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Abstract: As a pivotal technological foundation for smart home implementation, non-intrusive load
monitoring is emerging as a widely recognized and popular technology to replace the sensors or
sockets networks for the detailed household appliance monitoring. In this paper, a probability model
framed ensemble method is proposed for the target of robust appliance monitoring. Firstly, the non-
intrusive load disaggregation-oriented ensemble architecture is presented. Then, dictionary learning
model is utilized to formulate the individual classifier, while the sparse coding-based approach is
capable of providing multiple solutions under greedy mechanism. Furthermore, a fully probabilistic
model is established for combined classifier, where the candidate solutions are all labelled with
probability scores and evaluated via two-stage decision-making. The proposed method is tested
on both low-voltage network simulator platform and field measurement datasets, and the results
show that the proposed ensemble method always guarantees an enhancement on the performance
of non-intrusive load disaggregation. Besides, the proposed approach shows high flexibility and
scalability in classification model selection. Therefore, by initializing the architecture and approach of
ensemble method-based NILM, this work plays a pioneer role in using ensemble method to improve
the robustness and reliability of non-intrusive appliance monitoring.

Keywords: dictionary learning; ensemble method; non-intrusive load monitoring; probability model;
uncertainty analysis

1. Introduction
1.1. Background

With the fast development of whole society, energy awareness of people is gradually
growing. Such trend is conducive to dealing with both energy and climate crises, and
therefore strongly supported by academic groups and industrial institutions [1]. As the
main energy consumption form, electric power is highly regarded due to its wide tight
connections with end users. Hence, it is valuable to take full advantage of power data
to mine energy use patterns, provide energy consumption insights and contribute to the
energy saving implementations [2].

Under such a background, smart socket is proposed at the early stage to capture the
energy patterns of specific appliance as needed [3]. Usually, the smart socket is deployed
to the plug of target appliance, and utilized for the monitoring of only certain appliance.
In addition to the signal acquisition and processing module, the communication module
is also required in smart socket [4]. Therefore, multiple appliances monitoring requires
multiple sockets, and it is really expensive to deploy the smart socket-based sensing
networks in a house. Besides, by allocating the sockets at the plug of each target appliance,
it is, in essence, an intrusive load monitoring (ILM) approach, which is commonly not
welcomed by household occupants [5].

Sensors 2021, 21, 7272. https://doi.org/10.3390/s21217272 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0823-5141
https://orcid.org/0000-0002-5913-0278
https://doi.org/10.3390/s21217272
https://doi.org/10.3390/s21217272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217272
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217272?type=check_update&version=3


Sensors 2021, 21, 7272 2 of 21

Considering the disadvantages and limitations of the socket-based monitoring ap-
proach, non-intrusive load monitoring technology is emerging as a promising household
energy use monitoring solution in recent years [6]. Proposed by Professor Hart from MIT,
non-intrusive load monitoring (NILM) aims at monitoring the individual appliance in
a non-intrusive way, i.e., decomposing the integral power consumption data measured
at the service panel into individual appliance power use profiles [7]. Obviously, several
advantages appeal by implementing such non-intrusive strategy. Since decomposition
algorithms are utilized to replace the measurement hardware, while the power meter can
directly provide the integral signals from service panel, no additional devices are required.
Therefore, economic benefits have been obtained, along with the friendly experience that
the occupants are not interfered [8]. Acting as the virtual sensing networks in household
energy use monitoring, NILM is highly welcomed by all participants and highly expected
in advanced management of future home energy systems [9].

Recently, another appliance monitoring scheme, namely semi-intrusive load moni-
toring (SILM), has also been proposed and investigated [10]. Basically, the key idea of
SILM is to find a trade-off between hardware costs and monitoring performance by parti-
tioning appliances into blocks and disaggregating the detailed consumption of each block
via separate smart meters [11]. Apparently, compared with NILM, the addition of smart
meters would enhance the monitoring performance, but also require higher investments.
So, major research on SILM focus on the optimal allocations of additional meters [11] as
well as the economic analysis [10]. However, in each meter monitoring block, the detailed
appliance behaviors are also monitored through NILM techniques. So, the emergence of
SILM furtherly boost the research and development of NILM. Since the robust and reliable
load disaggregation is the precondition of the NILM applications, the major focus at the
current stage is still on how to improve the monitoring performance.

Technically speaking, the most effective ideas to improve the monitoring performance
can be categorized into following two aspects, i.e., utilizing adequate load signatures or
applying efficient disaggregation algorithms. Real power and reactive power are the most
commonly used signatures, which have been discussed in the original study [7]. Once
different types of home appliances are proved to have diverse harmonic features [12], the
current harmonics are considered as a powerful signature to identify different appliances
in NILM. The selections of the order and number of harmonics for appliance identification
are investigated in [13], where odd order harmonics are highlighted and different minimal
subsets of harmonics may be recommended by diverse heuristic strategies. Other load
signatures, such as V-I trajectory [14] and phase noise [15], are also investigated. However,
the more complicated the signatures, the higher the sampling rate. Therefore, the real
power, reactive power and harmonics are the most popular signatures from the view of
practical implementations, and the required sampling rate is related to the need of harmonic
order. Besides, these steady state characteristics can be organized in low frequency data
form, as discussed in [16], which is easy to store and transfer.

As to the disaggregation algorithms, the non-intrusive load disaggregation follows
the typical optimization idea, that the problem can be described as selecting the optimal
combination of electrical appliances to match the integral signals. Therefore, mathematical
optimization model has been utilized for NILM since the early days, and also acts as
an important solution in recent researches [17]. However, because the low calculation
efficiency and optimality of results cannot be guaranteed by optimization algorithms,
limitations are shown for the NILM problems. As the researches go further, researchers
gradually find that the essence of NILM problems matches the pattern recognition well,
so the related methods are widely investigated. Clustering algorithm has been utilized
in the early days [7], and still regarded as a significant solution to residential household
load monitoring problem, e.g., k-means clustering [18] and c-means-based approach [19].
Bayes classifier has also been proved to be an efficient energy disaggregation approach
under non-intrusive strategy [20], and further supports the unsupervised non-parametric
modeling with other appliance operation patterns, such as time of usage [21]. Support
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vector machine (SVM), another typical pattern recognition approach, has been explored for
the NILM problem, even for addressing the unknown appliances [22]. Demonstrated to
be effective, investigating NILM algorithms based on pattern recognition emerge as a hot
topic in academic field, and various approaches including principal component analysis
(PCA) [23], non-negative matrix factorization (NMF) [24], and Gaussian mixture model
(GMM) [25] are all verified to be contributions.

