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Causal roles of prefrontal cortex during 
spontaneous perceptual switching are 
determined by brain state dynamics
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Abstract The prefrontal cortex (PFC) is thought to orchestrate cognitive dynamics. However, in 
tests of bistable visual perception, no direct evidence supporting such presumable causal roles of 
the PFC has been reported except for a recent work. Here, using a novel brain- state- dependent 
neural stimulation system, we identified causal effects on percept dynamics in three PFC activities—
right frontal eye fields, dorsolateral PFC (DLPFC), and inferior frontal cortex (IFC). The causality is 
behaviourally detectable only when we track brain state dynamics and modulate the PFC activity in 
brain- state-/state- history- dependent manners. The behavioural effects are underpinned by transient 
neural changes in the brain state dynamics, and such neural effects are quantitatively explainable by 
structural transformations of the hypothetical energy landscapes. Moreover, these findings indicate 
distinct functions of the three PFC areas: in particular, the DLPFC enhances the integration of two 
PFC- active brain states, whereas IFC promotes the functional segregation between them. This work 
resolves the controversy over the PFC roles in spontaneous perceptual switching and underlines 
brain state dynamics in fine investigations of brain- behaviour causality.

Editor's evaluation
This single- author work, by combining real- time closed- loop EEG- TMS and sophisticated computa-
tional modelling to characterize ongoing brain states, impressively demonstrates the causal role and 
different functions of several prefrontal regions in modulating bistable perception, in a brain- state- 
dependent way.

Introduction
Dynamic and flexible changes are among the fundamental key properties of human cognition. Bistable 
visual perception has been widely used to investigate such cognitive dynamics (Brascamp et  al., 
2018; Sterzer et  al., 2009), and the prefrontal cortex (PFC)—in particular, right frontal eye fields 
(FEF), dorsolateral PFC (DLPFC) and inferior frontal cortex (IFC)—is thought to be involved in the 
spontaneous perceptual switching (Brascamp et al., 2018; Kleinschmidt et al., 1998; Lumer et al., 
1998; Lumer and Rees, 1999; Panagiotaropoulos et al., 2020; Panagiotaropoulos et al., 2012; 
Sterzer et al., 2009; Sterzer et al., 2002; Wang et al., 2013; Weilnhammer et al., 2013). Theoretical 
work also indicates that top- down signals from the PFC to the visual cortex are essential to perceptual 
inference (Hohwy et al., 2008; Weilnhammer et al., 2017). These studies imply that inhibitory neural 
modulation of the PFC should induce behavioural changes in the bistable visual perception.

However, no empirical human study has identified such behavioural causality of the PFC (Brascamp 
et  al., 2018) except for a recent work administering theta- burst transcranial magnetic stimulation 
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(TMS) over the right IFC (Weilnhammer et al., 2021). Instead, a previous TMS study reported that 
neural suppression of the right DLPFC did not affect bistable visual perception (de Graaf et al., 2011). 
Other studies claimed that the PFC activity is not essential to the emergence of multistable percep-
tion (Brascamp et al., 2015; Harrison and Tong, 2009) but mere a consequence of it (Block, 2020; 
Brascamp et al., 2015; Frässle et al., 2014; Knapen et al., 2011).

Why is it so difficult to detect the prefrontal causality in the multistable perception? Here, given 
that the whole- brain neural activity during bistable perception is described as large- scale brain state 
dynamics (Watanabe et  al., 2014c), we hypothesise that causal roles of the PFC should also be 
dynamically changing during the fluctuation of visual awareness. That is, if the neural activity in the 
multistable perception can be stated as dwelling in and transitions between a parsimonious number 
of brain states (Watanabe et al., 2014c), the detectability of the prefrontal causal effects on the 
perceptual awareness should be determined by the brain state in which the neural activity pattern is 
staying when the neural stimulation is administered. If so, such state- dependent behavioural causality 
should be hardly observed when we intervene in the PFC activity without tracking the brain state 
dynamics.

We directly tested this hypothesis with a brain- state- dependent neural stimulation system (Berg-
mann, 2018; Silvanto et al., 2008; Zrenner et al., 2016). The system was devised by linking energy 
landscape analysis (Ezaki et al., 2017; Gu et al., 2018; Kang et al., 2017; Watanabe et al., 2014c; 
Watanabe and Rees, 2017)—a data- driven method to identify the neural dynamics during seem-
ingly random behaviours—to an electroencephalogram (EEG)- triggered TMS (Bergmann et al., 2016; 
Schaworonkow et al., 2019; Stefanou et al., 2018; Zrenner et al., 2018).

To focus on the higher order cortex, we did not adopt a test of binocular rivalry, in which the 
perceptual fluctuation has often been linked with the neural activity in the lower level brain systems 
such as the visual cortex (Haynes et al., 2005; Lee et al., 2005; Leopold and Logothetis, 1996; 
Meng and Tong, 2004; Miller et al., 2000; Pettigrew and Miller, 1998; Polonsky et al., 2000). 
Instead, we used a test of bistable visual perception induced by a structure- from- motion (SFM) stim-
ulus (Figure 1a), in which the same visual stimulus is presented to both the eyes of participants, and 
the higher order cortex is considered to be more involved in the perceptual fluctuation (Brascamp 
et al., 2018; Knapen et al., 2011; Meng and Tong, 2004).

eLife digest A cube that seems to shift its spatial arrangement as you keep looking; the elegant 
silhouette of a pirouetting dancer, which starts to spin in the opposite direction the more you stare 
at it; an illustration that shows two profiles – or is it a vase? These optical illusions are examples 
of bistable visual perception. Beyond their entertaining aspect, they provide a way for scientists to 
explore the dynamics of human consciousness, and the neural regions involved in this process.

Some studies show that bistable visual perception is associated with the activation of the prefrontal 
cortex, a brain area involved in complex cognitive processes. However, it is unclear whether this 
region is required for the illusions to emerge. Some research has showed that even if sections of the 
prefrontal cortex are temporally deactivated, participants can still experience the illusions.

Instead, Takamitsu Watanabe proposes that bistable visual perception is a process tied to dynamic 
brain states – that is, that distinct regions of the prefontal cortex are required for this fluctuating visual 
awareness, depending on the state of the whole brain. Such causal link cannot be observed if brain 
activity is not tracked closely.

To investigate this, the brain states of 65 participants were recorded as individuals were experi-
encing the optical illusions; the activity of their various brain regions could therefore be mapped, and 
then areas of the prefrontal cortex could precisely be inhibited at the right time using transcranial 
magnetic stimulation. This revealed that, indeed, prefrontal cortex regions were necessary for bistable 
visual perception, but not in a simple way. Instead, which ones were required and when depended on 
activity dynamics taking place in the whole brain. Overall, these results indicate that monitoring brain 
states is necessary to better understand – and ultimately, control – the neural pathways underlying 
perception and behaviour.

https://doi.org/10.7554/eLife.69079
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Results
Validation of energy landscape analysis in EEG
As a preparation, we examined whether the current EEG system captured qualitatively the same 
brain state dynamics as those found in our previous fMRI study employing the same SFM stimulus 
(Watanabe et al., 2014c). To this end, we recorded gamma- band EEG signals from the seven cortical 
regions (Watanabe et al., 2014c; Figure 1b) of 65 healthy adults while they were experiencing the 
SFM- induced bistable visual perception (left panel of Figure 1c) and applied an offline energy land-
scape analysis to the data (Control Experiment I).

First, we confirmed that a pairwise maximum entropy model—a basis of the energy landscape 
analysis—was well fitted to the data in all the participants (fitting accuracy >84 %; Figure 2a). Based 
on the model, we then found that all the participants had almost the same energy landscape struc-
ture consisting of three major brain states: Frontal- area- dominantly- active state (F state), Visual- area- 
dominantly- active state (V state) and Intermediate state (Int state) (e.g. Figure 2b for Participant 1). As 
in our previous fMRI work, these three states were significantly separated and independent from each 
other (i.e. the energy barrier >1; Figure 2c) and dominated almost all the energy surfaces (Figure 2d).

Such model- based estimations were consistent with the actual EEG data. Even in the neural data, 
almost all the brain activity patterns could be classified into either of the three major brain states (the 
other states < 0.1 %; Figure 2e). The degree to which each of the three brain states occupied the 
energy landscape (i.e. the basin size) was significantly correlated with how frequently the brain state 
appeared in the EEG data (r64 >0.57; Mean Average Percentage Error, MAPE, < 6.8 %; Figure 2f).

Moreover, the neural dynamics between these three major brain states were qualitatively equiv-
alent to those seen in our fMRI study: there was almost no direct transition between F and V state ( 
< 0.4%; Figure 2g,h), and thus the brain activity pattern always used Int state as a stepping stone to 
travel between F and V state (Figure 2i).

Finally, we confirmed that, as shown in our fMRI work, the length of such neural travel between F 
and V state via Int sate was a good indicator to predict the individual behavioural differences in the 
percept duration (r64 = 0.67; Figure 2j). Furthermore, this brain- behaviour association was preserved 
at an individual level: even within each participant, the length of the F- Int- V- Int- F travel calculated for 
each run accurately predicted the percept duration in the run (e.g. Figure 2k for Participant 1; for 
all the participants, r19 >0.54, MAPE <7.2%, Figure 2l,m). Note that these energy landscape anal-
yses used no behavioural information to identify the brain state dynamics; thus, the significant brain- 
behaviour correlations are not consequences of circular analysis.

In sum, these findings show that, at least with an offline analysis, the current EEG system can iden-
tify qualitatively the same brain state dynamics underpinning the SFM- induced bistable visual percep-
tion as seen in our previous fMRI study (Watanabe et al., 2014c).

Validation of state-dependent neural stimulation
These results have sufficient information to categorise each neural activity pattern at each time-
point into either of the three major states. In the Control Experiment II, we implemented such 

Figure 1. Experiment design. While the participants were presented with a structure- from- motion (SFM) stimulus (a), we recorded EEG signals from the 
seven brain regions (b). DLPFC, dorsolateral prefrontal cortex; IFC, inferior frontal cortex; FEF, frontal eye fields; aSPL/pSPL, anterior/posterior superior 
parietal lobule; LOC, lateral occipital complex. In the control experiments, we first conducted offline energy landscape analysis, whose results allowed 
us to categorise brain activity patterns into either of the three major brain states (c, left). By implementing such classification information to an online 
EEG analysis, we tracked brain state dynamics and administered inhibitory TMS in state-/state- history- dependent manners (c, right).

https://doi.org/10.7554/eLife.69079
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classification information into an online EEG analysis (Stefanou et al., 2018; Zrenner et al., 2018; 
right panel of Figure  1c) and examined whether the online analysis could track the bran state 
dynamics accurately and enable us to administer TMS while the brain activity pattern was dwelling 
in a specific brain state.

First, we confirmed that the brain state identification in the online analysis was significantly similar 
to that obtained by the offline analysis (similarity >82.3 % for the three major brain states; Figure 3a). 
Then, by linking this online EEG signal processing to monophasic TMS, we succeeded in triggering a 
burst of inhibitory TMS only when the neural activity pattern was staying in a specific major brain state 
(accuracy >84.8%, Figure 3b; latency <0.8 ms, Figure 3c).

