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Abstract

Background: In RNA-Seq gene expression analysis, a genetic signature or biomarker is defined as a subset of genes
that is probably involved in a given complex human trait and usually provide predictive capabilities for that trait. The
discovery of new genetic signatures is challenging, as it entails the analysis of complex-nature information encoded at
gene level. Moreover, biomarkers selection becomes unstable, since high correlation among the thousands of genes
included in each sample usually exists, thus obtaining very low overlapping rates between the genetic signatures
proposed by different authors. In this sense, this paper proposes BLASSO, a simple and highly interpretable linear
model with l1-regularization that incorporates prior biological knowledge to the prediction of breast cancer
outcomes. Two different approaches to integrate biological knowledge in BLASSO, Gene-specific and Gene-disease, are
proposed to test their predictive performance and biomarker stability on a public RNA-Seq gene expression dataset
for breast cancer. The relevance of the genetic signature for the model is inspected by a functional analysis.

Results: BLASSO has been compared with a baseline LASSO model. Using 10-fold cross-validation with 100
repetitions for models’ assessment, average AUC values of 0.7 and 0.69 were obtained for the Gene-specific and the
Gene-disease approaches, respectively. These efficacy rates outperform the average AUC of 0.65 obtained with the
LASSO. With respect to the stability of the genetic signatures found, BLASSO outperformed the baseline model in
terms of the robustness index (RI). The Gene-specific approach gave RI of 0.15 ± 0.03, compared to RI of 0.09 ± 0.03
given by LASSO, thus being 66% times more robust. The functional analysis performed to the genetic signature
obtained with the Gene-disease approach showed a significant presence of genes related with cancer, as well as one
gene (IFNK) and one pseudogene (PCNAP1) which a priori had not been described to be related with cancer.

Conclusions: BLASSO has been shown as a good choice both in terms of predictive efficacy and biomarker stability,
when compared to other similar approaches. Further functional analyses of the genetic signatures obtained with
BLASSO has not only revealed genes with important roles in cancer, but also genes that should play an unknown or
collateral role in the studied disease.
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Background
Personalized medicine in cancer aims to adapt diagnosis
and treatment to patients on the basis of their environ-
ment and genes [1]. Hereof, large investments are being
made in -omics technologies to sequence faster, cheaper
and better [2, 3], what means more data to be used in
clinical daily practice. Processing this huge amount of
data is not, however, a trivial task, as they usually consist
of a small number of samples (n) facing to the thou-
sand of variables (p) that describe each sample (commonly
known as large-p-small-n problems [4]). Concretely, in
precision medicine, the search of genetic signatures still
remains as a challenging task, and machine learning
(ML) models and techniques have been recently used to
develop predictive models in different areas [5–8], pro-
viding high performance rates in these large-p-small-n
problems [9, 10].

Feature selection (FS) is one of the key procedures in
the development of predictive models for complex human
traits based on genomic data. In the literature, the avail-
able set of feature selection methods is grouped in three
main categories: filter, wrapper and embedded procedures
[11]. Independently of the FS procedure used, the goal is
to identify a genetic signature with high prediction capa-
bilities in a totally new and unseen test dataset, different
to the one used to build the predictive model. Neverthe-
less, biomarkers selection becomes unstable as soon as
the number of features gets larger (like in the p >> n
scenario), specially due to the existing high correlation
among the thousands of genes describing each sample
[12]. In fact, Van’t Veer and colleagues [13] came up with a
genetic signature of 70 genes that allows to predict clinical
outcome of breast cancer with a good performance rate,
and this signature is actually implemented in a commer-
cial product known as the MammaPrint test. Two years
later, Wang and colleagues [14] published a genetic signa-
ture of 76 genes that performed as well as the one discov-
ered in [13], although only 3 genes were overlapped across
both gene signatures. Finally, Venet et al. [15] showed
that one can randomly pick any subset of genes that will
significantly be associated with breast cancer outcomes.
These results clearly indicate that it is necessary to impose
some constrains to the ML models and FS techniques to
overcome the huge variability observed.

Model interpretability is a second desired feature of ML
models developed in biomedical contexts. Not only are we
interested in developing ML models with high prediction
capabilities, but also in being able to interpret the mod-
els themselves. Models’ interpretation have also been an
active research topic in this area in the last years [16–18].
The interpretation of ML models allows researchers to
perform biological and functional analysis based on the
genetic signatures found to either confirm already existing
knowledge of the studied disease or potentially discover

new associations that may be worth to investigate fur-
ther. Moreover, interpretable models have the advantage
of identifying important genes that are predictive of the
given outcome as well as identifying protective ones, thus
possibly allowing to proceed with other relevant goals in
personalized medicine, e.g. drug development to target
specific genes of interest within a treatment, providing the
right drug to the right patient [19, 20].

