

of simple transformation. Table 2 Example A provides some examples.

Header: The set of tag-value pairs at the start of an OBO file, before the definition

of the first term or typedef, is the header of the ontology.

When translated into OWL language, each of the OBO header tags gets translated

into the corresponding OWL element. The whole ontology header is contained in the

owl:Ontology element in the new OWL file, and can appear anywhere within the file,

as opposed to the start of file in OBO language.

Terms: A term in OBO is a class in OWL. So, a term declaration is translated into

an owl:Class element and the tags associated with a term are contained within this ele-

ment. Some tags that have straightforward transformations to OWL elements are:

1. The elements for ‘name’ and ‘comment’ about a term fall into the OBO Vocabu-

lary layer, and are translated into rdfs:label and rdfs:comment respectively. A ‘defini-

tion’ tag is translated into hasDefinition annotation property, and is therefore

placed in the OBO Ontology Extensions layer.

2. The ‘is_a’ tag in OBO specifies a subclass relationship, and is placed in the OBO

Vocabulary layer. It is translated into an rdfs:subClassOf element (Table 2 Example B).

Typedefs: A typedef in OBO is an object property in OWL. A typedef stanza in an

OBO file is translated into an owl:ObjectProperty element in OWL. The other informa-

tion associated with the typedef is expressed as elements nested within this element.

Some simple transformations are:

1. OBO typedefs can have associated domains and ranges. These are expressed by

‘domain’ and ‘range’ tags, and are in the OBO Vocabulary layer. These tags are

translated into RDF Schema defined elements rdfs:domain and rdfs:range

respectively.

2. Just like subclasses for terms, a property can be a sub-property to another prop-

erty. A sub-property relationship is expressed using the ‘is_a’ tag, from OBO Voca-

bulary layer, in a typedef stanza. This tag is translated into an rdfs:subPropertyOf

element defined in RDF Schema.

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 7 of 16

3. Typedefs may be cyclic (‘is_cyclic’ tag), transitive (‘is_transitive’ tag) or symmetric

(‘is_symmetric’ tag). These tags fall into the OBO Ontology Extensions layer. The

corresponding elements in OWL are annotation property isCyclic, and property

types owl:TransitiveProperty and owl:SymmetricProperty respectively. The isCyclic

property specifies a Boolean value.

Identifiers and ID spaces

OBO has a local identifier scheme. As OBO evolves, ID spaces have been introduced

to allow specifying global identifiers. OBO identifiers have no defined syntax, but they

are recommended to be of the form: “<IDSPACE>:<LOCALID>”

However, OBO ontologies may contain flat identifiers, ones that do not mention the

ID space. OBO identifiers must be converted to URIs for use in OWL. The rules for

converting OBO identifiers to URIs in the current mapping are as follows:

If the OBO header declares an ID space of the form: “idspace: GO http://www.go.org/

owl#”, all OBO identifiers with the prefix GO: will be mapped to the provided URI, e.g.

“http://www.go.org/owl#GO_0000001”.

If an OBO ID space prefix does not have a declaration in the header, all identifiers

that mention that prefix will be transformed using a default base URI, for example an

identifier of the form “SO:0000001” will become “<default-base-uri>SO_0000001”. In

case the OBO identifier is flat, e.g. foo, the transformation again uses the default base

URI to create “<default-base-uri>UNDEFINED_foo”. Notice that the URI contains

“UNDEFINED_”, which clarifies that the URI should be translated into a flat identifier

when translating the OWL version back to OBO. Flat identifiers are discouraged in

OBO since they are not globally unique. Our transformation scheme only attempts to

enable the roundtrip, and does not guarantee uniqueness of the identifiers.