Figure 2. Feasibility of energy landscape analysis for EEG data. (a- d) We confirmed that the brain state dynamics found in the EEG data were 
qualitatively the same as those seen in our previous fMRI study (Watanabe et al., 2014c). A pairwise maximum entropy model, a basis for the energy 
landscape analysis, was accurately fitted to the EEG data (a) and yielded almost the same energy landscape structure with three major brain states 
(e.g. panel b for Participant 1). The three brain states were significantly separated with high energy barriers (c) and dominated almost all the energy 
surface (d). (e and f) These estimations based on the energy landscape structure were consistent with the actual neural data. In the EEG data, almost 
all the neural activity patterns could be categorised into either of the three major brain states (e). The basin sizes in the model accurately predicted 
the appearance frequency of the major brain states (f; each mark represents each individual). (g–j) We then performed random- walk simulations on the 
energy landscape and found that there was no direct transition between F and V state (panel g for the group average of the transition matrix; panel h 
for the transition frequencies for all the participants). This result suggests that, during the bistable visual perception, the neural activity pattern (a green 
ball in panel i) is travelling between F and V state via Int state (i). As shown in our fMRI work, the number of steps to complete this F- Int- V- Int- F travel 
was correlated with the behavioural percept duration across participants (j). (k–m). We confirmed that this brain- behaviour correlation was seen at an 
individual level. Technically, for each run in a participant, we calculated the length of the neural travel between F and V state via Int state and compared 
it with the percept duration for the run. Panel k shows such a comparison in Participant 1, indicating a significant correlation between the brain state 
dynamics and perceptual stability in the participant. In the other participants, these associations were preserved (panel l for the correlation coefficients; 
panel m for the mean average per cent error, MAPE). In the panels a, c- e, h, j, l and m, dots represent participants. ***, P < 10–3 in a paired t- test (df = 
64).

https://doi.org/10.7554/eLife.69079
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State-dependent causality
By applying this state- dependent TMS over the three PFC regions (i.e. DLPFC, IFC and FEF; Figure 4), 
we found that the three prefrontal areas had different causal behavioural effects on the spontaneous 
perceptual switching in a brain- state- dependent manner (N = 34; F8,33=25.9, p < 10–3 for the main 
effect in a two- way ANOVA; Figure 4b).

The neural inhibition of DLPFC during F state prolonged the percept duration (t33 = 9.4, PBonferroni 
< 0.001 in a post- hoc paired t- test, Cohen’s d = 1.7), whereas that during V or Int state induced no 
behavioural change (t33 <1.7, PBonferroni > 0.05, d < 0.3).

Figure 3. Accuracy of online brain state tracking and triggering of TMS. The online EEG analysis tracked brain 
state dynamics as accurately as the offline analysis did (a). Brain- state- dependent TMS triggering system also 
achieved accurate neural tracking (b) with short delays (c). Note that the accuracy in the TMS trigger (b) tended to 
be higher than that in simple brain- state tracking (a), presumably because TMS was triggered only when a specific 
brain state was expected to continue in a certain period (here, 150 ms) and resultantly reduce the rate of false 
negative. Also, such a criterion should work as temporal smoothing and improve the signal- to- noise ratio. Each dot 
represents each participant. *** indicates PBonferroni <0.001 in paired t- tests (df = 64).

Figure 4. Behavioural results . (a) We administered inhibitory TMS over the three PFC regions. In one TMS condition, we placed the TMS coil over 
one of the PFC areas using a stereoscopic neuro- navigation system based on the MNI coordinates at the beginning of each experiment day. At the 
end of the day, we re- measured the coordinates of the TMS coil using the navigation system. Finally, we averaged the coordinates across the 4- day 
sessions in the main experiment. The green circles represent such mean MNI coordinates of the stimulated brain site for each participant. The green 
circles were mapped closely onto the original coordinates (the centres of the yellow circles). (b) State- dependent TMS revealed that causal behavioural 
roles of the three PFC regions are detectable when the brain activity pattern stays in F state. The Y- axis shows the proportional changes in the median 
percept duration ( = (TMS–control)/control). The X- axis indicates the TMS conditions. *** indicates PBonferroni <0.001 in paired t- tests (df = 33). Each circle 
represents each participant. The error bars show the s.e.m. (c) The DLPFC and IFC showed state- history- dependent behavioural causal effects on 
bistable visual perception, while FEF did not. *** indicates PBonferroni <0.001 in paired t- tests (df = 33). (d) No significant behavioural change was induced 
after stronger and longer TMS (30min quadripulse TMS with 90 % AMT) over the same three PFC regions. The error bars show the s.e.m.The intensity of 
the current TMS was set at 70 % AMT.

https://doi.org/10.7554/eLife.69079
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Regarding IFC, the F- state- dependent TMS destabilised the visual perception (t33 = 10.4, PBonferroni < 
0.001, d = 1.8), whilst neither V- nor Int- state- dependent TMS induced any behavioural effect (t33 <1.3, 
PBonferroni > 0.05, d < 0.29).

The F- state- dependent TMS over FEF reduced the percept duration (t33 = 10.5, PBonferroni < 0.001, 
d = 1.9), whereas no behavioural change was observed in the other FEF TMS conditions (t33 <0.8, 
PBonferroni > 0.05, d < 0.39).

State-history-dependent causality
If some behavioural causalities are detectable when the whole- brain neural activity pattern is dwelling 
in specific brain states, others may emerge when the neural activity pattern has finished travelling 
a particular brain state trajectory. We then tested this hypothesis and found such state- history- 
dependent causality (F5,33=85.6, p < 10–3 for the main effect in a two- way ANOVA; Figure 4c). Here, 
we focused on Int state because it is the sole brain state that had two incoming pathways (i.e. a path 
from F state and one from V state).

The TMS over DLPFC during Int state immediately after F state shortened the percept duration (t33 
= 12.9, PBonferroni <0.001 in a post- hoc paired t- test, d = 2.7), whereas the TMS over DLPFC during Int 
state right after V state prolonged it (t33 = 13.3, PBonferroni <0.001, d = 2.3).

For IFC, the Post- F Int- state- dependent TMS enhanced the perceptual stability (t33 = 9.1, PBonfer-

roni <0.001, d = 1.6), whilst that in Post- V Int state weakened it (t33 = 12.7, PBonferroni <0.001, d = 2.3).
No change in the percept duration was observed when we administered TMS over FEF during 

Post- F or Post- V Int state (t33 <0.58, PBonferroni > 0.05, d < 0.19).
Given that no significant behavioural change was induced by longer and stronger TMS (here, 

30 min quadripulse TMS)(Hamada et al., 2009; Hamada et al., 2007; Watanabe et al., 2015; Wata-
nabe et al., 2014a) over the same PFC regions (N = 14; F2,13=0.16, p = 0.85 for the main effect in a 
two- way ANOVA; Figure 4d), these results suggest that the causal behavioural roles of the PFC areas 
in the bistable visual perception become explicit and measurable only when we intervene in the neural 
activity in state-/state- history- dependent manners.

Effects on Energy Landscape Structure
These brain- state- dependent behavioural responses imply that the underlying neural mechanisms 
could be accounted for by brain state dynamics. .

To reveal such brain mechanisms, we first formulated working hypotheses on the neural effects of 
TMS by conducting numerical simulation on how local brain inhibition would affect the energy land-
scape structure and, resultantly, the brain state dynamics. In particular, we calculated changes in the 
heights of the energy barriers between the three major brain states (Figure 5a), because the barrier 

Figure 5. Effects on energy landscape structure . We numerically simulated how inhibitory TMS would affect the heights of the F- to- Int, Int- to- F, Int- to- V 
and V- to- Int barrier for each participant (a), which predicted significant changes in the energy barriers (panel b for TMS over DLPFC, panel c for TMS 
over IFC and panel d for TMS over FEF). In the panels b- d, the solid tricolour curves schematically represent post- TMS energy landscape structures, 
whereas the dashed curves denote the original energy landscape. *** indicates PBonferroni <0.001 in paired t- tests (df = 33). The error bars show the s.e.m.

https://doi.org/10.7554/eLife.69079
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heights are associated with the dwelling time in the brain states and inversely correlated with the 
transition frequency between them (Watanabe et al., 2014c).

As to DLPFC (Figure  5b), the numerical simulation showed that the TMS should increase the 
energy barrier heights between F and Int state (F4,33=340.1, p < 10–3 for the main effect in a two- way 
ANOVA; t33 >15.2, PBonferroni <0.001 in post- hoc paired t- tests, d > 2.6) and decrease the barrier height 
from Int to V state (t33 = 38.0, PBonferroni <0.001, d = 6.7). As a result, the ratio of the Int- to- F barrier to 
the Int- to- V barrier should significantly increase (t33 = 27.1, PBonferroni <0.001, d = 4.8).

Regarding IFC (Figure 5c), the neural inhibition of the region should alleviate the energy barriers 
between F and Int state (F4,33=89.10, p < 10–3 for the main effect in a two- way ANOVA; t33 >11.6, PBon-

ferroni <0.001, d > 2.0) and that from Int to V state (t33 = 48.9, PBonferroni <0.001, d = 8.6). The magnitude 
of the decrease in the Int- to- F barrier height should become larger than that in the Int- to- V barrier, 
which would result in a significant decrease in the ratio of the Int- to- F barrier to the Int- to- V barrier (t33 
= 61.2, PBonferroni <0.001, d = 10.7).

For FEF (Figure 5d), its neural suppression should lower the energy barrier from F to Int state 
(F4,33=32.4, p < 10–3 for the main effect in a two- way ANOVA; t33=25.3, PBonferroni < 0.001, d = 4.4) but 
induce no significant change in the other barriers (t33 <1.7, PBonferroni > 0.05, d < 0.27).

Effects on brain state dynamics
These structural changes in the energy landscapes indicate how the TMS affected the brain state 
dynamics (Figure 6a).

For example, the higher F- to- Int energy barrier—which is predicted to occur after TMS over DLPFC 
(Figure 5b)—would enhance the segregation between F and Int state, impede the transition from F 

Figure 6. Effects on brain state dynamics. (a) The numerical simulation (Figure 5) enables us to infer TMS- induced effects on the brain state dynamics. 
The tricolour curves schematically indicate the energy landscapes modified by TMS, whereas the dashed curves show the original energy landscapes. 
The green circles show the brain activity pattern. (b–f) These inferences were empirically confirmed. The X- axes show the changes in the hypothetical 
energy barrier heights, whereas the Y axes indicate TMS- induced neural effects on the brain state dynamics. The circles represent the participants. *** 
and * indicate PBonferroni <0.001 and PBonferroni <0.05 in paired t- tests (df = 33), respectively. The error bars show the s.e.m.

https://doi.org/10.7554/eLife.69079
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to Int state and prolong the dwelling in F state. Moreover, such longer F- state dwelling should be 
observed in F- state- dependent TMS condition the most clearly.

By the same logic, the relatively lower Int- to- V barrier, which is also expected to occur after TMS 
over DLPFC, should increase the Int- to- V transitions. Regarding the TMS over IFC, the lower F- to- Int 
energy barrier should shorten the F- state dwelling, whereas the relatively lower Int- to- F barrier should 
increase the Int- to- F transitions. In the TMS- over- FEF condition, the lower F- to- Int barrier should 
reduce the F- state dwelling.