In this paper, the authors propose the BLASSO (Bio-
logical LASSO) predictive model, a new linear l1-
regularization model that incorporates prior biological
knowledge, from the PubTator public repository, to enrich
the genes expression profiles in the human species. The
proposal aims to quantify the importance of a given gene
in the estimation of the predictive model based on the
number of citations found in PubTator [21–23] for that
particular gene. It is therefore expected that genes with a
higher number of citations in PubTator will be more likely
to be selected by the FS procedure and therefore included
in the final genetic signature. Furthermore, a hypothet-
ical less important gene will also be part of the genetic
signature if this gene adds predictive value. Two different
approaches for quantifying the importance of each gene
are proposed in this paper (Gene-specific, Gene-disease)
and their predictive performance and biomarker stability
have been tested on a public RNA-Seq gene expression
dataset for breast cancer (BRCA). Additionally, we show
the advantages of our methodology in a controlled arti-
ficial dataset. Furthermore, the authors perform a func-
tional analysis of the genetic signature found by the Gene-
disease approach to discuss possible biological findings in
the BRCA dataset.

The rest of the paper is organized as follows: the Meth-
ods section describes the datasets used within the exper-
iments, the tools used to perform the functional analysis
and the proposed methodology. The Validation Strategy
section gives details of the performance measures and the
validation strategy used to assess models’ performance.
Next, the results obtained both in the artificial and BRCA
datasets are shown in the Results section, followed by
a Discussion section that provides a functional analysis
and some discussions with respect to the genetic sig-
natures found. Finally, the Conclusions section presents
some conclusions obtained from this work.

Methods
Datasets
Two datasets were used to test the added benefits of
the model proposed in this paper. Both datasets are high
dimensional datasets and overall details are included in
Table 1.

On the one hand, a public RNA-Seq gene expression
dataset of BRCA, freely available at The Cancer Genome
Atlas (TCGA) website (https://cancergenome.nih.gov/)

https://cancergenome.nih.gov/
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Table 1 Overall description of the datasets: number of samples
(n), number of genes (p) and class distribution (control = 0,
cases = 1)

Name n p Controls Cases

Artificial 1212 20021 583 629

BRCA 1212 20021 1013 199

was used within the analysis. This dataset has already been
batch-corrected and RSEM normalized [24]. In addition,
we first removed those genes that do not show any expres-
sion across the samples (they do not add predictive value)
and we performed a log2 transformation of the genes
expression level to ensure they closely approximate to a
normal distribution. After applying these pre-processing
procedures, the final BRCA dataset consisted of n=1212
samples and p=20021 genes expression profiles describing
each sample. Out of the 1212 samples, 1013 corresponds
to controls (or alive patients) and 199 to cases (or patients
who died from the disease). Therefore, the event of inter-
est will be the vital status of a given patient (0 = “alive",
1 = “dead") at a fixed time t.

On the other hand, another dataset with a synthetic out-
come was created based on the real BRCA dataset. The
idea behind this procedure tries to clearly know a priori
the ground truth, i.e. which subset of genes are predic-
tive of the outcome. This will provide us a controlled
experimental design framework to test and confirm the
advantages of using our proposal in this paper. In this
sense, a subset of k=100 random genes out of the total
number of p=20021 genes were first selected. Ideally, these
genes should be the ground truth of the artificial dataset,
thus representing the useful genes to predict the final out-
come. Therefore, a synthetic outcome was then created by
applying the sigmoid function described in the following
equation:

Fsig(x, β) =
{

1, if 1
1+e−xβ ≥ 0.5

0, otherwise
(1)

where the k=100 genes expression profiles and 100 ran-
domly generated coefficients (β) sampled from a uniform
distribution between [ 0, 1] are given as input to the sig-
moid function. Additionally, the class label of some sam-
ples were flipped to introduce some noise in the synthetic
outcome created. In this artificial dataset, the ground
truth is a priori known and the best solution that any lin-
ear model could get would be the identification of those
k genes among the initial p, thus achieving the highest
performance in terms of predictive accuracy.

Functional analysis tools
Functional analyses for the discovered genes signatures
within the BRCA dataset were performed using EnRichR
(http://amp.pharm.mssm.edu/Enrichr/), WebGestalt 2017

(WEB-based GEne SeT AnaLysis Toolkit, http://www.
webgestalt.org/), and the Ingenuity� Pathway Analysis v
5.0 (IPA�, QIAGEN, https://www.qiagenbioinformatics.
com/) and the IPA client for Mac OSX. All analyses were
performed using the gene symbols (HUGO gene names)
as identifier and, when required, the beta coefficient as
weighting value or an equivalent to fold change.

Methodology
This paper aims to include biological knowledge of the
data domain into ML models, thus imposing constrains
into the optimization search procedure. In the large-
p-small-n scenario, linear models with l1-penalty term
have been widely used as the simplest possible model
with good prediction capabilities. Therefore, this work
will try to somehow integrate biological knowledge into
a l1-regularization model expecting it to outperform the
classical approach. Figure 1 provides a high-level descrip-
tion of our methodology approach in comparison to the
standard estimation of l1-regularization models.

The standard LASSO
LASSO is a widely known model [25] that adds an l1-
penalty constrain to the objective function of a simple
linear model. Let us assume a dataset represented as D =
{xi, yi}, with i ∈ {1..n} samples, xi representing the vec-
tor of p genes describing the i-th sample, and yi being the
class label. Then, Eq. 2 shows the objective function that
is minimized under the LASSO approach and for a binary
classification problem:

J1 = min
β

n∑
i=1

(yi − Fsig(xi, β))2 + λ

p∑
j=1

|βj| (2)

where the function Fsig corresponds to the sigmoid func-
tion defined in Eq. 1.