Table 2 OBO examples and corresponding OWL mappings

OBO OWL

[Typedef]
id: part_of
name: part of
is_transitive: true

<owl:TransitiveProperty rdf:about="…#part_of">
<rdfs:label>part of</rdfs:label>
</owl:TransitiveProperty>

Example A Simple transformations: name, transitivity

[Term]
id: ZFA:0000434
name: skeletal system
is_a: ZFA:0001439

<owl:Class rdf:about=”...#ZFA_0000434">
<rdfs:label>skeletal system</rdfs:label>
<rdfs:subClassOf rdf:resource=”...#ZFA_0001439"/>
</owl:Class>

Example B Transformation of ‘is-a’

[Term]
id: ZFA:0001439
name: anatomical system
relationship: part_of ZFA:0001094

<owl:Class rdf:about= “…#ZFA_0001439”>
<rdfs:label>anatomical system</rdfs:label>
<rdfs:subClassOf><owl:Restriction>
<owl:onProperty rdf:resource = “…#part_of” />
<owl:someValuesFrom rdf:resource = “…#ZFA_0001094” />
</owl:Restriction></rdfs:subClassOf>
</owl:Class>

Example C Transformation of a relationship

[Term]
id: ZFA:0000437
name: stomach
is_obsolete: true

<owl:Class rdf:about="&oboInOwl;ObsoleteClass"/>
<owl:Class rdf:about=”...#ZFA_0000437">
<rdfs:label>stomach</rdfs:label>
<rdfs:subClassOf rdf:resource="&oboInOwl;ObsoleteClass"/>
</owl:Class>

Example D Transformation of obsolete term

OBO examples in this table have been taken from ZFA.

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 8 of 16

http://www.go.org/owl#
http://www.go.org/owl#
http://www.go.org/owl#GO_0000001

Typedefs defined in OBO Relations Ontology [31] are often used as a common voca-

bulary in OBO ontologies. Such typedefs have OBO identifiers prefixed with ID

space OBO_REL. OBO ontologies assume the presence of this ID space with URI

“http://www.obofoundry.org/ro/ro.owl” even if it is not explicitly stated. When translated

into OWL, an XML namespace xmlns:oboRel with the same URI is added to the ontol-

ogy, and the newly created object property is assigned that namespace. As a result, we

ensure that all Relations Ontology constructs are mapped to the same URIs across

ontologies.

Relationships

Relationships between OBO terms can be defined using the ‘relationship’ tag.

A defined relationship is like a binary predicate and consists of a subject (the term

being described in the stanza), a relationship type and an object.

There are multiple kinds of restrictions on relationships that can be expressed using

OWL. OBO specifications do not specify any formal semantics for the ‘relationship’ tag

that match a specific relationship type restriction defined in OWL. Therefore, we have

selected the most general restriction to transform OBO relationships into OWL.

An example of relationship transformation is shown in Table 2 Example C. The owl:

someValuesFrom element specifies the type of restriction that is applied to the OWL

relationship. This restriction is similar to the existential quantifier of predicate logic

[7,26]. In the existing OBO ontology content, we have only seen OBO relationships of

this kind. It is possible that some ontologies use a different semantics of relationships.

Currently, we do not have a way of differentiating between the two uses of OBO rela-

tionships so our transformation is based on the common semantics.

Subsets

Terms in an OBO ontology can be organized into subsets. A term can belong to multi-

ple subsets.

In order to declare a subset, a value for the tag ‘subsetdef’ is specified in the OBO

ontology header. This value consists of a subset ID (or subset name) and a quoted

description about the subset. A term can be assigned to a defined subset using the

‘subset’ tag. Multiple ‘subset’ tags are used to assign the term to multiple subsets of

the ontology.

When the ontology is translated into OWL, the mapping of subsets is one of the

more complex processes. This is due to the fact that subsets do not have a semantic

equivalent in OWL. Therefore, we use some OWL features to construct elements that

serve as subsets. Subsets fall in the OBO Ontology Extensions in the OBO layer cake.

The local ID (or name) assigned to the subset, which is locally unique, becomes the

OWL ID of a subset resource. A subset resource is declared using an oboInOwl:Subset

element. The inSubset annotation is used to assign terms to a subset, and it is

expressed within the owl:Class element.

Obsolete content

OBO format supports obsolete content. A term or typedef can be marked as obsolete

using the ‘is_obsolete’ tag with a ‘true’ Boolean value. The ‘is_obsolete’ tag is in the

OBO Ontology Extensions.