We tested and confirmed these hypotheses by measuring the dwelling time of the three major 
brain states and transition frequencies between them for all the state- dependent TMS conditions.

In the experiments administering TMS over DLPFC, the increase in the F- to- Int energy barrier 
was correlated with the longer F- state dwelling seen in the F- state- dependent TMS (t33 = 11.6, PBon-

ferroni <0.001, d = 2.0; r33 = 0.59, p < 0.001; Figure 6b). Also, the higher Int- to- F energy barrier was 
associated with more frequent Int- to- V transitions that was seen in the Int- state- dependent TMS (t33 = 
3.3, PBonferroni <0.05, d = 1.8; r33 = 0.52, p < 0.001; Figure 6c).

In the sessions administering TMS over IFC, the lower F- to- I energy barrier was correlated with 
the shorter F- state dwelling that was measured in the F- state- dependent neural suppression (t33 = 
6.9, PBonferroni <0.001, d = 1.2; r33 = 0.69, p < 0.001; Figure 6d). The lower Int- to- F barrier accurately 
predicted more frequent Int- to- F transitions (t33 = 13.0, PBonferroni <0.001, d = 2.8; r33=–0.58, p < 0.001; 
Figure 6e) that were seen in the Int- state- dependent TMS condition.

In the TMS- over- FEF conditions, the lower F- to- Int barrier was associated with the shorter F- state 
dwelling that was observed in the F- state- dependent TMS session (t33 = 26.1, PBonferroni <0.001, d = 4.8; 
r33 = 0.57, p < 0.001; Figure 6f).

These results clarify TMS- induced effects on the brain state dynamics during the bistable visual 
perception and demonstrate that such neural effects are underpinned by the structural changes in the 
energy landscapes.

Temporal decay of neural effects
How long did such neural effects continue after each TMS? To answer this question, we tracked the 
magnitudes of the correlations between the empirical neural effects and the numerically- calculated 
energy barrier changes (Figure  6b,c,d,e,f) when we were sliding the time window that was used 
to empirically quantify such neural effects (Figure  7a). This analysis detected that all the correla-
tions began to weaken approximately 1.5  s after each TMS (Figure 7b). This result indicates that 

the current TMS- induced neural effects started to 
decay within ~1.5 s after the stimulation, and the 
brain state dynamics began to return to the orig-
inal forms in such a time scale.

Neural mechanisms behind 
behavioural causality
Finally, we evaluated associations between these 
behavioural, numerical and neural responses 
by mediation analysis and found that the causal 
behavioural effects are induced by transient 
changes in the brain state dynamics and attrib-
utable to structural changes in the energy land-
scapes (P < 0.05 for all the indirect effects, α×β; 
Figure 8).

As to the state- dependent behavioural 
changes, the longer percept duration seen after 
the F- state- dependent TMS over DLPFC was 
largely due to the prolonged F- state dwelling, 
which was induced by the higher F- to- Int energy 
barrier (Figure  8a). In contrast, the de- sta-
bilisation of visual perception seen after the 

Figure 7. Duration of TMS effects. To assess the 
duration of the TMS- induced neural effects, we 
examined how the correlations seen in Figure 6 
changed when we slided the 4 s time window that 
was used to measure the neural effects. In all the 
correlations, the correlation strength (here, the absolute 
value of the Fisher- transformed correlation coefficient, 
|z|) began to decay ~1.5 s after the TMS. The X- axis 
shows the start timing of the 4 s time window (Tstart).

https://doi.org/10.7554/eLife.69079
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F- state- dependent TMS over IFC/FEF was caused by the shorter F- state dwelling, which was attribut-
able to the lower F- to- Int energy barrier (Figure 8b,c).

The state- history- dependent behavioural causality could also be seen as a consequence of the 
transient changes in the brain state dynamics, given that the percept duration is closely linked with the 
length of the F- Int- V- Int- F travel (Figure 2j,k): According to the mediation analysis, the shorter percept 
duration seen after the Post- F Int- state- dependent TMS over DLPFC was caused by the increase in 
the Int- to- V transitions, which was triggered by 
the larger gap between the Int- to- F barrier and 
Int- to- V barrier (Figure 8d). This statistical result 
is reasonable because the relatively lower Int- to- V 
energy barrier would facilitate the Int- to- V transi-
tions transiently, accelerate the completion of the 
F- Int- V travel and shorten the percept duration.

Conversely, the longer percept duration 
yielded by the Post- V Int- state- dependent TMS 
over DLPFC is interpretable as a result of the rela-
tively higher Int- to- F energy barrier’s impeding 
the Int- to- F transitions, accelerating the backward 
moves to V state and slowing down the comple-
tion of the F- Int- V travel (Figure 8e).

The mediation analysis showed that the state- 
history- dependent causal roles of IFC were 
also accountable by the same logic. The longer 
percept duration yielded by the TMS over IFC 
during Post- F Int state could be regarded as a 
behavioural manifestation of the slowdown of the 
F- Int- V travel due to the more frequent backward 
Int- to- F transitions, which was originated from the 
relatively lower Int- to- F energy barrier (Figure 8f). 
In contrast, the shorter percept duration induced 
by the TMS over IFC during Post- V Int state can 

Figure 8. Associations between energy landscape structure, brain state dynamics and behaviour. The mediation analyses showed that the structural 
changes in the energy landscapes affect the brain state dynamics, which results in the causal behavioural responses. The statistical significance of the 
α, β, and γ validate our application of the mediation analysis to the current data. The statistical significance of the α⨉β and the insignificance of the γ’ 
support the conclusions.

Figure 9. Validation tests. (a) All the main behavioural 
causal responses were replicated in an independent 
cohort (N = 14). (b) In another independent experiment 
(N = 15), we administered excitatory TMS over the 
same PFC regions. The excitatory stimulaton induced 
behavioural effects opposite to those seen in the 
inhibitory TMS experiments. Each circle represents 
each participant. *** and ** indicate P < 0.001 and P < 
0.01 in one- sample t- tests (df = 13 for panel a and df 
= 14 for panel b), respectively. The error bars show the 
s.e.m. 

https://doi.org/10.7554/eLife.69079


 Research article      Neuroscience

Watanabe. eLife 2021;10:e69079. DOI: https:// doi. org/ 10. 7554/ eLife. 69079  10 of 32

be seen as results of the acceleration of the F- Int- V travel due to the more frequent forward moves 
from Int to F state, which was induced by the lower Int- to- F energy barrier (Figure 8g).

Replicability
The main behavioural findings were replicated in a small but independent cohort (N = 14; t13 >2.9, P 
< 0.01 in one- sample t- tests; Figure 9). Moreover, another independent experiment (N = 15) showed 
that, as in our previous work (Watanabe et al., 2015; Watanabe et al., 2014a), the excitatory TMS 
induced behavioural effects opposite to those yielded by the inhibitory stimulation (t14  >2.8, P < 
0.01 in one- sample t- tests; Figure 9b), which added indirect but empirical support for the current 
observations.

Long-term effects
To examine the potential of future clinical applications of this brain- state- dependent neural stimulation 
system, we conducted another two- month longitudinal experiment (N = 63) and found accumulative 
effects of this closed- loop TMS system. Despite its weak power—approximately 78 % of the power 
of the similar TMS protocol (Watanabe et al., 2015; Watanabe et al., 2014a)—, the behavioural 
effects became larger along with the weekly TMS sessions (t12 >3.2, PBonferroni < 0.05 in paired t- tests; 
Figure 10a). Moreover, the F- state- dependent TMS affected the baseline perceptual stability, which 
was detectable even one week after the 2- month TMS experiments (F6,12=16.4, P < 10–3 for the main 
effect in a two- way ANOVA; PBonferroni < 0.01 in post- hoc one- sample t- tests; Figure 10b).

Discussion
This study has demonstrated that causal roles of the three PFC regions—right DLPFC, IFC and FEF—
in spontaneous perceptual inference were behaviourally detectable when we tracked the brain state 
dynamics underpinning such perceptual fluctuation. The state-/state- history- dependent behavioural 
causality was explained by the large- scale brain state dynamics and attributable to the energy land-
scape structures. Moreover, the current findings suggest distinct functions of the PFC regions in terms 
of the brain state dynamics: the activation of DLPFC enhances the functional integration between the 
Frontal and Intermediate state, whereas the IFC activity promotes the functional segregation between 
the two brain states; the FEF activity stabilises Frontal state.

These prefrontal functional differences can be interpreted in more conventional neuropsycholog-
ical contexts, if we presume that (i) Frontal state is involved in the generation of top- down signals, 

Figure 10. Long- term effects. We found the accumulative effects of the state-/state- history- dependent TMS on the bistable visual perception in 
2- month longitudinal experiments (a). We focused on the seven TMS conditions that induced significant behavioural effects (Figure 4b,c). Even after the 
2- month weekly TMS experiments, we observed significant changes in the baseline percept duration in three of the seven TMS conditions (b). In panel 
a, the Y- axes show the changes in the median percept duration (TMS – Control), and * indicates PBonferroni <0.05 in paired t- tests with comparisons to the 
week- 0 values (df = 12). In panel b, the Y- axis indicates the changes in the control performance between week 0 and 9. ** indicates PBonferroni <0.01 in one- 
sample t- tests (df = 12).

https://doi.org/10.7554/eLife.69079
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(ii) Visual state is related to bottom- up signal generation and (iii) Intermediate state is a place for 
the interactions of the top- down and bottom- up information. Given these assumptions, the DLPFC 
activity can be seen as a factor to enhance the generation and flow of top- down information, whereas 
the IFC activity facilitates those of bottom- up information. The activation of FEF can be regard as a 
support for the top- down signal generation.

At first glance, this neuropsychological interpretation is well fitted to widely- known concepts on 
two attention systems in the brain (Baldauf and Desimone, 2014; Corbetta et al., 2008; Corbetta 
and Shulman, 2002): the dorsal attention system including the FEF is mainly involved in preparing 
and applying top- down attention, whereas the ventral attention system including the IFC is associated 
with processing of bottom- up attention signals.

However, as argued in a recent TMS study (Weilnhammer et al., 2021), it may be difficult to fully 
describe the PFC roles during bistable perception from the perspective of such attention systems 
only. For example, if the main function of the IFC in this experiment is to receive bottom- up attention 
signals from the visual cortex, distribute them to the fronto- parietal areas and direct the attention to 
a different perceptual inference, the neural suppression of IFC should prolong the percept duration. 
By contrast, in this study, the inhibition of IFC activity did not always lengthen the percept duration 
but often shortened it (Figure 4b,c). Given these, it would be more reasonable to infer that the top- 
down and bottom- up signals, which are supposed to be generated and communicated in the brain 
state dynamics, contain not only attention- related information but also other types of neural signal 
such as prediction error in predictive coding paradigm (Brascamp et al., 2018; Hohwy et al., 2008; 
Weilnhammer et al., 2021; Weilnhammer et al., 2017).