This model tries to push as many coefficients (βj) as pos-
sible to zero unless a certain gene expression profile xj is
predictive of the vital status of a patient. LASSO models
have been previously shown to work well in the large-p-
small-n scenario being able to overcome overfitting issues.
The amount of regularization applied is controlled by
the hyper-parameter λ which takes values in the (0, 1)

range. When λ takes bigger values, then the l1-penalty
term in Eq. 2 has a higher incidence in the whole objec-
tive function and, therefore, less genes will be retained by
the model. The λ hyper-parameter is learned from data
through cross-validation.

BLASSO: Biological LASSO
Despite the good performance achieved by LASSO in
general problems, its main disadvantage when analyzing
RNA-Seq data is that it considers homogeneous priors
over the independent variables xij, where j ∈ {1..p} genes,
i.e. every single gene expression profile is equally treated

http://amp.pharm.mssm.edu/Enrichr/
http://www.webgestalt.org/
http://www.webgestalt.org/
https://www.qiagenbioinformatics.com/
https://www.qiagenbioinformatics.com/
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Fig. 1 Methodology approach. Classic approach shown on the left side where a linear model with l1-penalty and homogeneous priors is used to
predict the vital status of a patient given the RNA-Seq genes expression profile. On the right side, our methodology approach is described using
prior biological knowledge obtained from public online resources to consider heterogeneous priors on the estimation of the l1-regularization model

and regularized in the optimization procedure. An exten-
sion of this model was later introduced in 2006 and
named adaptive-LASSO [26], where heterogeneous pri-
ors were now considered. In this model, the l1-penalty
term incorporates individual weights for each indepen-
dent gene expression profile performing as well as if the
true underlying model is given in advance. In this sense,
Eq. 3 reflects the updated function that adaptive-LASSO
tries to minimize for a binary classification problem:

J2 = min
β

n∑
i=1

(yi − Fsig(xi, β))2 + λ

p∑
j=1

γj|βj| (3)

On the one hand, Eqs. 3 and 2 are equivalent when
γj = 1, ∀j ∈ {1 . . . p}. On the other hand, Eq. 3 would be
identical to the objective function of logistic regression
when γj = 0, i.e. no regularization is applied. This expla-
nation shows that adaptive-LASSO could be understood
as an intermediate model between logistic regression and
a standard LASSO. Moreover, in the RNA-Seq context
the γ vector could be used to measure the importance
of each single gene expression profile. When a specific
gene expression profile has its γj closer to zero, then the
assigned coefficient βj will have nearly no influence into
the l1-penalty term, thus not being regularized by the
model and, therefore, most likely this gene expression pro-
file will be retained as part of the genetic signature discov-
ered by the model. And vice versa, when a gene expression
profile has its γj closer to one, then the assigned coeffi-
cient βj will be an active part of the l1-penalty term, thus
allowing the model to regularize and try to get rid of that
gene expression profile without compromising the global
error.

This work proposes to modify and enrich the adaptive-
LASSO model by re-defining the γ vector in such a way
that prior biological knowledge of the data domain can be

integrated in the model. Given a particular gene expres-
sion profile xj, authors propose to re-define the individual
penalty factor γj of the gene as shown in Eq. 4:

γj =
(

1
#citesj + 1

)ε

(4)

thus resulting in the objective function shown in Eq. 5
that BLASSO will try to minimize:

min
β

n∑
i=1

(yi − Fsig(xi, β))2 + λ

p∑
j=1

(
1

#citesj + 1

)ε

|βj|

(5)

Assuming that it is possible to get the number of cita-
tions for a given gene expression profile, this definition
will behave exactly as explained before. Let us consider a
gene for which there are no citations available, i.e. an a pri-
ori non-relevant gene expression profile according to the
literature. Then, by definition its corresponding γj value
would be 1 and, therefore, BLASSO will try to regularize
and get rid of that gene pushing its βj coefficient to zero
whenever this gene has no predictive value in the analyzed
dataset. Instead, let us now consider a very relevant gene
for which there are hundreds of citations in the literature.
In this case, the corresponding γj value would be a very
small number close to zero, thus the value of its βj coef-
ficient will have nearly no influence into the l1-penalty
term and, most likely, this gene expression profile will be
retained as part of the final genetic signature discovered
by the model.

BLASSO has two hyper-parameters to be tuned, λ and
ε. The first one, λ, is the regularization rate of the standard
LASSO problem. The second one, ε, is a hyper-parameter
that takes values within the range (0, 1], which basically
helps to control the smoothness of the individual-gene
regularization applied by the model. The motivation of
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this hyper-parameter arises from situations where an spe-
cific gene may have thousands of citations in the literature,
i.e. an a priori very relevant gene expression profile. As
it has been highlighted before, by definition its γj value
would be very close to zero and, most likely, the gene will
be finally retained by BLASSO in the genetic signature. If
many more gene expression profiles are under the same
situation, then BLASSO would be getting closer to the
over-fitting issue faced by logistic regression as there will
be many genes that BLASSO will most likely not regular-
ize and retain in the genetic signature. A deeper analysis
of this hyper-parameter within the BRCA dataset context
is provided in the Results section. Both hyper-parameters,
λ and ε, are learned from data through cross-validation.