1.2. Research Gap

Above investigations on load signatures and disaggregation algorithms have shown
some achievements in NILM problems under certain conditions. However, in the practical
situations, it is not feasible to make all the measurements or data comply with the specific
sampling requirements. The actual practical implementation is to develop a robust solution,
which is able to guarantee or improve the disaggregation performance with the given
dataset. Toward this goal, researchers have tried to combine diverse approaches together
to achieve a more robust and effective solution considering the physical features of NILM
problem [19,24,25]. Our team tried to utilize the advantages of optimization method,
i.e., using particle swarm optimization (PSO) to act as an auxiliary means of the whole
solution and finally contribute to the NILM performance enhancement, in [26]. The idea
of integrating different approaches together is indeed effective in improving the load
disaggregation performance, and it exactly matches the principle of ensemble methods.
Ensemble methods show a giant superiority in various artificial intelligence competitions,
and is considered as the most potential representative solution in the future machine
learning and deep leaning fields [27]. Due to the strong potentials, ensemble methods
have already been introduced and utilized in power systems analysis, such as renewable
power forecasting [28] and security assessment [29], and proven superior compared with
traditional machine learning approaches [30].

According to the fundamental principles and mechanisms of ensemble methods, it
is possible to improve NILM performance for the given measurements or data, no matter
which specific disaggregation algorithm is applied. The key is the effective design of the
ensemble strategy, where the reliability and variability of individual classifiers matter.
Researchers from New Zealand have conducted some preliminary explorations by using
ensemble machine learning techniques in NILM [31]. Although only water heating is
considered and the ensemble design is constrained to the problem scenario, which highly
limits the potentials for widespread applications, such an attempt is an encouraging
exploration. Nevertheless, to our knowledge, the ensemble method-based NILM research
are relatively scarce at the present stage, and the reason is mainly due to the high difficulty
of ensemble scheme design. In other word, the successful implementation of ensemble
methods requires that the individual classifiers are reliable and differentiated, which is
hardly guaranteed under traditional deterministic framework of NILM.

1.3. New Contributions

As known, the decision making of ensemble methods is based on the outputs of
individual classifiers and evaluation of combined classifier. Under traditional framework,
the individual classifier is a complete NILM approach and outputs a specific solution.
Such mechanism can hardly guarantee the reliability and variability of multiple individual
classifiers at the same time, especially the variability requirement. In order to design a
proper ensemble model, a lot of efforts are required to allocate the individual classifiers, as
well as the decision process of combined classifier. Such attempts are with high difficulty
and failure rates. So, although ensemble method has been demonstrated to be effective in
NILM problem [31], the explorations of related studies are limited.

However, the essence of the NILM problem is the uncertainty analysis, i.e., determin-
ing the best fittings of the target signals with the maximum probabilistic likelihood. Though
rarely referred, this probabilistic description has been hidden in most NILM studies. Our
work in [32] has provided the illustration of the probabilistic decision-making process in
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the problem of non-intrusive energy use monitoring for a group of electrical appliances,
revealing the uncertain nature of NILM. Following the design of probabilistic models, the
output of individual classifiers is no longer constrained to specific solution, but can be
generalized to a set of solutions labelled with probabilities. Such change makes the output
of individual classifiers more multifarious, which copes with the diversity requirement
for individual classifiers and leads to the effective ensemble strategy. Therefore, the idea
of introducing the probability quantization makes the ensemble method-based NILM
formulation easier to design, which is an easy and feasible strategy to explore the ensemble
method embedded NILM.

Based on above observations, we establish a universal ensemble method framework
for NILM in this paper, which is featured by probabilistic quantization and easy-to-design
characteristic. At first stage, the ensemble framework is featured for NILM problem,
while the feasibility is guaranteed by probability modelled modules and the scalability is
achieved by flexible selection and allocation of individual classifiers. Then, a probability
model framed ensemble method design, exampled by dictionary learning [33], is illustrated.
Based on the greedy characteristics of dictionary learning, a probabilistic quantitative scor-
ing system is established for evaluation of the multiple candidate solutions of individual
classifier. A two-stage campaign approach for decision-making is embedded with com-
bined classifier, for the purpose of outputting reliable disaggregation results. Finally, the
proposed idea and method are tested on both low voltage network simulator platform
and field measurement datasets, and the results verify the effectiveness and superiority
of this work. By providing an easy-to-design ensemble framework and demonstrating its
feasibility and superiority for NILM problems, more related studies may be inspired in
non-intrusive sensing field.

The major contribution of this paper is the proposal of the easy-to-design ensemble
method-based NILM framework, which is featured with probabilistic models. It is a reliable
approach to enhance the NILM performance, with flexibility and scalability. The detailed
contributions can be summarized as follows.

• A universal and easy-to-design NILM framework based on ensemble method is
established, where the probability model is introduced to guarantee the effectiveness
of ensemble strategy.

• The individual classifier is modelled by dictionary learning, where multiple candidate
solutions are outputted under greedy mechanism.

• A quantitative evaluation approach based on the probabilistic scoring system is pro-
posed, to measure the likelihood of each candidate in a fair way.

• The combined classifier is modelled by a two-stage decision-making process, while
the first stage is based on voting and the second stage is based on scoring.

• The proposed framework and method are verified by both simulation platform and
field measurement datasets, proving the effectiveness and superiority of utilizing
ensemble method in NILM performance enhancement.

The rest of this paper is organized as follows. Section 2 provides the problem statement,
where the proposed framework of ensemble method-based NILM is given. Dictionary
learning-based formulation and probabilistic decision-making are illustrated in Section 3.
Results are discussed in Section 4 and conclusions are drawn in Section 5.