By the same logic, it may be difficult to regard the current findings as evidence supporting the notion 
that the DLPFC and IFC are irrelevant to the bistable perception itself but only involved in reporting 
the perceptual states (Brascamp et al., 2015; Frässle et al., 2014). If these prefrontal regions are 
related to reporting the perceptual awareness, the neural suppression of the PFC areas should always 
prolong the percept duration. In reality, the inhibitory TMS over PFC could shorten the percept dura-
tion (Figure 4b,c), which indicates the possibility that the DLPFC and IFC are closely involved in the 
bistable perception itself. In the meantime, we have to be careful to generalise this indication to other 
types of bistable perception. In fact, it is not SFM but binocular rivalry that the previous study used to 
show the negligible associations between the PFC activity and bistable perception (Brascamp et al., 
2015; Frässle et al., 2014). To resolve this situation, future studies would have to examine brain- state- 
dependent behavioural causality of the PFC in SFM- induced bistable perception using the non- report 
paradigm (Tsuchiya et al., 2015).

In the bistable visual perception paradigm, a line of previous TMS studies reported behavioural 
causal roles of the parietal cortex in the right hemisphere (Carmel et al., 2006; Kanai et al., 2011; 
Kanai et al., 2010; Vernet et al., 2015; Zaretskaya et al., 2010), whereas no investigation found 
such effects in the prefrontal cortex except for a recent one (Weilnhammer et al., 2021). The current 
findings propose a neurobiological account for this difficulty in detecting the prefrontal causality. As 
shown in Figure 4b,c, the behavioural responses to the TMS depended on the timing of the neural 
stimulation. Without tracking the brain state dynamics, the behavioural responses to the TMS would 
be close to the average of such brain- state- dependent effects and likely to be observed as null results 
(e.g. Figure 4d).

If this is the case, why could the recent study successfully detect prolonged percept in the bistable 
visual perception test after applying conventional TMS over the IFC? (Weilnhammer et al., 2021) The 
TMS protocols are different between the previous study and the current work, and further studies 
are necessary to answer this question directly; but we can speculate the reason as follows. In the 
recent study, theta- burst TMS was administered to the IFC during rest. Considering that default- mode 
network is mainly active during rest and the IFC and DLPFC tend to be inactive, we can speculate that 
the TMS was applied during brain states similar to Visual state. As shown in Figure 4b, such V- state- 
dependent TMS over the IFC could induce a moderate prolongation of the percept duration (Cohen’s 
d = 0.3), which may be detected as a significant behavioural effect in the recent study.

Methodologically, the current findings can be seen as another work highlighting the fact that 
certain brain- behaviour causality is changing so dynamically that we cannot behaviourally detect it in 
conventional neurostimulation methods that do not consider the temporal changes of the brain states 
(Bergmann, 2018; Karabanov et al., 2016). Previous work has addressed this issue by controlling, 
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inferring or monitoring the brain state: some studies controlled the brain state using external stimuli 
and applied the TMS when a specific sensory stimulus was presented to the participants (Cattaneo 
et al., 2010a; Cattaneo et al., 2010b; Ezzyat et al., 2017); a clinical research adopted emotional 
states as indicators of the neural activity and determined the timing of the deep brain stimulation 
based on such inference (Scangos et al., 2021); neurophysiological studies monitored neural activity 
and determined the timing of brain stimulation based on the frequency, phase or power of the neural 
signal (Mrachacz- Kersting et al., 2019; Polanía et al., 2018; Schaworonkow et al., 2019; Stefanou 
et al., 2018; Zrenner et al., 2018).

The current TMS method is categorised into the last group and could be seen as advancement of 
such direct- neural- monitoring- based brain stimulation. Differently from the previous work monitoring 
a single neural activity (Mrachacz- Kersting et al., 2019; Polanía et al., 2018; Schaworonkow et al., 
2019; Stefanou et al., 2018; Zrenner et al., 2018), the TMS system used here can track the brain 
state using neural activity patterns recorded from multiple remote brain regions. Considering the 
multi- regional brain state dynamics underpin complex cognitive activities (Ezaki et al., 2018; Wata-
nabe et al., 2014c; Watanabe and Rees, 2017), such a multivariate monitoring approach could be a 
more effective manner to investigate more physiological brain- behaviour causality.

Moreover, the combination of EEG- triggered TMS and energy landscape analysis may become 
foundation of a novel tool to control seemingly unstable behaviours. As shown in our longitudinal 
experiment (Figure  10), this brain- state- dependent neural stimulation system has accumulative 
effects despite its relatively weak stimulation. Given that the perceptual stability seen in this bistable 
perception test was relevant to autistic cognitive rigidity (Watanabe et al., 2019a), this longitudinal 
observation may become a basis for new clinical non- invasive neural interventions and accelerate the 
development of such state- dependent brain stimulation methods.

These findings may not be directly applicable to other types of multistable visual perception, such 
as binocular rivalry, which is linked to lower- level brain architectures such as the visual cortex (Haynes 
et al., 2005; Lee et al., 2005; Leopold and Logothetis, 1996; Meng and Tong, 2004; Miller et al., 
2000; Pettigrew and Miller, 1998; Polonsky et al., 2000). In fact, a comprehensive behavioural study 
reported the relative dissimilarity in perceptual switching rate between the current SFM- induced 
bistable perception and the binocular rivalry (Cao et al., 2018). In contrast, the same study found the 
similarity in between the SFM- induced bistable perception and other fluctuating perception triggered 
by spinning dancer (Liu et al., 2012) and Lissajous- figure (Weilnhammer et al., 2014). Given this, the 
current observations might be more applicable to types of bistable perception that requires construc-
tion of a 3D image from 2D motion compared to the other types such as the binocular rivalry.

To interpret the current observations in psychological contexts such as predictive coding (Bras-
camp et al., 2018; Hohwy et al., 2008; Weilnhammer et al., 2021; Weilnhammer et al., 2017). more 
model- based neuroimaging studies, attention- tracking behavioural research and theoretical investiga-
tions would be necessary.

Figure 11. Oveall study design. The current study consisted of seven EEG/TMS experiments and one numerical simulation.

https://doi.org/10.7554/eLife.69079
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This study has resolved the long- lasting controversy over prefrontal causal roles in multistable 
perception (Brascamp et  al., 2018) and revealed distinct functions of the PFC in the brain state 
dynamics that underpin spontaneous perceptual inference. Furthermore, the combination of the 
brain- state tracking method and neural- activity- dependent brain stimulation system may re- ignite 
neurobiological investigation on state- dependent dynamic causality (Silvanto et al., 2008) in human 
cognition and become another foundation of more effective neural perturbation tools to intervene in 
some neuropsychiatric conditions.

Materials and methods
Overall study design
This study consisted of seven experiments and one numerical simulation (Figure 11).

First, 65 healthy adult individuals underwent two control experiments, in which we recorded their 
EEG signals while they were experiencing bistable visual perception induced by a structure- from- 
motion (SFM) stimulus (Figure 1a). In the Control Experiment I, The EEG data were used to (i) identify 
individual brain dynamics during bistable visual perception and (ii) verify the locations of EEG elec-
trodes and TMS stimulation site. In the Control Experiment II, we examined the accuracy of the brain- 
state tracking and state- dependent TMS system.

Second, 35 of all the 65 individuals participated in the main experiment. In this experiment, using 
the information about individual brain state dynamics, we administered inhibitory TMS to the partic-
ipants in state-/state- history- dependent manners. In parallel, we conducted a numerical simulation 
to predict how inhibitory TMS changed individual energy landscape structures and, resultantly, brain 
state dynamics. Thirty four of the 35 participants completed this experiment. This sample size of the 
main experiment was determined on a power analysis (effect size = 0.5; power = 0.8; alpha = 0.05 for 
paired t- tests).

Other 15 participants underwent a replication experiment that re- tested behavioural causality 
found in the main experiment, and 14 of them completed the experiment. Afterwards, the 14 partic-
ipants underwent a conventional 30 min quadripulse TMS (QPS) (Hamada et al., 2007; Watanabe 
et al., 2015; Watanabe et al., 2014a) experiment, in which they received the QPS over one of the 
three PFC regions (DLPFC, IFC, and FEF) during rest.

The other 15 individuals participated in a validation experiment that examined whether excitatory 
TMS induced behavioural effects opposite to those caused by inhibitory TMS.

The 63 individuals who completed either of these experiments participated in a longitudinal exper-
iment, which evaluated the accumulative effects of the current neural stimulation method.

Participants and ethics
All the 65 participants were right- handed adults (Edinburgh Handedness Inventory laterality score = 
75 ± 16, mean ± sd). None of them had neurological, psychiatric or other medical history and was free 
from any contraindication to TMS experiments (Wassermann, 1998).

Except for the control experiments and 30 min QPS experiment, all the experiments asked the 
participants to undergo the tests continually over several weeks; therefore, some of the participants 
did not complete the study allegedly due to their busyness of life. Consequently, the final sample size 
was 34 for the main experiment (age = 23.1 ± 1.8; female = 12), 14 for the replication experiment (age 
= 22.2 ± 2.0; female = 8), 15 for the validation experiment using excitatory TMS (age = 22.7 ± 1.7; 
female = 7), and 63 for the longitudinal study (age = 22.8 ± 1.9; female = 27). Including the partici-
pants who dropped out, no participant reported adverse effects throughout this study.

This study was approved by Institutional Ethics Committees in RIKEN and The University of Tokyo 
(20- 132). The TMS protocols used here complied with the guideline issued by the Japanese Society 
for Clinical Neurophysiology and that by International Federation of Clinical Neurophysiology (Rossi 
et al., 2009). All the participants provided written informed consents before any experiment and were 
financially compensated for their participation.

Device setup: test of bistable visual perception
The test design of bistable visual perception paradigm in this study is essentially the same as that 
used in our previous work (Watanabe et al., 2014c; Watanabe et al., 2019a). The participants were 
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presented with a structure- from- motion (SFM) stimulus (Figure 1a), a sphere consisting of 200 sinusoi-
dally moving white dots in a black background (angular velocity, 120°/s) with a fixation cross (0.1° × 
0.1°) at the centre of the 27- inch LCD monitor (BenQ PD2710, resolution: 2560 × 1440).

In each run, the participants were instructed to see the SFM stimulus for 90 s with their chins put on 
a chin rest. They were asked to push one of the three buttons according to their visual perception: one 
for upward rotation, another for downward rotation, and the other for unsure or mixture perception. 
After sufficient training sessions, the participants repeated this run six times in all the experiments 
except for the control one. The stimulus presentation and response recording were conducted with 
PsychToolbox three in MATLAB (MathWorks, Inc).

The proportion of the mixture perception was sufficiently small in all the participants, all the exper-
iments (1.4% ± 0.5% of all stimulus presentation times, mean ± sd). Thus, we focused on the time 
during which participants were clearly aware of the direction of the rotation. For each participant, 
we measured the duration of the clear perception and calculated the median of the duration to eval-
uate their perceptual stability. The median duration was adopted because the perceptual durations 
showed long- tailed distributions.

Device setup: EEG
Throughout entire this study, we recorded EEG signals from seven regions of interest (ROIs) to monitor 
brain state transitions using a TruScan Research EEG system with 32 TMS compatible Ag/AgCl ring 
electrodes (Deymed Diagnostic, Czech Republic).