Obsolete terms and typedefs are not allowed to have any relationships with other

terms or typedefs, including the subclass and sub-property relationships.

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 9 of 16

http://www.obofoundry.org/ro/ro.owl

When translated into OWL, an obsolete term becomes a subclass of oboInOwl:Obso-

leteClass (Table 2 Example D). Similarly, an obsolete typedef becomes a subproperty of

oboInOwl:ObsoleteProperty.

Notice that while OWL provides elements to handle deprecation, obsolescence in

OBO has different semantics, hence requires a different mapping.

Discussion
OBO semantics by transformation

The transformation system has the additional effect of formalizing the semantics of the

OBO language. The semantics of OBO are operationally defined by means of GO and

the software systems that support GO. The semantics of OWL have been formally

defined using model theory [25,29]. Though we have not written it out, a formal docu-

ment specifying (or suggesting) OBO semantics can be generated. The contents of that

document would comprise an enumeration of the pair-wise mapping of constructs

between the two languages, restating, in each mapping, the semantics stated for the

involved OWL construct.

In Table 3, we present a few examples where our transformation mapping could pro-

vide formal semantics for OBO constructs, taken directly from OWL semantics specifi-

cations. So,

1. x is_a y: all instances of x are also instances of y.

2. x is domain of y: the subject entity for all relationships of type y is an instance of x.

3. x is disjoint from y: x and y do not have any common instances.

While the identification is straightforward in these cases, in certain other situa-

tions, it is not very clear. Finding the semantics of relationships in OBO is one such

case. OBO specifications do not provide the semantics of the construct used to spe-

cify relationships between two terms using a typedef. Therefore, it is hard to decide

which of the available relationship constraints in OWL (owl:allValuesFrom, owl:

someValuesFrom) to use, the former being similar to a universal quantifier, and the

latter to an existential quantifier. In our transformations, we use owl:someValues-

From, since already built ontologies show examples of use of OBO relationship con-

struct in a way compatible to that of owl:someValuesFrom. We recommend that in

practice the semantics of OBO relationships always match the owl:someValuesFrom

restriction.

Table 3 Semantics for OBO using OWL mappings

Description OBO OWL Semantics

x is a subclass of y is_a rdfs:subClassOf CEXT(x) ⊆ CEXT(y)

x is a sub-property of y is_a rdfs:subPropertyOf EXT(x) ⊆ EXT(y)

x is the domain of property
y

domain rdfs:domain <z,w> Î EXT(y) impliesz Î CEXT(x)

x is the range of property y range rdfs:range <w,z> Î EXT(y) impliesz Î CEXT(x)

x is disjoint from y disjoint_from owl:disjointWith CEXT(x) ∩ CEXT(y) = {}

p is a transitive property is_transitive owl:
TransitiveProperty

<x,y>,<y,z> Î EXT(p) implies <x,z> Î EXT
(p)

CEXT(c): the set of instances of class c; EXT(p): the set of pairs <x,y> related by property p.

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 10 of 16

Other OBO tags that do not clearly match with OWL elements, such as synonyms

and subsets, as well as the semantics for the ‘is_obsolete’ tag also present a more sig-

nificant challenge in the identification of semantics.

Updating OBO ontologies in OWL

The set of constructs for ontology representation provided by OWL is considerably

larger than the set of constructs provided by OBO. Therefore, in order to allow round-

trip transformations on OBO ontologies, it is important to restrict the editing of such

ontologies per some guidelines while they are being represented in OWL.

Our transformation mappings essentially provide a subset of OWL elements that

may be used for adding or updating contents of the ontology.

Compared to the general use of OWL, there are two key points to keep in mind:

1. To create relationships, use owl:someValuesFrom relations, since OBO does not

have a corresponding relationship mechanism for owl:alValuesFrom.

2. Obsolescence of terms in the ontology should be done using the obsolete ele-

ments oboInOwl:ObsoleteClass and oboInOwl:ObsoleteProperty. OWL has seemingly

similar, but semantically different deprecation elements, which must not be used

for obsolescence.