At this point, the question for which an answer is
needed would be: are there any public online resources
available where an estimation of the importance of each
individual gene expression profile could be retrieved? One
could think of developing a data mining procedure that
extracts relevant information of interest from PubMed.
However, there are some recent works that have previ-
ously addressed this issue. In 2016, Andrade-Navarro et al.
[27] published and online tool that uses an automatically
built dataset of more than 63 thousand gene-disease asso-
ciations defined as statistically significant co-occurrences
of genes and diseases in annotations of biomedical cita-
tions from PubMed. Wei et al. [21–23] proposed in 2013
a web-based tool named PubTator for accelerating man-
ual literature curation through the use of advanced text-
mining techniques. In particular, PubTator stores all the
PubMed IDs of published articles, the set of genes refer-
enced on each of the articles, and the disease or diseases
involved in the corresponding study. In this work, PubTa-
tor was chosen as the online resource to be used to get
prior biological information of the data domain as it is a
widely cited tool of reference and is more mature than the
one recently provided in [27], thus being an a priori more
robust framework to test the benefits of the proposed
model BLASSO.

Furthermore, this paper proposes two different
approaches to construct the γ vector based on PubTator.
Both approaches are based on counting gene citations
occurrences, although they differ on the scope literature
taken into account for this purpose. Next, a description of
the two approaches considered in this work is provided:

• Gene-specific: for a given gene symbol xj, this
approach will count the number of articles where this
gene has been cited, independently of the studied
context, to generate the corresponding individual
penalty γj using Eq. 4.

• Gene-disease: for a given gene xj and a given disease
of interest, e.g. BRCA, this approach will count the
number of articles in the BRCA context where this

gene has been cited to generate the individual penalty
γj using Eq. 4. This approach adds the benefits of not
taking into account articles where the gene was cited
in a different context, thus not boosting the
importance of genes that a priori are not relevant in
the BRCA context.

Both approaches are valid ways of including prior bio-
logical knowledge into BLASSO either using PubTator
or any other online resource that allows to retrieve the
number of citations found in the literature for a particu-
lar gene symbol. However, the second proposed approach
Gene-disease would make more sense when performing a
functional analysis since a priori only genes already known
to be associated with the studied disease (BRCA) will
have an individual penalty γj different to 1. Therefore, the
final genetic signature should contain many more relevant
genes in the BRCA context and possibly a few that have
not been associated to BRCA yet but that they turn out to
add predictive value in the analyzed dataset.

Validation Strategy
In the analysis carried out in this paper, a well-known val-
idation strategy was used to test the performance of the
proposed model in new unseen data. Particularly, 100 rep-
etitions of K-fold cross-validation (K = 10) were executed
as depicted in Fig. 2. K-fold cross-validation is a strategy
that partitions the data into K non-overlapping folds of
equal sizes. Models are fitted to data using samples con-
tained in K − 1 train folds and their performance is then
tested in the outer test fold left out from the estimation
process. This procedure is iteratively repeated rotating the
train and test folds to finally provide an average model
performance on test folds. Additionally, the strategy con-
sidered in this work repeats this procedure 100 times in
such a way that the 10-fold partitioning of each repeti-
tion are different one from the other, thus ensuring that
no bias is introduced in the analysis due to an specific
fold partitioning randomly sampled. As both the LASSO
and BLASSO models need some hyper-parameters to be
learned, a second level of cross-validation is introduced
within the K − 1 train folds in order to pick the best
hyper-parameter settings.

The Area Under the Curve (AUC) was the chosen mea-
sure to test the performance of the models as the BRCA
in particular is highly imbalanced containing 199 cases
and 1013 controls (see Table 1). Moreover, not only are
we interested in analyzing the performance of the models
but also in analyzing the stability of the genetic signa-
tures obtained. In this sense, authors proposed to measure
this stability calculating a robustness index (RI) defined as
follows:

RI = average
(

RI(1), ... , RI(100)
)

(6)
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Fig. 2 Validation strategy. 10-fold cross-validation scheme where train and test folds are iteratively rotated. A single iteration uses 90% of the data to
fit the models (light blue) and 10% of the data to test their performance. The fold partitioning procedure is repeated 100 times to create different
folds partitioning of the input data

and the robust index for a single repetition is defined by
the following equation:

RI(rep) = #
(
intersection(genes1, ... , genes10)

)
average(#genes1, ... , #genes10)

(7)

where the numerator corresponds to the number of over-
lapping genes across the 10 folds of the cross-validation in
the specific repetition, and the denominator measures the
average number of retained genes across the folds in the
considered repetition. The higher and closer to 1 the RI is,
the more robust the solution would be, as a larger overlap
will be found in the genetic signatures.