As in our previous work, the seven ROIs consisted of the right FEF (x = 38, y = 0, z = 60 in MNI 
coordinates), DLPFC (x = 44, y = 50, z = 10), IFC (x = 48, y = 24, z = 9), anterior superior parietal 
lobule (aSPL; x = 36, y = –45, z = 44), posterior superior parietal lobule (pSPL; x = 38, y = –64, z = 
32), lateral occipital complex (LOC; x = 46, y = –78, z = 2) and V5 (hMT/V5; x = 47, y = –72, z = 1) 
(Figure 1b). These coordinates are based on the following previous studies: a study by Sterzer and 
colleagues (Sterzer et al., 2002) for the FEF; one by Knapen and colleagues (Knapen et al., 2011) for 
the DLPFC; one by Kleinschmidt and colleagues (Kleinschmidt et al., 1998) for the IFC; three studies 
by Kanai, Carmel and their colleagues (Carmel et al., 2010; Kanai et al., 2011; Kanai et al., 2010) 
for the aSPL and pSPL; one by Freeman and colleagues (Freeman et al., 2012) for the LOC and V5.

Using a stereoscopic neuro- navigation system (Brainsight Neuronavigation, Rogue Research, UK) 
and structural MRI brain images, we located the TMS- compatible EEG electrodes right above on 
these seven ROIs. Also, for the following calculation of Hjorth signals (Hjorth, 1970; see Section 
3.2.1), we put three other EEG electrodes around each ROI electrode (i.e. four electrodes were used 
for one ROI; Figure 12). The other four electrodes (i.e. 32 electrodes – four electrodes/ROI ×7 ROIs 
= 4 electrodes) were located on Fpz, Oz, A1, and A2 in accordance with 10–20 international system 
(Seeck et al., 2017). These electrodes were firmly placed on the heads of the participants with elastic 
caps.

After confirming that the impedance was less 
than 5 kΩ in all the electrodes, we recorded the 
EEG signals with a 32- channel amplifier (TruScan 
EEG LT 32ch Headbox, Deymed Diagnostic; 
6 kHz of analogue sampling frequency), in which 
the signals underwent low- pass filtering (cut- off 
frequency: 1.25 kHz) and were down- sampled to 
3 kHz at almost simultaneously (latency <5 ms).

Device setup: TMS
To deliver both inhibitory and excitatory stimula-
tion, we used a quadripulse TMS system that can 
deliver a train of four monophasic magnetic pulses 
at once from interconnected four magnetic stimu-
lators (70mm- diameter double coil, DuoMag MP, 
DeyMed Diagnostic, Czech Republic).

To limit the neural effects of TMS into the 
target site, our EEG- triggered TMS system did 

Figure 12. Location of electrodes. We placed TMS- 
compatible EEG electrodes in an original way. First, 
seven electrodes were located right above on the 
seven ROIs using a stereoscopic neuro- navigation 
system. Then, for each ROI, three additional electrodes 
were placed right around the electrodes for the 
following Hjorth signal calculation. The yellow circles 
schematically represent the electrodes put above the 
ROIs, whereas the blue ones indicate the neighbouring 
electrodes.
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not use conventional quadripulse TMS protocols (Hamada et al., 2009; Hamada et al., 2007; Seeck 
et al., 2017; Shirota et al., 2010; Watanabe et al., 2014a) in which the TMS was continually admin-
istered throughout 30 min and whose after- effects are observable in connections with remote brain 
areas (Watanabe et al., 2015; Watanabe et al., 2014a) and known to last for more than 60 min. 
Instead, in the main experiment, we conducted a single set of four- pulse 20 Hz monophasic TMS 
for neural suppression, whereas a set of four- pulse 200 Hz monophasic TMS was administered as an 
excitatory stimulation in the validation study.

In addition, to obtain sufficient length of clean EEG data for the following brain- state tracking, we 
put ≥9 sec intervals between the stimulations and set the intensity of the TMS stimulation at a lower 
level (70 % of active motor threshold, AMT) compared to that in the conventional quadripulse TMS 
protocol (90 % of AMT) (Watanabe et al., 2015; Watanabe et al., 2014a). In EEG- triggered TMS, 
such weak stimulations were considered to induce sufficiently large neural effects (Schaworonkow 
et al., 2019).

The AMT was calculated based on motor evoked potentials (MEPs) of the right first dorsal inter-
osseous (FDI) muscle of each participant in prior single- pulse TMS experiments: the AMT was set as 
the lowest TMS intensity that evoked a small response ( > 100µV) when the participants maintained a 
slight contraction of the right FDI (approximately 10 % of the maximum voluntary contraction) in more 
than the half of 10 consecutive trials (Watanabe et al., 2015; Watanabe et al., 2014a).

The MEPs of the right FDI were recorded using a pair of 9mm- diameter Ag/AgCl surface cup 
electrodes that were placed over the muscle belly and the metacarpophalangeal joint of the index 
finger (Hanajima et al., 2001). Before offline analyses, the MEP signals underwent a temporal filter 
(100 Hz–3 kHz). The optimal place for the single- pulse TMS for the right FDI muscle was determined 
as the area over which the simulation induced the largest MEP.

The mean AMT across the entire participant cohort in the three types of the current TMS experi-
ment was 35.8% ± 7.9% of the maximum stimulator output.

In one TMS condition, we placed the TMS coil over one of the PFC areas in the same method 
using the stereoscopic neuro- navigation system (Brainsight Neuronavigation, Rogue Research, UK). 
We confirmed that the coil did not substantially move throughout the experiment by re- measing 
the location with the neuro- navigation system at the end of each experiment day. The green circles 
in Figure 4a show such end- of- the- day locations averaged across the four- day sessions in the main 
experiment.

EEG analysis
In this study, we analysed the EEG data in both offline and online manners. We described the details 
of the two types of EEG analysis in the following sections.

Offline EEG analysis: preprocessing
The offline EEG analysis was applied to data obtained in the control experiment. We conducted 
the following conventional preprocessing (Watanabe et al., 2019b) to the EEG data using MATLAB 
(MathWorks, US) and EEGLAB (Delorme and Makeig, 2004). Note that we used no behavioural 
response, such as the timing of perceptual switch, in the following preprocessing procedure and 
energy landscape analysis.

First, the EEG data were referenced to the average across all the electrodes, down- sampled to 
300  Hz and underwent a temporal filter (1–80  Hz). Then, we conducted an independent compo-
nent analysis (ICA) to remove cardio- ballistic artefacts and other artefacts induced by eye blinks, eye 
movements and muscle activity. The ICA algorithm was based on short- time Fourier transforms and 
complex- valued version of FastICA with a robust measure of non- Gaussianity (Hyvärinen et al., 2010).

Next, we marked epochs whose mean global field power was too large ( > 5 SD of mean power 
across entire recording) and excluded those time periods in all the following main analysis. We then 
filtered the data to delta (1–4  Hz), theta (4–8  Hz), alpha (8–13  Hz), beta (13–30  Hz), and gamma 
(30–80 Hz) bands and estimated a Hilbert envelope amplitude for the gamma- band signal (Deligianni 
et al., 2014; Watanabe et al., 2019b).

We used the Hilbert envelope amplitude for the gamma band as a neural signal for each electrode, 
because the aim of the current EEG recording was to trace the brain state dynamics that was seen 
in our previous fMRI study (Watanabe et  al., 2014c) and the gamma- band signal dynamics were 
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correlated with fMRI signals (Deligianni et al., 2014; Watanabe et al., 2019b). Finally, after removing 
autocorrelation, we calculated a Hjorth signal for each ROI in the following sum- of- difference manner 
(Hjorth, 1970): Hjorth signal for ROIi = (electrode just above ROIi – surrounding electrode 1) + (elec-
trode just above ROIi – surrounding electrode 2) + (electrode just above ROIi – surrounding electrode 
1).

Offline EEG analysis: fitting of pairwise maximum entropy model
We then conducted the energy landscape analysis (Ezaki et al., 2017; Gu et al., 2018; Kang et al., 
2017; Watanabe et  al., 2014c; Watanabe and Rees, 2017) of the preprocessed datasets of the 
seven ROIs. For each participant, the EEG signals were concatenated across different runs. Then, as in 
our previous fMRI work on the brain dynamics (Ezaki et al., 2017; Watanabe et al., 2014c; Watanabe 
et al., 2014b; Watanabe and Rees, 2017), we binarised each ROI time- series data using the temporal 
average of the signals as the thresholds. After this operation, a neural activity pattern of the seven 
ROIs at time t was described such as  V

t =
[
σt

1,σt
2, . . . ,σt

N
]
  , where  σ

t
i   represents a binary activity of ROIi 

at time t (i.e.  σ
t
i = +1 ∨ −1 ) and N denotes the number of the ROIs (here, N = 7).

Fitting a pairwise maximum entropy model
The first goal of the energy landscape analysis is to calculate a hypothetical energy value for each 

neural activity pattern 
 
Vk

(
1 ≤ k ≤ 2N, N = 7

)
 
 . The energy value is not related to metabolic consump-

tion but an index that shows the stability of each state: the more stable and more frequent neural 
activity pattern should have the lower energy value.

To this end, we fitted a pairwise maximum entropy model (MEM) to the seven binary time- series 
signals (Watanabe et al., 2014c; Watanabe and Rees, 2017). We adopted this model because of its 
simplicity. It consists of two types of parameters:  hi  and  Jij  . The hi represents the basal activity of ROIi 
and  Jij  indicates a pairwise interaction between ROIi and ROIj. In terms of neurobiology, this model 
simply assumes that different brain regions have different intrinsic activity  hi  and different pairs of 
brain areas have different coupling strengths  Jij  .

Now, how do we determine the two parameters? In the energy landscape analysis, we determine 

 hi  and  Jij  so that the model- based ROI average activity  ⟨σi⟩m  and model- based average pairwise inter-
actions  

⟨
σiσj

⟩
m  is sufficiently close to the average ROI activity  ⟨σi⟩  and average pairwise interaction 

 
⟨
σiσj

⟩
 . We calculated the model- based mean ROI activity  ⟨σi⟩m = Σ2N

l=1σi
(
Vl
)

P
(
Vl
)
  and model- based 

mean pairwise interaction  
⟨
σiσj

⟩
m = Σ2N

l=1σi
(
Vl
)
σj

(
Vl
)

P
(
Vl
)
 , where  σi

(
Vk

)
  is the binary activity of 

ROIi in the activity pattern Vk and  P
(
Vk

)
  is the appearance probability of an neural activity pattern  Vk  .

This appearance probability is given as  P
(
Vk

)
= e−E

(
Vk
)
/Σ2N

l=1e−E
(

Vl
)
 , where 

 E
(
Vk

)
= −ΣN

i=1hiσi
(
Vk

)
−

(
1/2

)
ΣN

i=1Σ
N
j=1Jijσi

(
Vk

)
σj

(
Vk

)
.  This formulation of  P

(
Vk

)
  is determined by 

the principle of maximum entropy. That is, the information entropy of  P
(
Vk

)
  is maximised by making 

the  P
(
Vk

)
  obey Boltzmann distribution. In other words, to maximise the information entropy of  P

(
Vk

)
  

and minimise any possible constraints, we set the  P
(
Vk

)
  in the form of Boltzmann distribution.