Interconnecting OBO and the Semantic Web

The implications of our work in providing semantics to OBO strongly suggest the use of

this mapping as a potential bridge between the OBO and the Semantic Web worlds. Com-

pared to the existing work by Golbreich et al. [20,21], our ability to make roundtrips

between OBO and OWL could enable seamless interconnections between the two worlds.

Our roundtrip tool could also be used as a validator for ontologies updated in OWL.

It is common for biologists to develop and refine their OBO ontologies as their work

progresses. Our work provides a path for accessing and querying the Semantic Web as

well as OBO content in an integrated fashion, and to assimilate linked data available

on the Semantic Web.

An implementation of our roundtrip mappings is provided by the Morphster tool

[14] to jumpstart the integration of OBO ontologies with the Semantic Web. Morph-

ster has successfully accomplished the use of a Semantic Web based triple store Jena

SDB [32] for storage of large OBO ontologies and querying by the SPARQL query lan-

guage for RDF. It also enables the use of XML Web Services with OBO ontologies to

obtain and link diverse data such as images from Morphbank [33], and authoritative

taxonomic names from uBio [34] etc.

OBO 1.3 and OWL 2

OBO and OWL both continue to evolve as ontology languages, providing new features

based on real applications and user experience. A new version of OWL, commonly

known as OWL 2 [15], has recently been ratified by the World Wide Web Consor-

tium. Meanwhile, a new version of OBO, OBO 1.3, is under active development with

draft documents available for comment [16]. As the languages change, tools as well as

ontology content will be updated to utilize their new features.

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 11 of 16

Of particular concern to our work are the changes that are taking place in each

language and their impact on the transformations. In this section, we discuss our

understanding of these issues.

New features of OWL 2 mainly concern easier syntax for common ontology state-

ments and new constructs that increase expressivity. Hence, we can expect simpler

transformation rules for going from OBO to OWL 2.

The biomedical ontology community now understands that OBO and OWL are both

useful ontology languages and the intention is to make these languages entirely inter-

convertible in the long term. One of the objectives behind the updates to OBO is to

bring the feature set of OBO 1.3 closer to that of OWL.

● OBO 1.3 promises to provide a specification of formal syntax and semantics,

hence taking a big step towards making provably correct mappings to OWL possi-

ble. The syntax for OBO 1.3 is specified as a BNF grammar, and the semantics are

defined using the Obolog language, a collection of logical constructs defined using

the ISO standard Common Logic [35]. In addition to the logical semantics of Obo-

log, the new specifications will also provide interpretations for Obolog to simplify

translations into OWL-DL as well as OWL 2.

● The new version of OBO will accompany a recommendation [36] for globally

unique identifiers for OBO that will have a one to one mapping with OBO Foundry

compliant URIs, hence making the ID mapping obvious. The design goals behind

this recommendation are to make sure that the URIs resolve to useful information

about an OBO term, and that it is possible to maintain those URIs over time so

they keep pointing to useful information. The recommendation document provides

an example of how existing OBO IDs, new URIs, and existing transformed URI

from the standard mapping may be related in the future (see Figure 2).

● The new version of OBO will introduce new supported stanzas (sections) of

OBO ontologies, i.e., ‘Annotation’ and ‘Formula’. Annotation stanzas will allow the

representation of annotations, and to attach metadata to them. Formula stanzas

will be used to represent logical or mathematical formulas. A transformation sys-

tem for OBO 1.3 will need to accommodate these stanzas as well.

Conclusions
Building ontologies is not a new idea for the biology community, and precedes the

development of the Semantic Web. While ontologies are a central part of the architec-

ture of the Semantic Web, the Semantic Web vision includes a broad range of technol-

ogies from the Artificial Intelligence field, such as inferring and querying mechanisms,

as well as additional elements for distributed computing, such as global identifiers and

the use of XML and HTTP as middleware. OBO, on the other hand, has appropriate

tool support for building ontologies and hosts a number of important biomedical

ontologies. Hence the OBO community has the biggest and most immediate need for

the features being developed by the Semantic Web community.