Results
The whole analysis was implemented under the R software
using the package “glmnet” [28] which includes a nested
cross-validation scheme in which the regularization rate
λ is automatically adjusted. Additionally, extra function-
ality was developed within this package to automatically
adjust the value of the hyper-parameter ε related to the
smoothness of the individual gene regularization.

Artificial data
The artificially generated data set (see details in the Mate-
rials and Methods section) was further used for testing
several LASSO and BLASSO models under different con-
ditions. The main objective of these experiments was to
mainly get the feeling that the proposed model, BLASSO,
works as it is expected. In this sense, just one repetition
of 10-fold cross-validation was executed as it is enough
to see the added benefit of BLASSO independently of the
variance of the model. In Table 2 the results obtained are
shown for each of the models that are described below:

• LASSO200: standard LASSO model with
homogeneous priors fitted to the k = 100 genes used
to generate the synthetic outcome plus another 100
genes randomly selected.

• LASSO2000: similar to the previous one but now with
the addition of 1900 randomly selected genes on top
of the k = 100 genes used to generate the synthetic
outcome.

• LASSO20021: similar to the previous ones but now
fitted to the entire dataset, thus using the whole
20021 set of genes.

• LASSO19921: standard LASSO model with
homogeneous priors fitted to the entire dataset after
removing the k = 100 genes used to generate the
synthetic outcome.

• E1-BLASSO20021: BLASSO model with penalty
factors set to γj = 1 for the 19921 genes not used to
generate the synthetic outcome, and γj = α, where

Table 2 Average test data results obtained in a synthetic data set
using different models. Values for the Area Under the Curve
(AUC), average number of selected genes (#genes), and average
number of genes overlapped with the k = 100 genes used to
generate the synthetic outcome (#genes*) are shown

Model AUC #genes #genes*

LASSO200 0.9920 ± 0.00 137.9 88.7

LASSO2000 0.9504 ± 0.02 230.7 56.5

LASSO20021 0.9325 ± 0.03 286.8 24.8

LASSO19921 0.8972 ± 0.03 254.8 0

E1-BLASSO20021 0.9805 ± 0.01 133.7 66.9

E2-BLASSO20021 0.9923 ± 0.01 100 100
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α ∼ unif (0, 1), for the k = 100 genes that were used
to generate the synthetic outcome. The
hyper-parameter ε was set to 1.

• E2-BLASSO20021: similar to the previous one but
using γj = 0 for the k = 100 genes used to generate
the synthetic outcome.

The results shown in Table 2 confirm what was initially
expected from the application of the proposed models
to the artificially generated data set. The first three set-
tings are showing how the complexity of the analysis
increases when more genes are added to the input dataset
(the AUC drops from 0.9920 to 0.9325). Moreover, the
average number of selected genes within the k = 100
genes used to generate the synthetic outcome (column
#genes*) reflects how unstable is the FS procedure when
the aim is to identify the ground truth in wider datasets
(larger number of input variables), as the value of over-
lapped genes drops from 88.7 to 24.8 genes. In addition,
the fourth setting supports the statement made in [15],
where a relatively good performance (AUC=0.8972) can
be achieved even if the k = 100 genes were not included
in the input dataset for the analysis. In this sense, it shows
that it is almost always possible to find a different genetic
signature with high predictive accuracy when higher cor-
relations exist among genes. Finally, the last two settings
show the advantages of using the proposed model in
this paper, BLASSO, which incorporates prior biological
knowledge into the l1-penalty term. In concrete, the fifth
setting simulates a possible scenario where the k = 100
genes used to generate the synthetic outcome are less reg-
ularized (γj = α, where α ∼ unif (0, 1)), assuming that
these genes are more relevant according to information
from citations resources. In this setting, the AUC goes up
to 0.9805 in contrast to the value of 0.9325 where homo-
geneous priors were used in the l1-penalty term. At the
same time, the average number of overlapped genes with
the k = 100 genes used to generate the synthetic out-
come is 66.9 instead of 24.8 found for the third setting.
The last case consider (E2-BLASSSO20021) shows an ideal
scenario, where γj = 0 for the k = 100 genes used
to generate the synthetic outcome according to citation
resources (in practice, this may be unachievable). In this
ideal case, it is possible to recover the original genetic sig-
nature (the ground truth, #genes*= 100) and obtain the
best performance (AUC=0.9923).

BRCA data
Before going into details of the performance results
obtained in the experiments, a deeper analysis of the role
of the hyper-parameter ε was performed using the BRCA
data. In this sense, Fig. 3 shows some detailed graphs
regarding the gene citations distribution under the two

considered approaches (Gene-specific and Gene-disease)
as well as the relationship between the penalty factor γj
with respect to the value of ε. The top left figure shows the
distribution of citations for the genes in the Gene-specific
approach, observing that a large number of them have
been cited several times in the literature. As these fact will
lead these genes to be preferentially selected, smaller val-
ues of ε were tested for this approach as to reduce this
effect. For the Gene-disease case, the situation is a bit
different as there are fewer genes getting so many cita-
tions. As such, some larger values of ε were tested more
in detail for this approach. The graphics at the bottom of
Fig 3 shows the value of the penalty factor (γj) as a func-
tion of the value of ε. The values of ε indicated on the
x-axis in both graphs were the values that have been tested
in the internal cross-validation simulations to learn the
best ε value given the input BRCA data.