Based on this definition, we adjusted hi and Jij until these the  ⟨σi⟩m  and  
⟨
σiσj

⟩
m  were approximately 

equal to the empirically obtained  ⟨σi⟩  and  
⟨
σiσj

⟩
  using a gradient ascent algorithm.

The accuracy of this MEM fitting was examined by estimating a Pearson correlation coefficient 
between the model- based appearance probability and empirically obtained appearance probability 
and calculating a proportion of Kullback- Leibler (KL) divergence in this second- order model (D2) to 
that in the first- order model (D1) as follows Watanabe et al., 2014c; Watanabe et al., 2013; Wata-
nabe and Rees, 2017: (D1 – D2)/D1. In the control experiment, the Pearson correlation was larger than 
0.95 and the KL- divergence- based accuracy was larger than 84 % (Figure 2a).

Offline EEG analysis: disconnectivity graph in energy landscape 
analysis
Next, we built an energy landscape and searched for major brain states. The energy landscape was 
defined as a network of brain activity patterns Vk (k = 1, 2, …, 2 N) with their energy E(Vk), in which 
two activity patterns were regarded as adjacent if and only if they took the opposite binary activity at 
a single ROI. We then searched for local energy minima, whose energy values were smaller than those 
of all the N adjacent patterns.
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We then examined hierarchal structures between the local minima by building disconnectivity 
graphs as follows Watanabe et  al., 2014c; Watanabe and Rees, 2017: (i) first, we prepared a 
so- called hypercube graph, in which each node representing a brain activity pattern was adjacent to 
the N neighbouring nodes. (ii) Next, we set a threshold energy level, Ethreshold, at the largest energy 
value among the 2 N nodes. (iii) We then removed the nodes whose energy values were≥ Ethreshold. (iv) 
We examined whether each pair of local minima was connected by a path in the reduced network. (v) 
We repeated steps (iii) and (iv) after moving Ethreshold down to the next largest energy value. We ended 
up with a reduced network in which each local min was isolated. (vi) Based on the obtained results, 
we built a hierarchical tree whose leaves (i.e., terminal nodes down in the tree) represented the local 
minima and internal nodes indicated the branching points of different local minima.

Offline EEG analysis: structure of energy landscape
Based on this dysconnectivity graph, we then estimated basin sizes of the local minima as follows. We 
first chose a node i from the 2 N nodes. If any of its neighbour nodes had a smaller energy value than 
the node i, we moved to the neighbour node with the smallest energy value. Otherwise, we did not 
move, indicating that the node was a local min. We repeated this protocol until we reached a local 
min. The initial node i was then assigned to the basin of the local min that was finally reached. This 
classification procedure was repeated for all the 2 N nodes. The basin size was defined as the fraction 
of the number of the nodes belonging to the basin.

The energy barrier between local minima l and m was defined based on the procedure of building 
the disconnectivity graph. When we built the disconnectivity graph by lowering the threshold energy 
level Ethreshold, we searched for the lowest Ethreshold at which the two local minima were still connected. 
The height of the energy barrier from local min l to m was then defined as the difference between the 
Ethreshold and the energy value for the local min l, whereas that from local min m to l was defined as the 
difference between the Ethreshold and the energy value for the local min m.

Then, as in our previous work (Watanabe et al., 2014c), we summarised the local minima as follows: 
if the energy barriers from the local min l to m was lower than a threshold ( = 1, here) and the energy 
value of the local min l was larger than that of local min m, we regarded the local min l and its basin as 
elements of the basin of the local min m. By repeating this procedure, we found that in all the partic-
ipants their brain activity patterns during bistable visual perception could be classified into any of the 
three major basins, which corresponded to Frontal- area- dominantly- active, Visual- area- dominantly- 
active and Intermediate state (F, V and Int state). The energy barrier threshold for this summarisation 
was set at the same value as in our previous work (Watanabe et al., 2014c).

Through this coarse- graining procedure, we defined the three major brain states and calculated 
structural indices of the energy landscapes (i.e. the height of the energy barrier). In addition, this 
summarisation allowed us to classify all the nodes (i.e. brain activity patterns) on the energy land-
scape—except for nodes on the saddles—into any of the three major brain states for each participant. 
The vectors that were not classified into any of the three major brain states were labelled as ‘other 
state’. This classification information would be used in the following EEG- triggered state- dependent 
TMS experiment.

Note that a ‘brain state’ in this study is not a so- called ‘miscrostate’ in conventional EEG research; it 
indicates an activity pattern of multiple (here, seven) brain regions or a group of such activity patterns. 
Although other analyses, such as hidden Markov model (HMM), can also identify brain states (Baker 
et al., 2014; Ezaki et al., 2021; Miller and Katz, 2010; Vidaurre et al., 2018), we adopted the 
energy landscape analysis in this study because it was previously used to identify the brain states 
underpinning the bistable visual perception (Watanabe et al., 2014c).

Offline EEG analysis: simulation of brain state dynamics
In the final part of the energy landscape analysis, we probed the brain state dynamics by a random- 
walk simulation on the energy landscape (Watanabe et  al., 2014c; Watanabe and Rees, 2017). 
This simulation was performed based on a Markov chain Monte Carlo method with the Metropolis- 
Hastings algorithm (Girvan and Newman, 2002; Massen and Doye, 2005).

In this simulation, any brain activity pattern Vi could move only to a neighbouring pattern Vj. In 
other words, this simulation allowed the brain activity pattern to change the activity of only one 
ROI. Technically, first, one of such neighbouring patterns was randomly chosen. Then, whether actual 
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movement occurred or not was determined at the probability 
 
Pij = min

[
1, eE

(
Vi
)
−E

(
Vj
)]

 
 . That is, if the 

Vi was more unstable than Vj (i.e.  E
(
Vi
)

> E
(
Vj
)
 ), the brain activity pattern should always move from 

Vi to Vj. This rule enhanced the movement to local minima. In the meantime, even if the Vi was more 
stable than Vj (i.e.,  E

(
Vi
)

< E
(
Vj
)
 ), there was some room to move to Vj, which prevented the brain 

activity pattern from being trapped in a local minimum forever.
For each individual, we repeated this random walk 105 steps with a randomly chosen initial pattern 

and obtained a trajectory of the brain activity pattern such as 
 

[
V1, V2, . . . , V105]

 
 . After discarding the 

first 100 steps to minimise the influence of the initial condition, we then classified all the  Vt  into either 

of the major brain states (i.e. Frontal, Visual, and Intermediate state) and converted 
 

[
V101, V102, . . . , V105]

 
 

to, for example, [Frontal, Frontal, Intermediate, …., Visual]. Finally, we counted how long each of the 
major brain states continued in the brain state trajectory (dwelling time) and how often one major 
brain state transited to another major state (transition frequency).

Our previous work demonstrated a strong correlation between the percept duration and the 
length of return travel between Frontal state and Visual state via Intermediate state (Watanabe et al., 
2014c). Given this, we compared the behaviourally observed percept duration to the length of the 
F–Int–V–Int–F travel that was calculated in the above random- walk simulation.

Offline EEG analysis: temporal smoothing
In parallel with the random- walk simulation, we examined empirical brain state dynamics probing the 
binary neural vectors with seven elements,  Vt  . For this purpose, we first categorised all  Vt  into either 
of the three major brain states based on the classification information that was obtained in the above 
‘Offline EEG analysis: structure of energy landscape’ section. The vectors that were not classified into 
any of the three major brain states were labelled as ‘Other state’.

To reduce the effects of signal fluctuation, we then applied the following temporal smoothing to 
the time- series of the brain states. First, in a sliding window manner (window length = 10 ms), we 

Figure 13. Identification of brain state dynamics. To reduce the effects of noise- oriented fluctuation in bran state dynamics, we applied two temporal 
smoothing procedures to the original brain state dynamics data. First, in a sliding window manner, we calculated three appearance frequency values 
for the three brain states (a and b). Then, Gaussian temporal smoothing was applied to the three appearance frequency curves (c). By comparing 
the smoothed curves, we identified which brain state was the most dominant at each timepoint (d). Panel e shows an example for such brain state 
transitions with time- frequency plots of the seven ROIs in Participant 1.

https://doi.org/10.7554/eLife.69079
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calculated the appearance frequency for each brain state in the time window (Figure 13a), which 
was assigned to each centre time point in the window as the representative appearance frequency 
for each brain state (Figure 13b). Next, a Gaussian smoothing filter (FWHM = 10 ms) was applied to 
the representative appearance frequency curves (Figure  13c). Based on the resultant appearance 
frequency values, we chose the most frequent brain state and assigned it as the brain state at the time 
point (Figure 13d and e). Note that this temporal smoothing eliminated the ‘other state’.

This empirical brain state dynamics would be used to evaluate the accuracy of the following online 
EEG analysis.

Online EEG analysis: preprocessing
The Online EEG analysis was conducted in all the state- dependent TMS experiments, and its protocol 
was conceptually the same as that in the previous studies (Chen et al., 2013; Schaworonkow et al., 
2019; Stefanou et al., 2018; Zrenner et al., 2018). The preprocessed EEG signals ( < 1.25 kHz and 
3kHz- downsampled) were input to the real- time target PC machine through a DAQ board (sampling 
rate, 2 kHz), in which Simulink Real- Time model and xPC Target in Simulink (MathWorks, US) were 
running to analyse the EEG signals and trigger the TMS system via a TTL signal. We set the analysis 
model in the target PC through an Ethernet- connected host PC prior to the experiments for each 
participant.

First, using the ‘sum- of- difference’ manner, we converted the EEG signals from 28 electrodes (four 
electrodes/ROI × 7 ROIs) into seven Hjorth signals at each timepoint. Then, in a sliding- window manner 
(window length = 1000 ms, i.e. 2000 time points), we extracted the gamma- band signals (30–80 Hz) 
by applying a fast Fourier transformation (FFT) to EEG data in every time window (Figure 14a). The 
gamma band was chosen because (i) this EEG analysis aimed at reproducing our previous fMRI find-
ings (Watanabe et  al., 2014c) and (ii) the EEG signals in the frequency window is considered to 
have temporal properties similar to those of fMRI signals (Deligianni et al., 2014; Watanabe et al., 
2019b). We then estimated the Hilbert envelope function for the gamma- band signals, whose ampli-
tude would be used as neural signals (Watanabe et al., 2019b; Figure 14b). To reduce the edge 
effects (Stefanou et al., 2018; Zrenner et al., 2018), we trimmed 100 ms of the neural time- series 
data on both the edges of the time window (Figure 14c).