We have standardized the mapping between the two systems to allow the OBO com-

munity to utilize the tool base developed for the Semantic Web world. We have indir-

ectly formalized the semantics of OBO by creating a roundtrip transformation between

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 12 of 16

OBO and OWL. We have also implemented our transformation tool in Java and it is

available as part of the open source Gene Ontology project, and also as a web service.

We believe our work is an important step towards building interoperable knowledge

bases between OBO and the Semantic Web communities.

A key difference between the OBO community and the Semantic Web is the metho-

dology for content development across ontologies. The Semantic Web has adapted a

completely distributed development mechanism for ontologies that may be integrated

using URIs. On the other hand, the OBO community uses a hybrid of centralized and

distributed development. While the users of OBO develop ontologies independently, the

OBO foundry has the goal of collaboratively creating a suite of orthogonal interoperable

reference ontologies, such as the Relations Ontology, in the biomedical domain. Our

transformation system enriches the Semantic Web by providing this additional struc-

tured ontology content and the access to the wealth of data annotated using it.

Epilogue
As of September 2010, OBO 1.3 has been deprecated, to be replaced by OBO 1.4. In

addition to describing the syntax and semantics of OBO 1.4, work is in progress on

defining a mapping for the new version of OBO to OWL2-DL. The new mappings are

expected to be a part of the final specification of OBO 1.4. Readers should refer to the

editor’s draft [37] for further developments.

Methods
Based on the mapping rules, we have implemented a Java implementation of the OBO

to OWL transformation. Our implementation is part of the official Gene Ontology

project source [12]. Gene Ontology project is an open source project on Sourceforge.

net, and is home to the OBO ontology editor OBO-Edit. Our implementation is part

of the OBO API that provides data structures for storing OBO ontologies, as well as

read and write capabilities for OBO and OWL, among other operations. The source

code for our transformation tool is available at [38].

Finally, we have deployed our transformation as a web service for general use:

http://www.cs.utexas.edu/~hamid/oboowl.html.

Figure 2 Mappings between OBO Ids and URIs A mapping between the existing OBO Ids, newly
recommended Foundry-compliant URIs, and the URIs produced by the standard mapping, mentioned as
OBO legacy URI. This figure has been taken from the draft of the recommendation, and refers to the
mappings of Ids described in the recommendation document.

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 13 of 16

http://www.cs.utexas.edu/~hamid/oboowl.html

In the OBO API, we have created NCBOOboInOWLMetadataMapping class in the

package org.obo.owl.datamodel.impl. This class implements the roundtrip mapping

between OBO and OWL. In order to provide console-based use of the transformation

tool, we have created Obo2Owl and Owl2Obo classes in org.obo.owl.test package.

In order to evaluate the OWL output of our implementation, we have tested our tool

on Gene Ontology, Zebrafish Anatomical Ontology, Spider Ontology and Adult Mouse

Gross Anatomy, obtained from NCBO BioPortal. After transformation of these ontolo-

gies into OWL, we have successfully loaded the OWL files into Protégé [39], an ontol-

ogy development tool for the Semantic Web. Using the ‘summary’ feature of Protégé,

we have compared the overall class and object property count with the term and type-

def count obtained for the original OBO file, using OBO-Edit’s ‘extended information’

feature. The results of the comparison (Table 4) show equal values for both versions of

the ontologies. Similarly, for testing the roundtrip, we compared the original OBO file

with the roundtrip version, again using OBO-Edit’s ‘extended information’ feature. Our

evaluation showed that the two OBO ontologies had the same term and typedef counts

(Table 4).

Additional material

Additional file 1: Title: Summary of OBO2OWL. Description: Summary of final mappings, and original
independent mappings.

List of abbreviations used
BNF: Backus-Naur Form; GO: Gene Ontology; GUI: Graphical User Interface; HTTP: Hypertext Transfer Protocol; NCBO:
The National Center for Biomedical Ontology; OBO: Open Biomedical Ontology; OWL: Web Ontology Language; OWL-
DL: OWL Description Logics subset; RDF: Resource Description Framework; RDF-S: RDF Schema; SPARQL: SPARQL
Protocol and RDF Query Language; SQL: Stuctured Query Language; URI: Universal Resource Identifier; XML: Extensible
Markup Language; ZFA: Zebrafish Anatomy.