Furthermore, the hyper-parameter ε affects the amount
of penalization that is included in BLASSO for a given
gene expression profile, and is learned through nested
cross-validation within the 100 repetitions of 10-fold
cross-validation as described in the Validation Strategy
section. Figure 4 shows the frequency distribution of dif-
ferent ε values learned for both cases considered: Gene-
specific and Gene-disease. The values obtained for the
Gene-specific case, following a bell-shaped distribution
with peaks at ε = 0.11, confirm the criterion chosen
for the set of values tested, while for the Gene-disease
approach the situation is slightly different, as a second
peak is obtained around ε = 0.7, thus indicating that a
finer analysis could be done in a region around this value.

Regarding the predictive models used within the anal-
ysis, the BRCA RNA-Seq dataset was analyzed trying
to obtain predictions of patients’ vital status, comparing
results from three different settings: (i) standard LASSO
with homogeneous priors as baseline model, (ii) BLASSO
with heterogeneous priors obtained by the Gene-specific
approach, and (iii) BLASSO with heterogeneous priors
obtained by the Gene-disease approach. Each of these
models were evaluated following the strategy described
in the Validation Strategy section (100 repetitions of 10-
fold cross-validation), and the results obtained for each
of them are shown in Table 3. The first column of the
table identifies each of the three setting tested. Then, the
AUC values with the 95% confidence intervals (CI), the
number of genes retained by the models (#genes), the
robustness index (RI) as defined in the previous section,
the computational time in minutes (time) and the sig-
nificance value (p-value) provided by a Wilcoxon signed
rank test [29–31] for the comparison of the alternative
models with the baseline case in terms of the AUC are
shown. With respect to the CI provided, Bengio et al.
[32], showed in their work that CI should be taken care-
fully as they proved that there is no unbiased estimator
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Fig. 3 Citation distribution and role of the hyper-parameter ε in the penalty term. Graphics on the columns show on top, the distributions of
citations for the whole set of genes, for the Gene-specific (left) and Gene-disease (right) approaches. The graphs at the bottom show the value of the
penalty factor γj as a function of the value of ε (note the discontinuity of the scale in both graphs indicated by a vertical dotted line)

Fig. 4 Hyper-parameter ε distribution. Frequency distribution of the ε values learned throughout the experiments for both cases considered:
Gene-specific and Gene-disease
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Table 3 Average test data results obtained in the BRCA RNA-Seq dataset for the baseline (standard LASSO with homogeneous priors)
and BLASSO with the two proposed approaches. The Area Under the Curve (AUC), average number of selected genes (#genes),
robustness index (RI), computation time (mins.) and significance p-value are shown

Model AUC #Genes RI Time p-value

Lasso 0.65 [0.63, 0.68] 283.84 ± 28.73 0.09 ± 0.03 21.6 -

Gene-specific 0.7 [0.66, 0.71] 238.73 ± 19.31 0.15 ± 0.03 2341.83 < 2.2 × 10−16

Gene-disease 0.69 [0.66, 0.71] 226.59 ± 20.01 0.1 ± 0.04 2784.32 < 2.2 × 10−16

of the variance of K-fold cross-validation, thus possibly
representing over-optimistic results.

In terms of the AUC and for both approaches proposed
in this paper (Gene-specific, Gene-disease), it is possi-
ble to find a parameterization of the models for which
the baseline estimation is outperformed. In concrete, the
Gene-specific approach obtained an average AUC value
of 0.7 while the Gene-disease approach got an slightly
lower AUC value of 0.69. Nevertheless, both values are
higher than 0.65, the AUC value obtained with the stan-
dard LASSO model with homogeneous priors. It may not
look an impressive improvement, but a difference of 0.04
is still quantitatively a good result taking into account
that both LASSO and BLASSO are simple models that
assume a linear relationship between the independent
variables and the outcome, thus not capturing all possi-
ble non-linearities existing in the data. In addition, the
improvement obtained was achieved using in average less
genes than the ones retained by LASSO (283.84 genes
compared to 238.73 with the Gene-specific approach and
226.59 with the Gene-disease one). Moreover, the two
proposed approaches are highly statistically significant
(p-value < 2.2 × 10−16) according to a Wilcoxon signed
rank test.

Regarding the stability of the genetic signatures found,
both proposed approaches outperform the baseline model
in terms of the robustness index defined. The Gene-
specific approach obtains a RI of 0.15 compared to 0.09,
thus being 66% times more robust. Further, the Gene-
disease approach was found to be less robust, achieving
a RI of 0.1 similar to the value found for the baseline
LASSO model. It is worth noting that a robustness value
of 0.15 indicates that on average 15 genes out of 100 are
common on different executions of the algorithm, not-
ing that for example in previous works [13] and [14],
only 3 out of 70–76 genes were respectively overlapped
among the genetic signatures provided (less than 5% over-
lap). If we measure the stability of the genetic signature
across repetitions, the Gene-specific approach remains
being more robust than the Gene-disease approach (0.013
of the first model compared to 0.004 of the second one).
Despite the positive results found, one negative aspect
of the introduced approaches regards the computational
times needed, as they are approximately 100 times larger

than the time required for the execution of the baseline
LASSO model. However, standard existing software was
used to carry out the analysis since optimizing the esti-
mation procedure was not the scope of this paper. Under
a first cross-validation level which leaves a test set apart
(not used to estimate the LASSO or BLASSO models), the
BLASSO model requires two additional levels of cross-
validation: one is added in our implementation to learn
the hyper-parameter ε, and another one added by the R
package glmnet to learn the hyper-parameter λ. This logi-
cally increases the time to run the analysis using BLASSO
but optimizing BLASSO was out of the scope in this paper.
Therefore, further work could be done in this line to
reduce the time required to estimate the BLASSO model.