Figure 14. Online EEG preprocessing . For the online preprocessing of EEG data, we first calculated a Hjorth EEG 
signal from each ROI data and then extracted a gamma- band signal in a sliding- window manner (a). Next, we fitted 
the Hilbert envelop function (b) and removed both ends of the 1000 ms time window to reduce the edge effects 
(c). Finally, based on the remaining 800 ms Hilbert envelop function, we made the prediction of the forthcoming 
280 ms signal (d). Such 280 ms signals would be used for brain- state tracking.

https://doi.org/10.7554/eLife.69079


 Research article      Neuroscience

Watanabe. eLife 2021;10:e69079. DOI: https:// doi. org/ 10. 7554/ eLife. 69079  20 of 32

Using the remaining 800 ms of the neural signals, we then conducted an autoregressive forward 
prediction based on Yule- Walker equation (order = 30)(Chen et al., 2013; Stefanou et al., 2018; 
Zrenner et al., 2018) and estimated 280 ms of neural signals that would come after the edge of 
the trimmed data (Figure 14d). That is, given the 100 ms edge trimming, this calculation predicted 
the neural signal in a period between T = –100 ms and T = 180 ms when we set T = 0 at the actual 
recording timing (i.e. the original terminal edge of the EEG data). The length of the forward prediction 
was set at 180 ms because (i) one inhibitory TMS in this study took 150 ms, (ii) the temporal smoothing 
required 5 ms more data points for its sliding- window- based calculations (see Section Offline EEG 
analysis: temporal smoothin), and (iii) we prepared 25 ms buffer for the following signal processing to 
realise a nearly simultaneous EEG- triggered TMS system (Chen et al., 2013).

We obtained such 280 msec time- series signal for each ROI and used them in the following analysis.

Online EEG analysis: binarisation
We then conducted online binarisation of the neural signals during the predicted time period. The 
binarisation threshold was calculated for each ROI based on the EEG data obtained in a control run 
that was conducted right before every TMS experiment. Technically, we applied the above- stated 
"Online EEG analysis: preprocessing" procedure to the EEG data during the control run and calcu-
lated the average of the Hilbert envelop amplitude for each ROI in each participant.

Online EEG analysis: brain-state-/history-dependent TMS
These preprocessing and binarisation processes yielded a binary neural vector with seven elements ( + 
1 or –1) at each time point in the 280 ms period (from T = –100 to T = 180). We then categorised the 
binary neural vectors into either of the three major brain states based on the classification information 
that was obtained in the offline energy landscape analysis in the control experiment. The binary neural 
vectors that were not categorised into any of the three major brain states were labelled as ‘Other 
state’.

Next, to reduce the effects of signal fluctuation, we applied the same temporal smoothing protocol 
to the resultant brain state vector as that used in the ‘Offline EEG analysis: temporal smoothing’. As a 

Figure 15. Timings of TMS. After the online preprocessing, we obtained seven time- series data for the seven 
ROIs (orange curves in the left). We put the seven ROI signals into binarisation, brain state categorisation and 
temporal smoothing procedures, which resulted in brain state dynamics in the 270 ms time period (T = –95 to T = 
175 ms). When one brain state dominated the time window, the online analysis machine sent a trigger at T = 24 ms 
after a 21 ms buffer period (a dashed box in the bottom). A burst of the inhibitory TMS consisted of three TMS 
stimulations with 500 msec intervals and thus took 150 ms (green box in the centre).
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result of these analyses and smoothing procedures, we obtained a series of representative brain states 
in a period between T = –95 ms and T = 175 ms. Note that this temporal smoothing eliminated the 
‘Other state’.

The state- dependent TMS was performed based on the brain states that were predicted to appear 
in the forthcoming period between T = 25 ms and T = 175 ms. The TMS was administered only when 
the target brain state was dominant in the period ( > 90% of the brain states). For example, for the 
Frontal- state- dependent TMS, only if Frontal state was predicted to dominantly appear in more than 
90 % of the time period, the real- time analysis machine sent a TTL trigger signal to the TMS device 
21 ms after the EEG signals were input to the analysis machine.

This 21 msec buffer for the online EEG analysis was chosen because the EEG data took ~3 ms to 
reach the analysis machine and the TTL signal from the analysis machine took ~1 msec to trigger the 
TMS. Given these latencies, the TMS was supposed to start almost 25 ms after the EEG recording (T 
= 25 ms; Figure 15).

In addition, the 21 ms buffer was sufficiently long for the online EEG analysis. By connecting the TTL 
signal back to the DAQ board of the real- time analysis machine, we evaluated the signal processing 
delay using the EEG data collected in the Control experiment I and confirmed that the TTL signal 
reached back to the analysis machine 21.3 ± 0.02 ms (mean ± s.d., 21.1 ms–21.5 ms) after the EEG 
signals were input into the machine.

For the neural- history- specific TMS, we looked into both the forthcoming period (T = 25 ms to T = 
175 ms) and the preceding period (T = –95 ms to T = 25 ms). The TMS was administered only when 
both the two periods dominantly showed the target brain states. That is, for example, Post- Frontal 
Intermediate- specific TMS was administered only when Intermediate state was dominant in the forth-
coming period ( >90% of the brain states) and Frontal state was dominant in the neighbouring time 
window.

Note that, for both the brain- state-/history- specific stimulation, once a TMS was administered, we 
did not conduct the next stimulation until at least 9 s passed. Such an interval gave the current brain- 
state- dependent TMS system a sufficient length of clean EEG data before the next TMS.

Experiment design and statistics
In the above sections, we stated all the essential device setups and analysis procedures. In the 
following sections, we elaborated on the actual designs of the experiments using such devices and 
analyses protocols.

Control experiments
The control experiment consisted of two parts: EEG part and EEG/TMS part. The Control Experiment 
I was conducted to (i) identify the brain state dynamics in the offline EEG analysis and (ii) validate the 
locations of the EEG electrodes, whereas Control Experiment II was performed to (iii) verify the accu-
racy of the online EEG analysis and brain- state- dependent TMS system. Both the parts employed the 
same 65 individuals and were performed at least two- day intervals.

Control experiment I: EEG part (day 1)
In the Control Experiment I, we collected EEG signals while the participants were conducting the 
test of bistable visual perception (1.5 min/run × 10 runs). The participants started this EEG recording 
sessions after sufficient training of the test.

For the aim (i), we applied the offline energy landscape analysis to the EEG data and examined 
whether the brain dynamics seen in our previous fMRI study (Watanabe et al., 2014c) were qualita-
tively reproduced in the current EEG experiment. This analysis was conducted for the aim (ii) as well: if 
we successfully confirmed the reproducibility, such observations would provide face validation to the 
locations of the EEG electrodes. The details of this offline energy landscape were stated above (see 
‘Offline EEG analysis’ sections).

Control experiment II: EEG/TMS part (Day 2)
In the Control Experiment II, the participants underwent test of bistable visual perception (1.5 min/
run × 11 runs) with the brain- state- dependent TMS system, which was almost the same as stated in 
the sections (see ‘Device setup: TMS’ and ‘Online EEG analysis’) except for the locations of the TMS 
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coil and an EEG electrode. We placed one of the 32 TMS- compatible Ag/AgCl ring electrodes—which 
was located on A1 in the original setting—on a wooden table that was set remotely from the partici-
pants. The TMS coil was placed over the electrode. Using the signal from this electrode, we measured 
when each TMS stimulation was conducted without causing significant artefacts on the EEG data.

The scalp EEG data in the first run were used to calculate the threshold value for binarisation. 
Therefore, we did not apply TMS in the run. In the rest ten runs, the TMS was performed in the 
following five different conditions: Frontal-/Intermediate-/Visual- state- dependent and Post- Frontal-/
Post- Visual- Intermediate- state- dependent conditions. Each temporal condition was tested in two 
runs.

In the analysis, we performed both the offline and online analyses using the same EEG data. As 
stated above, the online EEG analysis required (i) the classification information to determine which 
major brain state would be assigned to each neural activity pattern and (ii) the threshold to binarise 
the neural signals. The requirement (i) was met by employing the results of the first half of the control 
experiment. For the requirement (ii), the data during in the first run were used: we conducted the 
preprocessing part of the online EEG analysis, extracted a Hilbert envelop curve and calculated the 
mean value of the envelope amplitude for each ROI in each participant.

Using the classification information and binarisation threshold, we performed the online analysis 
with the EEG data recorded during the rest of the runs (10 runs). This online EEG analysis was the 
same as that described above ‘Online EEG analysis’ sections, and we obtained a time- series vector 
representing brain state dynamics.

For the sake of comparison, the offline analysis also used the EEG data recorded in the 2nd- 11th 
run and estimated the brain- state dynamics. We applied all the above- mentioned ‘Offline EEG anal-
ysis’ procedures to the data except for the last random- walk simulation part. This offline analysis 
provided us with information about which major brain state should be assigned to each neural activity 
pattern. Based on the classification information, we then labelled the preprocessed EEG time- series 
data, which resulted in a time- series vector of brain state dynamics.

In sum, these two types of EEG analysis gave us two time- series vectors representing the brain 
state dynamics for each participant. We then compared the two vectors and estimated how accurately 
the online analysis- based time- series vector predicted one that was based on the offline analysis. 
Technically, we counted timepoints whose brain states in the online analysis- based vector were the 
same as those in the offline analysis- based vector. We repeated such counting for each of the three 
major brain states in each participant and evaluated the accuracy.

Figure 16. Design of the main experiment. For each participant, the experiment was conducted over four different days with> one week intervals. On 
each day, they received TMS/sham over one of the three PFC days in five different timings. The stimulation site for the sham condition was randomly 
chosen from the three PFC areas and balanced across the participants.
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In parallel, we examined the temporal accuracy of the TMS. The brain- state- dependent TMS system 
was designed to administer a TMS train 25 ms after a specific brain state was detected in the EEG 
signals. Using the signal from the EEG electrode that was placed on the wooden table and covered by 
the TMS coil, we measured the actual latency from the brain- state detection to the TMS stimulation 
and calculated the difference between the empirical latency and the presumed time- lag (i.e. 25 ms). 
We repeated this estimation for all the five temporal conditions in each participant.

Main experiment: design
In the main experiment, we examined causal behavioural effects of state-/state- history- dependent 
TMS on the median percept duration in a test of SFM- induced bistable visual perception. The partic-
ipants underwent TMS over three different brain sites (DLPFC, IFC and FEF) in five different neural 
timings (F-. V-, Int-, Post- F Int- and Post- V Int- state- dependent TMS). In addition, we conducted 
an experiment using sham stimulation, in which mock TMS was applied over one of the three PFC 
sites. The choice of the target site in the sham condition was randomised and balanced across the 
participants.

These experiments were conducted on four different days with more than one- week intervals. 
In each day, the participants received TMS over the same brain sites in the five different brain- state 
conditions (Figure 16): they underwent six runs of bistable visual perception tests for each condition, 
between which they had one- min rest and one control run without TMS. The order of the brain- state 
conditions was randomised and balanced across the participants. Before and after the TMS condi-
tions, the participants also performed longer control runs.

Main experiment: behavioural and neural analysis
Behaviourally, we calculated the median percept duration for each TMS condition and control session. 
The behavioural effects of the TMS were evaluated as the ratio of the median percept duration in the 
TMS conditions to that in the control runs conducted at the beginning of the entire main experiment.

Neurobiologically, we examined TMS’s effects on the brain state dynamics. Using the results of 
the online EEG analysis, we evaluated the dwelling time lengths for the three major brain states and 
transition frequencies between them after each TMS administration. To reduce the artefacts induced 
by the TMS, we discarded EEG signals recorded between the beginning of the TMS (T = 25 ms) and 
100 ms after the end of the TMS (T = 175 ms + 100 ms = 275 ms) and analysed the data in the first 4 s 
time window in the remaining data (i.e. the period from T = 275 ms to T = 4275 ms).