Acknowledgements
For developing part of the Java implementation of the transformation, we have used the PERL implementation by
Erick Antezana [40] as a guide. Also, we thank Smriti Ramakrishnan for her help in the development and deployment
of the OBO OWL transformation web service.
This research was supported by the National Science Foundation grant IIS-0531767, National Institutes of Health grant
U54 HG004028-01, Biotechnology and Biological Sciences Research Council grant BB/F015976/1, and CAPES-Brazil.
This article has been published as part of Journal of Biomedical Semantics Volume 2 Supplement 1, 2011: Semantic
Web Applications and Tools for Life Sciences (SWAT4LS), 2009. The full contents of the supplement are available
online at http://www.jbiomedsem.com/supplements/2/S1.

Author details
1Department of Computer Science, The University of Texas at Austin, Austin, Texas 78701, USA.. 2Artificial Intelligence
Applications Institute, The University of Edinburgh, Edinburgh EH8 9LE, UK.. 3Informatics Life-Sciences Institute, The
University of Edinburgh, Edinburgh EH8 9LE, UK.. 4Department of Computer Science, Mathematics and Computing

Table 4 Evaluation results from the roundtrip transformations

Ontology Original OBO OWL Translation Roundtrip OBO

ZFA Terms: 2219
Typedefs: 4

Classes: 2219
Object Properties: 4

Terms: 2219
Typedefs: 4

MA Terms: 2882
Typedefs: 1

Classes: 2882
Object Properties: 1

Terms: 2882
Typedefs: 1

SPD Terms: 494
Typedefs: 1

Classes: 494
Object Properties: 1

Terms: 494
Typedefs: 1

GO Terms: 28667
Typedefs: 5

Classes: 28667
Object Properties: 5

Classes: 28667
Typedefs: 5

Class counts do not include obsolete classes, or ancillary information required for roundtrips. ZFA = Zebrafish
Anatomical Ontology, MA = Adult Mouse Gross Anatomy, SPD = Spider Ontology, GO = Gene Ontology.

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 14 of 16

http://www.biomedcentral.com/content/supplementary/2041-1480-2-S1-S3-S1.xls
http://www.jbiomedsem.com/supplements/2/S1

Institute, University of São Paulo, São Carlos, São Paulo, Brazil.. 5Lawrence Berkeley National Laboratory, Berkeley, California
94720, USA.. 6Center for Biomedical Informatics Research, School of Medicine, Stanford University, Stanford, California
94305, USA.. 7Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78701, USA..

Authors’ contributions
All the authors provided their early transformation systems and worked towards the reconciliation of the efforts to
create the standard mapping. SHT drafted the manuscript, implemented the Java version, ran the tests and deployed
the web service. DAM developed the original roundtrip software for Protégé and OBO import/export plug-ins for
Protégé and OBO-Edit. All authors critically reviewed the manuscript, and approved the final version.

Competing interests
The authors declare that they have no competing interests.

Published: 7 March 2011

References
1. Open Biomedical Ontologies. [http://www.obofoundry.org/].
2. Berners-Lee T, Hendler J, Lassila O: The Semantic Web. Scientific American 2001, 284(5):34-43, May.
3. Berners-Lee T: Semantic Web Status and Direction. International Semantic Web Conference 2003, Keynote.
4. Gene Ontology. [http://www.geneontology.org/].
5. Mabee PM, Haendel MA, Arratia G, Coburn MM, Hilton EJ, Lundberg JG, Mayden RL: ZFIN Anatomy Working Group:

Skeletal System. Manually curated data 2006.
6. NCBO BioPortal. [http://www.bioontology.org/bioportal.html].
7. OWL Web Ontology Language. In W3C Recommendation McGuinness DL, van Harmelen F 2004 [http://www.w3.org/

TR/2004/REC-owl-features-20040210/], 10 Feb.
8. NCI Thesaurus. [http://ncit.nci.nih.gov/].
9. Bader GD, Cary M, Sander C: BioPAX – Biological Pathway Data Exchange Format. Encyclopedia of Genomics,

Proteomics and Bioinformatics New York: John Wiley & Sons, Ltd; 2006.
10. Moreira D, Mungall C, Shah N, Aitken S, Day-Richter J, Redmond T, Musen M: The NCBO OBOF to OWL Mapping.