2. Problem Statement

From the view of physical point, NILM is a problem that identifying the individual ap-
pliances from the integral power signals. However, when abstracted as a scientific question,
it is indeed a classification problem in the field of pattern recognition [34]. Recent scientific
research and practical experiences show that the ensemble strategy is the most effective
way to maximize the advantages and benefits of individual classifier, and finally output
the best results in artificial intelligence learning process [35]. Therefore, the framework of
ensemble method is presented and revised to cope with the features of NILM problem in
this section.
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2.1. NILM Problem Formulation

In our work, the load disaggregation is considered from the view of steady state oper-
ations, i.e., disaggregating the steady state running signals rather than events. Under the
non-intrusive load monitoring framework, the disaggregated appliances can be determined
by the best fitting of the measured integral steady state signals. The disaggregation could
be challenging since the operation modes of some appliances are complicated and there
may be background noise in practical scenarios. To be specific, the electrical features, such
as real power, reactive power and harmonics, should be matched correspondingly.

P = ∑ Pi
Q = ∑ Qi
H = ∑ Hi

i ∈ Ω (1)

where P, Q, and H are the integral signal vectors of real power, reactive power and current
harmonics, respectively. Pi, Qi, and Hi are the ith appliance selective energy signatures, and
are in the same length with P, Q, and H. Ω stands for the candidate appliance set, where all
target appliances are included. In order to acquire the desired harmonics, the sampling rate
should satisfy the Nyquist-Shannon sampling theorem. Our proposed approach should
be able to enhance the NILM performance based on given power signals, i.e., no matter
which power signatures are utilized. The Equation (1) illustrates a complete model, but the
proposed approach should also be effective if some power signatures are lacking.

2.2. Ensemble Method Framework for NILM

At current stage, the most powerful approach dealing with the classification problem
in (1) is ensemble method, whose framework is shown in Figure 1. Notice that the modules
in black blocks represent the traditional structures of ensemble approach, while the colored
parts are our proposed improvements to take the characteristics of NILM into consideration.

Figure 1. Proposed framework of non-intrusive load monitoring (NILM)-oriented ensemble method.
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As seen in Figure 1, the ensemble framework is following the bagging strategy, and
also featured and revised with major NILM characteristics. The featured enhancements
can be summarized as follows.

• Bagging in blue color. Bagging method is critical for the final performance of ensemble
approaches. Traditionally, bootstrap sampling and random forest are the two com-
monly used approaches for bagging. Considering the diversity of sampling data in
NILM problem, the electric power signatures can also be combined for data resam-
pling. Note that no matter which strategy is utilized, the individual classifier should
be mutually divergent with reliable performance.

• Solution pools in red color. This part is customized for the NILM problem, and also
the key of our enhancement. Back to the essence of NILM, it is a fitting estimation
problem. If each individual classifier could output a set of solutions, the real solution
is more likely to be included compared with conventional single result. Therefore, by
establishing the solution pool for individual classifier, it increases the possibility of the
real solution locating among the candidates. Of course, for a scientific judgement for
all candidates, a fair evaluation approach is required. Here the probabilistic evaluation
scoring based on distance measures is utilized.

• Decision-making in purple color. In order to accurately recognize the real solution in
all candidates, a two-stage decision-making strategy is proposed. The basic idea is
to apply qualitative voting in the first stage to narrow down the range of candidate
solutions, and then use quantitative scoring to find the real solution. Voting in first
stage exactly matches the decision-making principle of original ensemble method,
and scoring in second stage follows the probability model established in the proposed
framework. So, this strategy fully combines the characteristics of both problem and
method, which highly copes with our expectations.

Following the framework shown in Figure 1, a new train of thought solving the NILM
problem is presented. For a better illustration and demonstration, the detailed methodolo-
gies and solutions are exampled and discussed in the following sections. Nevertheless, it’s
worth noting that the proposed framework has good versatility and flexibility, which is not
limited to the following implementations.

3. Methodology

The key points to successfully implement the proposed ensemble scheme are the valid
selections of individual classifiers and combined classifier. In this section, the detailed
strategy and model to allocate the classifiers are given firstly, followed by the algorithm
flow dealing with NILM.

3.1. Dictionary Learning for Individual Classifiers

As mentioned above, there are two requirements for individual classifiers, i.e., distinc-
tion and reliability. Bootstrap sampling and random forest are the conventional methods to
guarantee the distinction [36], which is not introduced here but will be discussed in the case
section. The feature selection approach, which matches the NILM characteristics, will be
presented and extended in detail here. As to the reliability, a credible load disaggregation
model based on dictionary learning is utilized [33].

3.1.1. Dictionary Learning Model

Since the NILM tries to disaggregate the integral signals into appliance components,
it matches the idea of dictionary learning well. Given a target signal x∈RS×1, if we have a
dictionary D = [d1,d2, . . . ,dN]∈RS×N, whose column dk∈RS×1 is defined as atom, then the
dictionary learning model is established by the following linear combination.

x = D · α (2)

where α∈RN×1 is defined as sparsity parameter.
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Obviously, the sparsity α indicates which components the target signals have, that are
also corresponding to the atoms dk in the dictionary D. Therefore, for a qualified dictionary
learning model, the learning dictionary D should cope with the sparsity α well. Based
on this idea, an alternating optimization is applied to determine the dictionary D in the
training stage, and K-SVD algorithm is allocated to solve the problem [37].

min
D,α

{
‖x− D · α‖2

F + λgα(α)
}

(3)

where ||•||F is the F-norm calculation, λ is the regularization parameter, and g•(•) is the
unified sparsity measurement function. Note that diverse F-norms act different roles in
dictionary learning. F = 0 specifies the number of non-zero elements, by which the sparsity
dominates, but the solution is usually NP-hard. F = 1 indicates Manhattan Distance, which
enables sparse weights and feature extraction. F = 2 represents Euclidean Distance, which
could simplify the model and prevent overfitting. In addition to the computing features,
the different distance measures also reveal diverse physical properties of NILM problems,
which is worthy of further exploration and research. In this work, the most commonly
used Euclidean Distance is utilized for the dictionary model.

Once the dictionary D is determined after training, it becomes a straightforward
process to identify the component in testing stage, i.e.,

α = argmin
α

{
‖x− D · α‖2

F + λgα(α)
}

(4)

3.1.2. Multiple Solution Scoring under Greedy Mechanism

The basic dictionary learning formulation in (4) only provides a certain solution to a
given problem. However, since the dictionary learning belongs to the greedy algorithm, it
has the capability to provide optimal solution set. For this goal, a sequential optimization
approach is proposed based on dictionary learning model.