Main experiment: numerical simulation of TMS effects on energy 
landscape
To investigate the neurobiological changes in the brain state dynamics, we also numerically examined 
how the inhibitory TMS affected the structures of the individual energy landscape, such as the height 
of the energy barrier.

This simulation was conducted based on the  Hi  and  Jij  that were obtained in the offline energy 
landscape analysis using the EEG data recorded during the control experiment. If ROIi was the target 
site of the inhibitory TMS, we removed all the binary neural vectors  Vt  whose element i,  σi  , was set 
at +1 (i.e. active). Then, using the same  Hi  and  Jij  , we built the disconnectivity graph (see ‘Offline EEG 
analysis: disconnectivity graph in energy landscape analysis’) and estimated the structural properties 
of the energy landscape (see ‘Offline EEG analysis: structure of energy landscape’). When the local 
minimum that represented any of the major brain states was removed in this simulation, we alterna-
tively used the brain state that included the neighbouring neural vector as the major brain state. The 
neighbouring neural vector was defined as a vector that was different from the vector for the local 
minimum only in one element. In such numerical simulation, all the three major brain states were 
preserved whichever PFC site was inhibited.

Main experiment: comparison between the numerical simulation, neural 
effects and behavioural causality
We compared the results of the numerical simulation, changes in the brain state dynamics and causal 
behavioural effects. First, we built hypotheses about the changes in the brain state dynamics based on 
the numerical simulation and tested them by comparing the results of the numerical simulation with 
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the effects on the brain state dynamics. After confirming the validity of the hypotheses, we examined 
the relationship between the energy landscape changes, effects on the brain state dynamics and 
causal behavioural responses using the mediation analysis.

Replication experiment
We examined the replicability of the findings of the main experiments by repeating the main exper-
iment with focusing on the seven conditions that yielded significant behavioural effects. This exper-
iment employed a small but independent cohort (originally N = 15; N = 14 after one participant 
dropped out).

Validation experiment with excitatory TMS
We also examined the validity of the main findings in experiments using the excitatory TMS (see 
details on the TMS protocol in ‘Device setup: TMS’ section). As shown in our previous work (Wata-
nabe et al., 2015; Watanabe et al., 2014a), the excitatory TMS was expected to induce behavioural 
and neural effects opposite to those yielded by the inhibitory TMS. To test this, we repeated the 
main experiment using the excitatory TMS with an independent cohort (N = 15). Like the replication 
experiment, we focused on the seven TMS conditions that induced significant behavioural changes in 
the main experiment.

Conventional quadripulse TMS experiment
For comparison, we examined the behavioural effects of conventional 30 min inhibitory quadripulse 
TMS (QPS) by employing the 14 individuals who completed the replication experiment at least 1 
month before.

In this experiment, we adopted the inhibitory QPS protocols that were used in our previous studies 
(Watanabe et al., 2015; Watanabe et al., 2014a). This TMS consisted of 360 consecutive bursts with 
5 s intervals (i.e. 30 min), and each burst comprised four monophasic 20 Hz TMS whose intensity was 
set at 90 % of AMT. We conducted this QPS over either of the three PFC regions using the same TMS 
device as used in the main experiment. In addition, we performed a sham condition; thus, the partic-
ipants came to the lab four times with more- than- one- week interval. The order of the TMS conditions 
was randomised and balanced across the participants.

In each day, the participants first completed the six control runs of bistable visual perception tests 
and then underwent the 30 min TMS session over one of the three PFC sites. In the sham condition, 
the TMS coil was placed over one of the three PFC areas, which was randomly chosen and balanced 
across the participants. During the TMS session, they were asked to rest with their eyes open. Ten 
minutes after the end of the TMS, they took the six runs of the bistable visual perception tests.

Longitudinal experiment
We investigated accumulative effects of the brain- sate-/history- specific TMS by a longitudinal TMS 
experiment that employed the 63 participants who completed the main, replication or validation 
experiment.

Like the replication and validation experiments, we focused on the seven TMS conditions that 
induced significant behavioural changes. In addition, we added three sham conditions, in which the 
TMS was administered over one of the three PFC regions at random timings. In total, the ten condi-
tions were examined.

The 63 participants were randomly assigned to two of the ten conditions: each non- sham condition 
had 13 individuals, whereas two sham conditions had 12 participants and the other sham condition 
was examined with 11 individuals.

The accumulative effect of each TMS/sham condition was evaluated over nine weeks. In the first 
8 weeks, the participants underwent weekly TMS/sham experiments. On each day, the participants 
underwent a TMS session (six runs of bistable visual perception tests) and two control sessions (three 
runs) before and after the TMS session. The details of the TMS protocol were the same as those for 
the main experiment. The brain site for the sham condition was randomly chosen from the three PFC 
areas for each participant for each session. The target brain sites were not changed during one period.

For each day, we analysed the behavioural effects of the state-/state- history- dependent TMS by 
calculating proportional changes in the median percept durations within each day. We also tracked 
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the behavioural effects over the 2- month experiment and examined whether the magnitude of the 
behavioural response at each day was significantly different from the first day (week 0).

In the last week (week 9), the participants underwent the control sessions only. Such baseline 
responses were used to evaluate whether the two- month weekly TMS affected the baseline percep-
tual stability.

Validation of the specificity of the EEG recording
We examined whether the current EEG system had sufficient specificity to distinguish between the 
neighbouring prefrontal activities (i.e. the DLPFC activity and IFC activity).

First, using the EEG data in Control Experiments (N = 65), we tested whether the EEG signals 
recorded from the two prefrontal areas were significantly different from each other. Technically, we 
performed the offline energy landscape analysis after one of the prefrontal activities was deliberately 
replaced with the other activity. If this replacement would not disturb the original observations, it 
would be highly likely that the current EEG system could not detect the difference in the neural activity 
between the DLPFC and IFC. Inversely, if the original results were distorted, we could infer that the 
current EEG system has sufficient detectability of differences between the two prefrontal activities.

As a result, the significant brain- behaviour correlation seen in the original analysis (r = 0.67; Figure 2j) 
deteriorated when we set the DLPFC and IFC activities at the same values. If the IFC activity was 
replaced with the DLPFC activity, the correlation coefficient was reduced to 0.19 (Figure 17a). When 
we used the IFC activity for the DLPFC activity, the coefficient was decreased to 0.23 (Figure 17b). 
These results support the notion that the current EEG system can detect significant differences in 
neural activity between the two prefrontal regions.

Second, using the EEG data in the main experiment (N = 34), we compared neural responses to 
TMS between the DLPFC and IFC (Figure 17c). If our EEG system can have a sufficient SNR, the EEG 
signals recorded from the IFC would not be affected by TMS over DLPFC.

In fact, when we administered TMS over DLPFC, the DLPFC signal showed a significant reduction, 
but the IFC signal did not (Figure 17d). After TMS over IFC, the IFC signal was significantly decreased, 
whereas the DLPFC signal was not affected (Figure 17e).

In sum, these two analyses indicate sufficient spatial sensitivity and specificity in the current EEG 
system.

Effects of microsaccade on EEG Recording
In the current study, we adopted a derivation method (i.e. Hjorth signal calculation) (Keren et al., 
2010; Pulvermüller et al., 1997; Trujillo et al., 2005; Zion- Golumbic et al., 2010) and indepen-
dent component analysis (ICA) (Hassler et al., 2011; Jung et al., 2000; Lee et al., 1999) to reduce 
the artefacts of microsaccades on gamma- band EEG signals (Yuval- Greenberg et  al., 2008). We 
confirmed the effectiveness of these signal processing procedures in an additional EEG experiment 
employing 30 healthy individuals (age = 25.1 ± 2.1; female = 11).

In the experiment, the participants experienced the same bistable visual perception with EEG 
electrodes placed over slightly different places. Precisely, 28 electrodes were located around the 
same seven brain regions (ROIs) in the same manner as in the original experiment. The other four 
electrodes were placed around the eyes for electrooculography (EOG) in accordance with previous 
studies (Croft and Barry, 2000; Elbert et al., 1985; Shan et al., 1995): two EOG electrodes at the 
outer canthi of both the eyes (HEOGL and HEOGR) and two at the below and above the right eye 
(VEOGI and VEOGS). Using an electrode near Pz as a reference, we calculated a radial EOG (REOG) 
signal as follows: REOG = (HEOGR+ HEOGL + VEOGI+ VEOGS)/4 – Pz. This REOG signal was used to 
detect the timings of microsaccades in the same manner as shown in a line of previous studies (Croft 
and Barry, 2000; Elbert et al., 1985; Keren et al., 2010; Shan et al., 1995).

In parallel with this microsaccade detection, we applied the same preprocessing procedures to the 
EEG signals recorded from the ROIs.

Finally, we compared raw EEG signals with preprocessed signals around the timings of microsac-
cades and examined whether such preprocessing procedures could remove microsaccade- related 
artefacts. Technically, we compared the mean power between the microsaccade period ( ± 100 ms 
around a microsaccade) and peripheral period consisting of two 100 ms time windows around the 
microsaccade period (Figure 18).
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As a result, we found that both the derivation method and ICA reduced the microsaccade- relevant 
artefacts. The derivation substantially removed the signal increase around a microsaccade (e.g. see 
Figure 18b for effects on DLPFC signal), which was confirmed in all the ROI signals quantitatively 
(Figure 18c). That is, for all the seven ROIs, the mean power in the microsaccade period was not 
significantly different from that in the peripheral period (p > 0.05 in one- sample t- tests).

Figure 17. Spatial sensitivity and specificity of the current EEG system. (a and b) If we replaced one of the prefrontal activities with the other, the brain- 
behaviour association in the original result (Figure 2j) deteriorated. Panel a shows a result when the DLPFC activity was replaced with the IFC activity. 
Panel b shows a correlation when the IFC activity was set as the same value as the DLPFC activity. *, Z > 3.2, p < 0.0018 in the comparison of the brain- 
behaviour correlation between the original one and one after the operation to replace one prefrontal activity with the other. Each circle represents each 
participant. (c) We investigated the TMS- induced changes in the gamma- band amplitude. For example, the panel c shows the gamma- band signals for 
the seven ROIs before and after a TMS administration over the DLPFC in Participant 1. We calculated the mean amplitude of the gamma- band signals in 
both pre- TMS and post- TMS periods and estimated the neural effects of the TMS. (d and e) When we applied TMS over the DLPFC, the DLPFC activity 
was significantly reduced but the IFC activity was not (panel d). When the TMS was performed over the IFC, only the IFC activity was inhibited (panel e). 
Each circle represents each participant.
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The ICA was effective as well. The procedure reduced the signal increase induced by a microsac-
cade (Figure 18d) in all the ROIs (p > 0.05 in one- sample t- tests; Figure 18e).

Statistics
In the case of multiple comparisons, basically, we conducted a two- way ANOVA (participant× condi-
tion) and post- hoc t- tests with Bonferroni correction.
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