Discussion
Parametric models and linear models in particular have
the advantage of easier interpretation of the estimated
model, thus opening the possibility of validating the
gene signatures with external functional analysis tools.
In this sense, both the Gene-specific and Gene-disease
approaches were used to estimate BLASSO to the com-
plete BRCA dataset. Figure 5 shows a sorted list of the
top-35 genes that contribute more to predict the outcome
in both genetic signatures. The higher a gene appears in
the figures, the more it contributes to predict the vital sta-
tus of a patient. In addition, those genes highly expressed
with positive coefficients (bars positioned to the right) will
increase the chances of not surviving while genes highly
expressed with negative coefficients (bars positioned to
the left) are protective of not surviving.

At this point, it is desirable to perform a functional
analysis of these gene signatures to try to validate possible
biological findings within the models. For this purpose,
authors decided to focus on the 219 genes obtained
as signature with the Gene-disease approach since it a
priori takes into account genes known to be related with
the studied disease. In first instance, EnRichR revealed
that the main diseases based on OMIM were breast
cancer, lung cancer, and colorectal cancer; based on
KEGG, prostate and general cancer pathways; based
on Reactome, signalling pathways; based on Panther,
apoptosis, hypoxia, and P53 and VEGF pathways. When
the beta coefficient is included to weight genes, the
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Fig. 5 Global models’ summary. Summary of the top-35 selected genes according to the |β| coefficients of, (a) A genetic signature of 222 genes
obtained using BLASSO with the Gene-specific approach; (b) A genetic signature of 219 genes obtained using BLASSO with the Gene-disease
approach. Both models were estimated using the complete dataset

most results become apoptosis and pancreatic cancer,
as well as other signalling pathways. An equivalent
analysis using WebGestalt revealed liver carcinome
(p-value = 3.9 × 10−9), mammary neoplasm
(p-value = 3.9 × 10−9), followed by adenocarcinoma
(p-value = 2.1 × 10−6) and neoplasm metastasis
(p-value = 1.2 × 10−4). As expected, the main diseases
involved in the gene signature were associated with
cancer, and also apoptosis (cell death).

Trying to obtain more details on the importance of
each gene, the 219 genes were analyzed for their impli-
cation in the biological functions using IPA� v5.0. A
total of 19 different network were obtained, most of them
corresponding, as expected again, to biological functions
related to cancer, cell death, and signaling, but also with
cellular development and cellular compromise. The most
significant one is the first network, corresponding to cell
death (including apoptosis) and survival, cancer, and neu-
rological disease (Fig. 6). A total of 21 genes from the
signature appeared in this network, most of them related
both with cancer and cell death, which is consistent with
the information obtained with EnRichR and WebGestalt
(see above). This supports the idea that this signature is
comprised of genes involved, directly or collaterally, in the
analyzed disease. The key-role genes of this network are
TP53, that is at the 66th position of the signature, together
with GLI1 (12th), and SNAI1 (24th), in collaboration with
other prominent genes, such as, VHL (30th), CD24 (33th),
MRE11 (34th).

However, there are some genes, such as PCNAP1 (pseu-
dogene 1 of the proliferating cell nuclear antigen in human

[33]) and IFNK (a cytokine that imparts cellular protec-
tion against viral infection in a species-specific manner)
without literature relation to cancer that appear in a rel-
evant position regarding their beta value (19th and 31th

position, respectively). The only IPA network containing
IFNK corresponds to cell death and survival, infectious
diseases, and cellular compromise (Fig. 7), where 11 genes
forming the network were present in the signature. Cancer
and cell death are highlighted in Fig. 7 to reveal that most
genes are involved only in one of these functions (in con-
trast to network of Fig. 6, where most genes are involved in
both functions). Interestingly, this network is the only one
with two top-five genes. More in detail, it contains only
one key node, TNF-alpha, which is the 4th gene of the sig-
nature; SPTPA1, the 3rd gene of the signature, appeared in
a less relevant node. The most interesting finding is that
TNF-alpha is directly and significantly regulated by IFNK,
a gene that has not been previously related with cancer in
literature. This suggest that the signature is able to reveal
genes that, not being previously related with cancer, may
play a significant role in it.