Available from Nature Precedings 2009 [http://hdl.handle.net/10101/npre.2009.3938.1].
11. WonderWeb OWL Validator. [http://www.mygrid.org.uk/OWL/Validator].
12. Gene Ontology at Sourceforge. [https://sourceforge.net/projects/geneontology/].
13. OBO-Edit, Gene Ontology Tools. [http://www.geneontology.org/GO.tools.shtml].
14. Morphster AToL Project. [http://www.cs.utexas.edu/~miranker/studentWeb/MorphsterHomePage.html].
15. OWL 2 Web Ontology Language: New Features and Rationale. In W3C Recommendation Golbreich C, Wallace EK

2009 [http://www.w3.org/TR/2009/REC-owl2-new-features-20091027/], 27 Oct.
16. Mungall C, Day-Richter J: The OBO Flat File Format Specification, version 1.3 [DRAFT]. [http://www.geneontology.org/

GO.format.obo-1_3.shtml].
17. Tirmizi SH, Miranker DP: OBO2OWL: Roundtrip between OBO and OWL. Technical Report The University of Texas at

Austin, Department of Computer Sciences; 2006, TR-06-47. October 2.
18. Mungall C: Mapping OBO to OWL. Berkeley Drosophila Genome Project 2005 [http://www.godatabase.org/dev/doc/

mapping-obo-to-owl.html].
19. Aitken S: A Minimal Ontology for OBO and GO. 2003 [http://www.aiai.ed.ac.uk/resources/go/].
20. Golbreich C, Horridge M, Horrocks I, Motik B, Shearer R: OBO and OWL: Leveraging Semantic Web Technologies for

the Life Sciences. In Proceedings of International Semantic Web Conference 2007, 169-182.
21. Golbreich C, Horrocks I: The OBO to OWL mapping, GO to OWL 1.1! Workshop on OWL: Experiences and Directions,

Innsbruck, Austria; 2007, Jun 6-7.
22. Gruber TR: A Translation Approach to Portable Ontology Specification. Knowledge Acquisition 1993, 5:199-220.
23. Barker K, Porter B, Clark P: A Library of Generic Concepts for Composing Knowledge Bases. First International

Conference on Knowledge Capture 2001.
24. Clark P, Porter B: Building Concept Representations from Reusable Components. Fourteenth National Conference on

Artificial Intelligence (AAAI) 1997.
25. OWL Web Ontology Language: Semantics and Abstract Syntax. In W3C Recommendation Patel-Schneider PF, Hayes

P, Horrocks I 2004 [http://www.w3.org/TR/2004/REC-owl-semantics-20040210/], 20 Feb.
26. OWL Web Ontology Language Reference. In W3C Recommendation Dean M, Schreiber G 2004 [http://www.w3.org/

TR/2004/REC-owl-ref-20040210/], 10 Feb.
27. Fensel D, van Harmelen F, Horrocks I, McGuinness DL, Patel-Schneider PF: OIL: an ontology infrastructure for the

Semantic Web. IEEE Intelligent Systems 2001, 16(2):38-45.
28. OBO Flat File Format Specifications. [http://www.geneontology.org/GO.format.shtml].
29. RDF Semantics. In W3C Recommendation Hayes P 2004 [http://www.w3.org/TR/2004/REC-rdf-mt-20040210/], 10 Feb.
30. Tirmizi SH, Sequeda J, Miranker DP: Translating SQL Applications to the Semantic Web. Database and Expert Systems

Applications 2008, 450-464.
31. Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector AL, Rosse C: Relations in

Biomedical Ontologies. Genome Biology 2005, 6(5):R46.
32. SDB – A SPARQL Database for Jena. [http://jena.sourceforge.net/SDB/].
33. Morphbank – Biological Imaging. [http://www.morphbank.net/].
34. Universal Biological Indexer and Organizer (uBio). [http://www.ubio.org/].
35. Common Logic Standard. [http://common-logic.org/].
36. OBO Foundry Identifier Policy. [https://docs.google.com/Doc?docid=0Acx6Blq96uycZHpwcm5td18wZGtkMmdi

Z3Y&hl=en].