α1 = argmin
α1

{
‖x− D · α1‖2

F + λgα(α1)
}

α2 = argmin
α2,α2 6=α1

{
‖x− D · α2‖2

F + λgα(α2)
}

α3 = argmin
α3,α3 /∈{α1,α2}

{
‖x− D · α3‖2

F + λgα(α3)
}

...
αC = argmin

αC ,αC /∈{α1,α2,α3,...}

{
‖x− D · αC‖2

F + λgα(αC)
}

(5)

where α1, α2, α3, . . . , αC are the candidate solutions for individual classifiers.
As seen, by sequential approach, candidate solutions act different roles in this classifier.

Because in the combined classifier the candidate solutions from diverse classifiers would be
compared together, a fair evaluation approach is required. Hence, a probabilistic evaluation
scoring based on object distance measures is proposed to fairly evaluate each solution in
each individual classifier.

score(α1) = 100

score(αi) =

{
Score, if Score > 0
0, if Score ≤ 0

, i = 2, 3, . . . , C

Score = 100×
(

1− rp × ‖x−D·αi‖2
F−‖x−D·α1‖2

F+λ(gα(αi)−gα(α1))

‖x−D·α1‖2
F+λgα(α1)

) (6)

where rp is the regulation parameter for the scoring.
Following above calculation, the candidate solutions from individual classifiers are

labelled with scores, and diverse classifiers are comparable due to the standardization of
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the relative computation. Therefore, a probability distance scoring system is established
for fair evaluation.

3.1.3. Feature Selection Based Classifier Deployment

To NILM problem, the measured signals can be technically categorized into real
power, reactive power, and current harmonics. And different appliances show distinct
behaviors on diverse features. For example, the motor-driven appliances show high
demand for reactive power, and appliances belonging to disparate types have unique
current harmonics [38]. Hence, diverse electric features have diverse recognition capability
for different appliances, so the classifiers are mutually distinct when the bagging data are
reorganized based on feature selection.

The illustrated formulations here are based on above considerations, i.e., the individual
classifiers are formulated based on diverse electric feature selections. Specifically, we
abandon one of the measured features at each time and form personalized classifiers under
bagging framework. Since the real power is extremely important in load disaggregation,
this feature is reserved for all classifiers.

min
α

{
‖norm(P)− DP · α‖2

F + ∑
∗∈LS

λ∗‖norm(∗)− D∗ · α‖2
F + λgα(α)

}
(7)

where norm(·) is the normalization function. D* is the dictionary for the normalized electric
feature of *. λ* is the regularization parameter for electric feature of *. LS is the load
signature features apart from real power P. For example, if real power P, reactive power Q,
fundamental current H1, third harmonic H3 and fifth harmonic H5 are considered, then
*∈{Q, H1, H3, H5}. And during bagging stage, we form four individual classifiers with the
selective electric features, i.e., {P, Q, H1, H3} for classifier 1, {P, Q, H1, H5} for classifier 2,
{P, Q, H3, H5} for classifier 3, and {P, H1, H3, H5} for classifier 4.

By making full use of NILM characteristics, the deployed classifiers are efficient
in ensemble method theoretically. Besides, by introducing the independent individual
classifiers, the problem is scalable, depending on the individual classifier numbers in
the bagging.

3.2. Two-Stage Decision-Making for Combined Classifier

The decision-making process is visualized in Figure 2, where all candidate solutions from
individual classifiers are rolling into the mixed solution pools for the two-stage campaign.

3.2.1. Voting for Preliminary Evaluation

As shown in Figure 2, in the proposed strategy each individual classifier acts as a
committee, and vote for every candidate generated by itself. If one candidate appeals in
multiple committees, we count for the occurrence number regardless of the sequence in
the solution pool. Then this counting index is used to select the top M candidates for the
second stage evaluation.

Since voting idea is commonly used for the prediction in classification problem, it is
well proved to be an effective evaluation approach. In the proposed stage, only occurrence
is concerned, which matches the voting idea well.
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Figure 2. Two-stage decision-making process for combined classifier.

3.2.2. Standardized Scoring for Final Decision

As mentioned above in Equation (6) and Figure 2, the individual classifier scores each
solution in a standardized way. Following two items are considered for the establishment
of standardization. Firstly, the optimal solution in each classifier, i.e., the first candidate
solution α1 in Equation (5), is labelled with full score. So the highest score in every classifier
is determined. Secondly, use the objective function value of proposed dictionary model
to evaluate the other solutions’ scores. Here the objective of candidate solution α1 is set
as the reference as shown in Equation (6). Therefore, the scores from diverse classifiers
are comparable.

The scores number of top candidates exactly corresponds to the occurrences of this
solution in voting stage. The final decision strategy is to add up all the scores for the top M
candidates, and rank the highest candidate as the output solution.

The standardized scoring evaluation is essentially based on the probabilistic distance
measures calculation. So, the probability characteristics are featured in the whole method.

3.3. Algorithm Flow for Ensemble Method Based NILM

Based on the deployed approaches for classifiers, the detailed algorithm flow of the
ensemble method based NILM is shown in Figure 3. The algorithm flow can be divided
into two periods, i.e., training and testing. During training period, the main object is to
find the optimal configurations for each classifier, i.e., the parameters of each dictionary
learning model. During testing period, it is a straightforward process to conduct the
load disaggregation. Fine-tuning technology can be applied in two-stage decision-making
block [39], e.g., on the parameter rp in Equation (6), to improve the overall performance.
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Figure 3. Algorithm flow of the ensemble method-based NILM.

4. Results and Discussions

The evaluation metrics are provided first in this section, followed by case studies
based on simulations and field measurements.

4.1. Evaluation Metrics

Consider appliance s∈Ωs, where Ωs is the set of all electrical appliances, then following
definitions are denoted.

• True positive disaggregation TPs, denoting the number of results that are correctly
detected as s.

• False positive disaggregation FPs, denoting the number of results that are incorrectly
detected as s.

• False negative disaggregation FNs, denoting the number of results related to s that are
incorrectly detected as other appliances.

Based on above definitions, the most widely applied three evaluation metrics in NILM
can be calculated [39].

Ps = TPs/(TPs + FPs)× 100% (8)

Ss = TPs/(TPs + FNs)× 100% (9)

Fs = (2× Ps × Ss)/(Ps + Ss)× 100% (10)

where Ps is precision metric for appliance s, Ss is sensitivity metric for appliance s, and Fs is
F-measure metric for appliance s.