When other genes of the signature not previously
related with cancer are inspected along the 19 IPA net-
works, most of them appeared in peripheral positions,
supporting their low beta value, which opens the possibil-
ity of studying the putative role of those genes in cancer.
Since PCNAP1 is not a gene but a pseudogene, it is not
striking that none of the networks contained information
about it: usually, pseudogenes are not studied in labora-
tories. However, since more and more pseudogenes are
reported to be involved in cancers in literature [34], we
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Fig. 6 Cell Death and Survival, Cancer, Neurological Disease. Most significant functional network obtained with the 219 signature genes of the
Gene-disease strategy. It corresponds to cell death and survival, cancer, and neurological disease biological functions. Node fill colour intensity
correspond to the value level of beta (green for negative, red for positive); white nodes are those genes not appearing in the gene signature. Nodes
delimited by a purple line correspond to cancer; those surrounded by a blue box correspond to cell death. Solid grey lines correspond to direct
relations, while dashed lines correspond to indirect relations

can hypothesize that PCNAP1 is expressed in relation to
cancer or cell death, probably due to its genomic con-
text or its behaviour as a lncRNA, as in [34]. Hence, new
research should be focused on this pseudogene and can-
cer to explain why PCNAP1 appeared in a relevant 19th

position in the gene signature.
In conclusion, the learning approach for the signature

is not only revealing genes with important but disre-
garded roles in cancer, but also genes that should play an
unknown or collateral role in cancer.

Conclusions
In this paper we have proposed the BLASSO predictive
model, a new linear l1-regularization model that incor-
porates prior biological knowledge into the gene profiles
to enrich them with data related to a given target prob-
lem. The linear nature of the proposed model makes it
highly interpretable as well as it is of benefit to any subse-
quent biological analysis. Furthermore, l1-regularization
supplies the model with a feature selection mechanism
that not only allows the model to avoid over-fitting but,

what is even more important, it allows the model to reveal
genetic signatures involved in complex human traits.

In order to have a preliminary view of the capabilities
of BLASSO in terms of its efficacy as a classifier and
also in terms of the stability of the genetic signatures that
it supplies, we have first used artificially generated data
to validate the model by comparing it with a standard
baseline LASSO model with homogeneous priors. Fol-
lowing a 10-fold cross-validation strategy, we have shown
how BLASSO outperforms the baseline model in both
aspects: it got higher efficacy rates as well as more robust
biomarkers than those obtained with LASSO.

Once the model has been validated in an artificial-
data scenario, we have used real breast cancer data to
test BLASSO, although future work will consider other
types of cancer to test the efficacy of BLASSO in dif-
ferent scenarios. For this purpose, we have followed two
different approaches that we named Gene-specific and
Gene-disease. For the former, we used the PubTator pub-
lic repository to supply the gene profiles with information
regarding the number of citations in general for each given



Urda et al. BMC Systems Biology 2018, 12(Suppl 5):94 Page 24 of 131

Fig. 7 Cell Death and Survival, Infectious Disease, Cellular Compromise. Functional network obtained with the 219 signature genes of the
Gene-disease strategy corresponding to cell death and survival, infectious diseases, and cellular compromise. Colours are as in Fig. 6

gene, while for the latter the information obtained from
PubTator for each given gene was restricted to the num-
ber of citations related specifically to breast cancer. By
following these two approaches, we have explored the
capabilities of BLASSO in predicting breast cancer out-
comes and supplying genetic signatures for this given
disease.

We have used 10-fold cross-validation with 100 rep-
etitions for model assessment by tuning the two given
hyper-parameters of the BLASSO: the regularization rate
(λ) and the degree of smoothness of the individual-
gene regularization (ε). In terms of efficacy rates (AUC)
of the classifiers, our results have shown how for both
approaches above it is possible to find a parameterization
of the models for which the baseline estimation is outper-
formed. The AUC values obtained by BLASSO supposed
a quantitative and qualitative improvement, pushing the
AUC up to 0.7 and 0.69 in contrast to 0.65 achieved
by LASSO. Moreover, these performance were statisti-
cally significant getting very low p-values after applying a
Wilcoxon signed rank test. In addition, the improvement
obtained was achieved using in average less genes than
the ones retained by LASSO. Regarding the stability of
the genetic signatures found, both proposed approaches
outperform the baseline model in terms of the robust-
ness index defined, highlighting how the Gene-specific
approach was able to find genetic signatures 66% more

robust in average (RI of 0.15 compared to 0.09 obtained
by LASSO).

Finally, the functional analysis of the genetic signature
found by the proposed model (when BLASSO with the
Gene-disease approach was estimated to the complete
BRCA dataset) has revealed some important findings. As
expected, the incorporation of prior biological informa-
tion into the gene expression profiles in the dataset has
given rise to a genetic signature that bears significant bio-
logical information related to the target problem. In this
sense, not only have the breast cancer pathways and net-
works been pinpointed by the biomarkers, but also have
other pathways and networks related to cancer in gen-
eral been included in the genetic signature. This means
that other not-yet or less studied genes related to breast
cancer could have been captured as biomarkers. In this
vein, the most remarkable cases are the gene IFNK and the
pseudogene PCNAP1, that have been both significantly
included in the genetic signature found by BLASSO but
their implication to breast cancer remains unknown for
the moment: the former seems to have a collateral rela-
tionship with cancer, while the latter plays an unknown
role in this disease.
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