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 15 of 16

http://www.obofoundry.org/
http://www.ncbi.nlm.nih.gov/pubmed/11396337?dopt=Abstract
http://www.geneontology.org/
http://www.bioontology.org/bioportal.html
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://ncit.nci.nih.gov/
http://hdl.handle.net/10101/npre.2009.3938.1
http://www.mygrid.org.uk/OWL/Validator
https://sourceforge.net/projects/geneontology/
http://www.geneontology.org/GO.tools.shtml
http://www.cs.utexas.edu/~miranker/studentWeb/MorphsterHomePage.html
http://www.w3.org/TR/2009/REC-owl2-new-features-20091027/
http://www.geneontology.org/GO.format.obo-1_3.shtml
http://www.geneontology.org/GO.format.obo-1_3.shtml
http://www.godatabase.org/dev/doc/mapping-obo-to-owl.html
http://www.godatabase.org/dev/doc/mapping-obo-to-owl.html
http://www.aiai.ed.ac.uk/resources/go/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.geneontology.org/GO.format.shtml
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.ncbi.nlm.nih.gov/pubmed/15892874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892874?dopt=Abstract
http://jena.sourceforge.net/SDB/
http://www.morphbank.net/
http://www.ubio.org/
http://common-logic.org/
https://docs.google.com/Doc?docid=0Acx6Blq96uycZHpwcm5td18wZGtkMmdi Z3Y&hl=en
https://docs.google.com/Doc?docid=0Acx6Blq96uycZHpwcm5td18wZGtkMmdi Z3Y&hl=en

37. Mungall C (Ed): OBO Flat File Format 1.4 Syntax and Semantics. [http://berkeleybop.org/~cjm/obo2owl/obo-syntax.
html], Editor’s Draft, Sep 10 2010..

38. OBO-Edit Source Wiki.. [http://wiki.geneontology.org/index.php/OBO-Edit:_Getting_the_Source_Code].
39. Protégé Ontology Editor.. [http://protege.stanford.edu].
40. NCBO Wiki OboInOwl.. [http://bioontology.org/wiki/index.php/OboInOwl:Main_Page].

doi:10.1186/2041-1480-2-S1-S3
Cite this article as: Tirmizi et al.: Mapping between the OBO and OWL ontology languages. Journal of Biomedical
Semantics 2011 2(Suppl 1):S3.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Tirmizi et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S3
http://www.jbiomedsem.com/content/2/S1/S3

Page 16 of 16

http://berkeleybop.org/~cjm/obo2owl/obo-syntax.html
http://berkeleybop.org/~cjm/obo2owl/obo-syntax.html
http://wiki.geneontology.org/index.php/OBO-Edit:_Getting_the_Source_Code
http://protege.stanford.edu
http://bioontology.org/wiki/index.php/OboInOwl:Main_Page

	Abstract
	Background
	Results
	Conclusions

	Background
	Related work
	Definitions
	Ontology
	OBO ontologies
	Semantic Web ontologies

	Results
	OBO and the Semantic Web layers
	OBO layer cake
	Incompatibilities between OBO and OWL
	OBO and sub-languages of OWL

	Transformation metadata and rules
	Simple transformation rules
	Identifiers and ID spaces
	Relationships
	Subsets
	Obsolete content

	Discussion
	OBO semantics by transformation
	Updating OBO ontologies in OWL
	Interconnecting OBO and the Semantic Web
	OBO 1.3 and OWL 2

	Conclusions
	Epilogue
	Methods
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