4.2. Verifications on Low Voltage Network Simulator

Firstly, Low Voltage Network Simulator (LVNS) is utilized for the comprehensive
validation of our study. The LVNS platform is developed by research team from Power
Disturbance & Signaling Research Laboratory (PDS Lab) in University of Alberta, focusing
on the rigorous simulation of electrical networks spread from low voltage distribution to
household consumption in North America. The rated real power and power factor of spe-
cific appliance are required as the input of the platform. As to the current harmonics, LVNS
has initialized the harmonic current spectrums for each appliance, based on the typical
harmonic current of the corresponding appliances. After the power flow calculations, the
simulator could output the results of real power, reactive power and selected harmonics at
the resolution of one snapshot per second. The detailed information about LVNS can be
found in [40]. Since providing an adequate environment for NILM studies is one of the
original motivations to develop the platform, it is very suitable for our research.
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A typical North American residential house with almost twenty appliances is sim-
ulated in our study. The basic information of the simulated appliances can be found in
Table 1. Other features, such as harmonic spectrums and usage patterns, are all following
the settings in the platform [40]. Hence, the daily uses of each appliance are all uncertain
under Monte Carlo framework. Multiple days’ simulations are conducted for the overall
metrics and disaggregation performance analysis.

Table 1. The basic information of simulated appliances.

Operation Patterns Appliances Phase Rated Power (W) Power Factor Code

Simple ON-OFF

Compact Fluorescent Lamp A 60 0.9 CFL
Food Processor A 1600 1 FOO

Incandescent Lamp B 40 1 INC
Microwave Oven A 1200 0.99 MW

Toaster B 860 1 TOA

Repetitive ON-OFF

Coffee Maker B 920 1 COF
Regular Dryer AB 4000 0.88 DRY

Heater B 1400 0.97 HEA
Stove AB 2000 0.9 STO

ASD-based Washer A 320 0.45 WSH

Repetitive ON-OFF with
start transient

Freezer B 220 0.9 FRZR
Regular Fridge A 180 0.94 RFR

Multi-state

LCD Television B 300 0.99 LCDTV
CRT Television A 200 1 CRTTV

Desktop PC A 260 1 PC
LCD Computer Monitor B 160 0.96 LCD

Laptop B 75 0.96 LAP

Repetitive multi-state
with transients Furnace A 600 0.84 FUR

The proposed ensemble approach is denoted as PEA in the following discussions. The
four individual classifiers, generated from the formula of Equation (7), are respectively
denoted as ICA1, ICA2, ICA3, and ICA4 in this subsection. In detail, the load signature fea-
tures utilized in the four individual classifiers are as {P, Q, H1, H3} for ICA1, {P, Q, H1, H5}
for ICA2, {P, Q, H3, H5} for ICA3, and {P, H1, H3, H5} for ICA4. Besides, two traditional load
disaggregation approaches are compared. The conventional optimization-based approach,
inspired by the idea from [17], is denoted as COA. The traditional dictionary learning in [33],
with all features considered at once, is also investigated in this study and denoted as TDA.

4.2.1. Overall NILM Performance and Comparisons

By a statistical simulation test on the typical house, the general load disaggregation
results in average metrics are shown in Tables 2 and 3. As seen in Table 2, the conventional
optimization-based approach is applicable in NILM problem, whose metrics are all over
80%. By introducing the sparsity measures in problem formulation, the load disaggregation
is better formulated and the dictionary learning-based approach shows an enhancement.
By utilizing ensemble strategy, the proposed approach outperforms all compared tradi-
tional approaches, and it is the only method whose F-measure is over 90%. Besides, the
enhancements of the three metrics compared with COA are all over 5%, indicating the
effectiveness of the research design. Since the data used in COA, TDA and PEA are the
same, such results demonstrate the effectiveness of our ensemble strategy to improve the
NILM performance with given dataset.
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Table 2. Results comparison of LVNS-based NILM for traditional approaches.

Metrics in Average Value COA TDA PEA

Ps (%) 89.83 94.02 94.99
Ss (%) 82.56 85.07 87.14
Fs (%) 85.19 88.30 90.23

Table 3. Results comparison of LVNS-based NILM for individual classifiers.

Metrics in Average Value ICA1 ICA2 ICA3 ICA4 PEA

Ps (%) 91.18 93.34 89.16 89.04 94.99
Ss (%) 81.36 81.87 82.85 75.62 87.14
Fs (%) 84.33 86.15 85.40 79.33 90.23

As seen in Table 3, following the feature selection-based bagging strategy, the in-
dividual classifiers are distinctive with each other. Among them, ICA2 with features of
{P, Q, H1, H5} performs best, while ICA4 with features of {P, H1, H3, H5} performs worst.
Such results indicate that the reactive power, fundamental current and fifth harmonic
provide more featured load disaggregation information in the simulated case. Moreover,
lack of reactive power as load signature feature may introduce a significant decline in per-
formance, especially for the sensitivity metric. Comparing ICA1 with ICA2, it is observed
that the usage of 5th harmonic current outperforms the usage of 3rd harmonic current,
indicating the 5th harmonic is more effective in this case. Nevertheless, the proposed PEA
outperforms all individual classifiers. To be specific, the ensemble strategy is effective
in combining all individual classifiers, while the remarkable progress can be obtained
for precision, sensitivity and F-measure. Especially for the sensitivity metric, the largest
enhancement is over 10%, while the minimum increase is around 5%. Such improvement is
noteworthy in NILM field. By deploying the proposed strategy, these weak classifiers are
adequately combined together, forming a reliable and robust classifier for disaggregation.

In order to provide some insights of the load disaggregation performances by diverse
approaches, the detailed results of average metrics for all simulated appliances are given
in Table 4. As seen, the individual classifiers perform distinctively in load disaggregation,
which makes the ensemble strategy effective in our study. For example, ICA1 is not credible
in detecting FOO, while ICA4 comes across difficulties in recognizing CFL, CRTTV and LAP.
Further on, ICA3 is totally ineffective in INC disaggregation, whose metrics are all zero.
ICA2 is a relatively good method, and there is no obvious short board for all appliances.
As to the harmonic selection discussions, we found 5th harmonic current outperforms 3rd
harmonic in above general results, which is highly supported by appliance COF and FOO.
Meanwhile, we also find that MW and LAP are more sensitive to the 3rd harmonic currents,
indicating the diverse performance of different harmonics for different appliances. In
general, these results demonstrate the efficiency of the proposed feature selection method
for bagging and individual classifier training. As to the combined classifier, most of the
ensemble decisions outperform the individual classifiers, referring to the effectiveness of
the proposed two-stage decision-making process. However, there are some exceptions,
e.g., COF for precision and FRZR for sensitivity. For these appliances the problem is
that the metrics by combined classifier do not outperform the best individual classifier,
but still achieves an acceptable value. Considering such scenarios do not affect the final
performance of the ensemble strategy, the proposed method is proved to be effective in
enhancing the robustness of NILM disaggregation.
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Table 4. Detailed results comparison of LVNS-based NILM (Appliance Level).

Metrics in Average Value ICA1 ICA2 ICA3 ICA4 TDA PEA

Ps (%)

INC 99.10 99.50 0.00 97.95 94.59 99.74
STO 86.73 87.06 88.79 89.23 81.28 89.53
COF 69.78 99.62 84.93 76.80 83.07 79.55
FOO 65.64 98.49 98.50 96.91 99.97 98.50
TOA 83.08 80.31 90.99 90.43 87.64 89.93
MW 99.95 93.44 98.09 96.65 98.71 97.94
HEA 99.93 99.77 99.33 99.97 97.42 99.98
CFL 97.69 99.92 97.03 84.50 98.79 98.62
WSH 99.66 99.66 99.66 99.66 99.78 99.66
DRY 99.88 99.85 99.88 99.95 99.57 99.96
FRZR 99.99 99.99 99.99 95.70 99.95 99.99
RFR 94.72 96.25 94.74 94.39 93.14 93.87

LCDTV 86.15 87.45 87.19 79.22 84.67 87.00
CRTTV 82.61 81.27 88.47 93.81 92.19 92.40

PC 85.53 74.68 91.47 62.80 95.63 94.32
LCD 99.96 99.96 100.00 99.97 100.00 99.48
LAP 97.00 92.30 92.96 49.31 93.82 94.73
FUR 93.86 90.69 92.88 95.46 92.07 94.71

Average Value 91.18 93.34 89.16 89.04 94.02 94.99

Ss (%)

INC 74.34 74.37 0.00 57.52 82.78 77.66
STO 89.21 93.64 93.52 93.49 97.18 93.52
COF 88.52 89.58 95.82 90.60 79.31 95.53
FOO 27.90 86.83 91.51 91.13 84.49 90.60
TOA 84.60 84.36 83.98 92.63 95.85 92.49
MW 87.89 67.52 99.40 99.68 94.68 99.40
HEA 54.15 49.38 89.68 77.47 85.09 80.69
CFL 66.24 66.59 68.70 34.03 62.43 67.14
WSH 96.42 96.42 96.42 96.42 90.09 96.42
DRY 99.86 99.18 99.86 98.64 98.57 99.86
FRZR 93.23 95.49 94.35 85.45 96.43 91.14
RFR 85.88 79.15 80.83 73.13 75.21 81.52

LCDTV 98.66 98.60 98.64 65.32 98.83 98.60
CRTTV 79.93 66.88 70.30 31.04 66.17 70.92

PC 59.30 64.98 64.57 63.48 57.99 66.75
LCD 94.85 89.46 91.42 91.86 91.81 93.55
LAP 86.67 74.58 75.76 26.36 75.84 75.74
FUR 96.82 96.58 96.61 92.89 98.47 96.92

Average Value 81.36 81.87 82.85 75.62 85.07 87.14

Fs (%)

INC 84.16 84.38 0.00 67.77 88.21 86.63
STO 88.14 90.65 91.51 91.73 87.77 91.89
COF 73.86 93.76 88.73 80.45 79.30 85.36
FOO 36.89 91.40 94.59 93.73 91.10 94.01
TOA 83.61 80.77 87.00 91.49 91.09 91.19
MW 93.23 76.70 98.74 98.09 96.61 98.65
HEA 70.06 65.92 94.09 87.29 90.60 89.30
CFL 78.85 79.73 80.28 46.06 76.23 79.76
WSH 98.01 98.01 98.01 98.01 94.61 98.01
DRY 99.87 99.51 99.87 99.28 99.06 99.91
FRZR 96.41 97.69 97.02 89.83 98.15 95.23
RFR 89.87 86.68 86.93 82.11 83.02 87.02

LCDTV 92.49 93.19 93.06 69.27 91.01 92.94
CRTTV 79.69 73.10 78.35 46.23 76.75 80.14

PC 69.10 68.89 75.54 62.56 71.28 77.98
LCD 97.31 94.34 95.47 95.68 95.68 96.15
LAP 91.17 82.48 83.42 34.24 83.77 84.09
FUR 95.29 93.54 94.68 94.15 95.13 95.79

Average Value 84.33 86.15 85.40 79.33 88.30 90.23
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As to the TDA that utilized all features at once, we found feature selection-based
bagging strategy is effective in enhancing the NILM performance with identical data. This
conclusion is followed by most appliances, so as to the general performance. PEA only
underperforms TDA for INC, HEA and FRZR detections, but the gaps are extremely narrow.
Another interesting phenomenon is also observed that TDA does not outperform individual
classifiers for all appliances, such as STO, COF, FOO, etc. Such results indicate that in
NILM problem, it is not always true that the more features, the better the disaggregation
performance. The key is to utilize and combine the load features in a reasonable way.

4.2.2. Performance of the Probabilistic Formulation in Ensemble Method

The discussions for the LVNS-based NILM are totally extended in this subsection,
showing the roles of our proposed approaches in detail. A certain day is selected for
the insight investigations, during which all the household appliances are operated. The
signaling profiles of all electric features connected to phase A are illustrated in Figure 4,
where the detections for appliance PC are discussed in the following part, acting as an
example to reveal the contributions of our approach.
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Note that the PC is a two-state appliance, whose operation power differs and fluctuates
due to the power adapter. So, PC is a complex appliance in NILM problem, and effectively
addressing this appliance would demonstrate the superiority of applied algorithm. This is
the reason why PC is shown as an example here.

In the proposed four individual classifiers supported ensemble method, it is common
and reasonable that if two classifiers provide true solution, the combined classifier is
probably to output the true solution. However, in the period of PC operations, two
interesting scenarios are found as shown in Table 5. In scenario 1, only ICA1 recognized
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PC correctly, and the other three classifiers all failed to tell the PC was ON. But the final
decision outputs the true results successfully. In scenario 2, the first three classifiers missed
the PC, while ICA4 considered PC was operating but in the wrong state. Even so, the
proposed approach successfully outputs the right decision. Besides, traditional dictionary
learning approach cannot detect PC correctly in both scenarios.

Table 5. Two special scenarios for the PC related load disaggregation.

PEA ICA1 ICA2 ICA3 ICA4 TDA

Scenario 1
√ 1 √

× 2 × × ×
Scenario 2

√
× × × o 3 ×

1 √: PC is operating, and also correctly detected. 2 ×: PC is operating, but falsely detected as OFF. 3 o: PC is
operating in a certain state, but detected as operating in the other state.

Results of scenarios in Table 5 fully support the rationality and contribution of our
proposed probability framed method. Although the reasons behind two scenarios are
similar, the vital points are different. Both scenarios are furtherly analyzed here.

The detailed decision-making process for scenario 1 is shown in Figure 5. As seen,
if we do not introduce the probability framed multiple solutions as individual classifier
outputs, the Candidate No. 3 will be determined as final decision by voting, which is not
right. Besides, both candidate No. 3 and candidate No. 1 have four votes in the voting
stage, so purely voting strategy has difficulty in determining which one is optimal. By
applying the proposed scoring and two-stage decision-making process, the true solution is
correctly recognized in this scenario.

Figure 5. Detailed decision-making process for scenario 1.

The detailed decision-making process for scenario 2 is shown in Figure 6. Although
the true solution can be selected by purely voting in this scenario, the single voting strategy
shows infeasibility in scenario 1. Instead of directly voting, our proposed scoring also
successfully recognizes the true solution, even when there are three individual classifiers
recommending the same solution. Such severe situation can still be effectively addressed
by the proposed method, showing the wide applicability of our method.
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Figure 6. Detailed decision-making process for scenario 2.

Combining two scenarios discussed above, the proposed probability framed ensemble
framework is demonstrated to be non-redundant dealing with NILM problems. Consider-
ing the progress achieved in overall NILM performance, the proposed method is verified
to be able to enhance the robustness of NILM in simulation environment.

4.3. Verifications on Field Measurements Dataset

A well-known field measurements-based public dataset called REDD [41], is used
in our study for the validations in practical environments. REDD dataset was measured
and collected by research team from MIT, and the original purpose was to provide field
measurement data for energy disaggregation test. So this dataset is worldwide recognized
and utilized in NILM verifications. There are six houses in the dataset, and House 1 is
selected for our study. Since the reference operation states of appliances are only recorded
in low frequency sampling, we only use multiple weeks of low frequency power data
sampling at 1 Hz for our work. The detailed appliance information of House 1 can be
found in Table 6.

Table 6. The basic information of studied appliances in House 1 of REDD.

Operation Patterns Appliances Rated Power (W) Code

Simple ON-OFF
Lighting 1 70 LIG1
Lighting 2 80 LIG2
Lighting 3 60 LIG3

Simple ON-OFF with fluctuation
or transients

Microwave Oven 1600 MW
Bathroom GFI 1600 GFI

Kitchen Outlet 1 1080 KO1

Repetitive ON-OFF Washer 600 WSH

Repetitive ON-OFF with
fluctuation or transients

Dryer 1 5400 DRY
Kitchen Outlet 2 1540 KO2

Oven 1 1650 OV1
Oven 2 2500 OV2

Regular Fridge 200 RFR

Multi-state with complicated
modes and transients Dish Washer 1000 DW

1 Dryer is connected on phase A-B.

Because low frequency data only contain the power information, the feature selection
strategy for bagging is not available in this case. So, the original bootstrap sampling is
used here for bagging, along with the fine-tuned regularization parameter λ for dictionary
learning models. Still, four individual classifiers are formed following above strategy, and
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recorded as ICA1, ICA2, ICA3, and ICA4, respectively. The two traditional approaches
discussed above are also investigated here, i.e., conventional optimization-based approach
COA [17] and traditional dictionary learning-based approach TDA [33]. The proposed
method PEA is compared with these approaches.

Table 7 provides the general results of REDD-based NILM for traditional approaches.
As seen, due to the lack of load signature features, the load disaggregation performances
of all approaches are not satisfied. Even so, there will be some discoveries. Firstly, the COA
and TDA perform similarly, while the utilization of sparsity would increase the precision
but decrease the sensitivity. Secondly, the proposed ensemble approach outperforms
two traditional approaches, especially for the precision metric. Although only about 4%
enhancement is seen for F-measure, it still demonstrates the effectiveness of our study
under such data-poor situation.

Table 7. General results comparison of REDD-based NILM for traditional approaches.

Metrics in Average Value COA TDA PEA

Ps (%) 57.68 60.49 84.37
Ss (%) 53.51 49.17 49.62
Fs (%) 49.44 49.62 53.99

Table 8 provides the general results of REDD-based NILM for individual classifiers.
Comparing Table 8 with Table 7, we find there may be an enhancement for the precision
and F-measure metrics by using bootstrap samples for training, but always a decrease for
sensitivity. This may result from the insufficient data from the field measurements. By
ensemble strategy, the precision is increased remarkably, resulting in around 85%. Such
results demonstrate the effectiveness of our method dealing with field measurements with
insufficient data. Besides, there is an increase for the overall evaluation metric F-measure,
but the growth is slight. This is due to the limited enhancement for sensitivity metric.
By only utilizing the real power for load disaggregation, the average sensitivities for all
individual classifiers are all below 50%, which is hard to contribute to ensemble strategy.
Nevertheless, in terms of overall performance, probability framed ensemble method is still
effective in field NILM, even lacking of sufficient data.

Table 8. General results comparison of REDD-based NILM for individual classifiers.

Metrics in Average Value ICA1 ICA2 ICA3 ICA4 PEA

Ps (%) 60.15 70.52 70.52 62.90 84.37
Ss (%) 47.55 47.75 48.00 44.07 49.62
Fs (%) 48.61 50.44 50.61 45.66 53.99

Similarly, the detailed disaggregation metrics for all appliances are illustrated in
Table 9. As seen, although general performance of the four individual classifiers is different,
there are many identical or similar detection results for specific appliances, indicating the
lack of diversity for individual classifiers. Even so, the enhancement has been observed for
many appliances by introducing ensemble strategy, showing the effectiveness and flexibility
of our method. Especially, we see a large increase in precision metric for appliance GFI
and MW, while the results from individual classifiers are not reliable. Such results benefit
from the random selection mechanism during the decision-making stage in ensemble
method. By expanding the candidate solutions and introducing the probability evaluation,
the NILM featured ensemble approach is better suited to load disaggregation for field
measurements.
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Table 9. Detailed results comparison of REDD-based NILM (Appliance Level).

Metrics ICA1 ICA2 ICA3 ICA4 TDA PEA

Ps (%)

DRY 91.40 92.14 92.14 92.14 91.40 92.14
GFI 15.18 15.21 15.21 15.82 13.53 95.24
KO1 0.00 0.00 0.00 0.00 0.00 0.00
KO2 98.25 99.01 99.01 99.01 99.23 99.01
LIG1 97.70 98.04 98.04 98.04 99.66 98.04
LIG2 98.52 98.52 98.52 98.52 99.72 98.52
LIG3 0.00 99.90 99.90 0.00 0.00 99.90
MW 0.00 0.00 0.00 0.00 0.00 100.00
OV1 16.96 15.78 15.78 15.96 16.96 15.78
OV2 81.79 99.50 99.50 99.50 82.20 99.50
RFR 99.25 99.40 99.40 99.40 99.81 99.40
WSH 83.28 99.60 99.60 99.60 83.61 99.60
DW 99.66 99.66 99.66 99.66 99.66 99.66

Average Value 60.15 70.52 70.52 62.90 60.49 84.37

Ss (%)

DRY 89.00 98.10 98.10 98.10 89.00 98.10
GFI 17.52 13.12 13.12 13.12 16.37 14.06
KO1 0.00 0.00 0.00 0.00 0.00 0.00
KO2 45.97 45.97 45.97 45.97 45.07 45.97
LIG1 72.46 67.96 71.27 59.23 94.19 71.27
LIG2 14.52 14.51 14.51 14.39 14.52 14.51
LIG3 0.00 38.98 38.98 0.00 0.00 38.98
MW 0.00 0.00 0.00 0.00 0.00 20.13
OV1 70.95 83.73 83.73 83.73 70.95 83.73
OV2 96.04 96.04 96.04 96.04 96.52 96.04
RFR 91.67 81.38 81.38 81.38 92.23 81.38
WSH 41.76 19.06 19.06 19.06 41.93 19.06
DW 78.21 61.89 61.89 61.89 78.47 61.89

Average Value 47.55 47.75 48.00 44.07 49.17 49.62

Fs (%)

DRY 90.18 95.03 95.03 95.03 90.18 95.03
GFI 16.27 14.09 14.09 14.34 14.81 24.50
KO1 0.00 0.00 0.00 0.00 0.00 0.00
KO2 62.64 62.79 62.79 62.79 61.99 62.79
LIG1 83.21 80.27 82.54 73.85 96.85 82.54
LIG2 25.31 25.29 25.29 25.12 25.36 25.29
LIG3 0.00 56.08 56.08 0.00 0.00 56.08
MW 0.00 0.00 0.00 0.00 0.00 33.51
OV1 27.38 26.55 26.55 26.81 27.38 26.55
OV2 88.35 97.74 97.74 97.74 88.79 97.74
RFR 95.31 89.49 89.49 89.49 95.87 89.49
WSH 55.63 32.00 32.00 32.00 55.85 32.00
DW 87.64 76.36 76.36 76.36 87.94 76.36

Average Value 48.61 50.44 50.61 45.66 49.62 53.99

5. Conclusions

In this paper, the non-intrusive load disaggregation problem is thoroughly investi-
gated from the view of ensemble method. A general NILM-oriented ensemble framework
is established at the first stage, where both the individual classifiers and combined classifier
are featured by probability model. The probability scoring strategy is proposed based
on the probabilistic distance measures. Furthermore, the bagging strategy is customized
for individual classifier constructions by feature selection method, which is proved to be
effective under multi-feature acquisition systems. A two-stage decision-making process
is allocated in combined classifier, taking into account the principles and characteristics
of both ensemble strategy and load disaggregation. As an example of implementation,
the dictionary learning-based approach is comprehensively modelled and investigated in
our study, where both low voltage network simulator platform and field measurement
dataset are utilized for verifications. Results show that by ensemble strategy, the NILM
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performance can be improved robustly. Besides, the proposed feature selection is effective,
while the traditional bagging strategy is also efficient when lacking of sufficient input data,
demonstrating the versatility and flexibility of the proposed method.

Therefore, the probability model framed ensemble method provides a new train of
thought and a valid solution for the NILM problem, which is highly expected in both
academic research and practical applications. Take this research as a foundation, the future
works include, but are not limited to, the following aspects.

• Selection of individual classifiers. Bagging strategy is used in the presented ensemble
framework, and feature selection is proposed based on the characteristics of NILM.
However, other ensemble strategies, e.g., boosting and stacking, may also be effective
and worth exploring, especially considering the problem features of NILM.

• Selection of combined classifier. A two-stage decision-making process for the com-
bined classifier is investigated in this study. Although proved to be effective, the
efficiency is related to the individual load disaggregation models. So explorations of a
valid decision model for all scenarios are valuable.

• New probability models to cascade the framework. The distance measures based on
the objective function of load disaggregation model are utilized for the probabilistic
scoring in current work, whose performance is also related to the individual classifier
model. If there is a universal scoring model for probabilistic evaluation, it will highly
extend the scope and means of the ensemble method-based NILM.

• Potentials to cooperate with transfer learning. Non-intrusive detection of new appli-
ances, or in new houses, is still a great challenge in NILM field. Only a few studies,
majorly applying transfer learning or deep learning, have reported some achievements
for these problems. Since ensemble methods naturally have multiple classifiers, it is
feasible to realize new appliance or new house monitoring by appropriately deploy-
ing the classifiers with transfer learning idea. This research idea may initiate a new
trend for the practicability investigations of NILM supported large-scale smart meter
applications.

• Design with consideration of computation power for practical applications. The
idea of generating multiple candidates from individual classifiers requires multiple
optimization calculations, especially for greedy algorithms, which requires comput-
ing power in practical applications. Therefore, the proper design considering the
computing resources and efficiency is an important concern toward practical NILM
implementations.
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