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Background: Diagnosis of mediastinal lesions on computed tomography (CT) images is challenging for 
radiologists, as numerous conditions can present as mass-like lesions at this site. This study aimed to develop 
a self-attention network-based algorithm to detect mediastinal lesions on CT images and to evaluate its 
efficacy in lesion detection. 
Methods: In this study, two separate large-scale open datasets [National Institutes of Health (NIH) 
DeepLesion and Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022 
Mediastinal Lesion Analysis (MELA) Challenge] were collected to develop a self-attention network-based 
algorithm for mediastinal lesion detection. We enrolled 921 abnormal CT images from the NIH DeepLesion 
dataset into the pretraining stage and 880 abnormal CT images from the MELA Challenge dataset into the 
model training and validation stages in a ratio of 8:2 at the patient level. The average precision (AP) and 
confidence score on lesion detection were evaluated in the validation set. Sensitivity to lesion detection was 
compared between the faster region-based convolutional neural network (R-CNN) model and the proposed 
model.
Results: The proposed model achieved an 89.3% AP score in mediastinal lesion detection and could 
identify comparably large lesions with a high confidence score >0.8. Moreover, the proposed model achieved 
a performance boost of almost 2% in the competition performance metric (CPM) compared to the faster 
R-CNN model. In addition, the proposed model can ensure an outstanding sensitivity with a relatively low 
false-positive rate by setting appropriate threshold values. 
Conclusions: The proposed model showed excellent performance in detecting mediastinal lesions on CT. 
Thus, it can drastically reduce radiologists’ workload, improve their performance, and speed up the reporting 
time in everyday clinical practice. 
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Introduction

The mediastinum, located between the two pleural cavities 
in the thoracic compartment, extends from the sternum 
to the vertebral column anteroposteriorly and from the 
superior thoracic aperture to the diaphragm superoinferiorly 
(1-3). Diagnosing mediastinal lesions presents a complex 
challenge for pulmonologists, radiologists, and pathologists 
due to the diverse range of conditions, including non-
neoplastic, neoplastic, primary, and metastatic lesions that 
may appear as mass-like entities in this region (4-6). This 
complexity often results in significant diagnostic workload, 

potential delays, workflow interruptions, and an increased 
misinterpretation rate.

Recent advances in artificial intelligence (AI) have 
notably enhanced the interpretation of chest radiographs, 
especially in computed tomography (CT) imaging, which 
is pivotal in detecting abnormalities. AI improves the 
diagnostic precision of radiologists by identifying subtle 
tissue changes and streamlining the detection process, 
thereby facilitating better evaluation of disease progression, 
treatment efficacy, and early diagnosis of critical conditions 
such as lung cancer. Furthermore, AI tools enable more 
accurate and timely decision-making, enhancing patient 
care outcomes (7-12). Although various AI algorithms 
have successfully identified conditions like lung nodules, 
pneumothorax, and tuberculosis, their effectiveness remains 
constrained in diagnosing mediastinal lesions, where they 
have yet to achieve the performance standards of human 
experts (13-15).

Recognizing the increasing global reliance on low-dose 
CT (LDCT) for lung cancer screening, which typically 
does not use intravenous (IV) contrast, highlights an 
essential area of potential for AI applications. Many patients 
worldwide undergo LDCT screening for lung cancer, where 
the ability of AI to accurately detect not only lung nodules 
but also pathological mediastinal lesions could substantially 
change the landscape of screening for chest diseases. This 
capability would avoid the higher costs and radiation 
exposure associated with standard contrast-enhanced CT 
scans (16-18). 

Our study addresses these challenges by developing a 
novel self-attention network-based AI algorithm to detect 
and localize mediastinal lesions across various compartments 
effectively. By closing existing gaps in lesion detection and 
significantly enhancing diagnostic accuracy, our approach 
aims to improve the precision of diagnostic tools, reduce 
the workload on radiologists, minimize diagnostic errors, 
and improve the speed and quality of patient care. This 
comprehensive solution offers a pivotal advancement in 
medical imaging, particularly in optimizing LDCT for lung 
cancer screening.

Key innovations of this study include:
	 Advanced self-attention mechanisms: utilizing self-

attention layers that analyze the spatial relationships 

Highlight box

Key findings
•	 We developed a self-attention network to detect mediastinal 

lesions on computed tomography (CT) images.
•	 Our method has achieved high accuracy, significantly outperforming 

traditional methods such as convolutional neural networks (CNNs).
•	 The method has been validated on a large CT image dataset, 

confirming its applicability in real-world scenarios.

What is known and what is new?
•	 Deep learning, especially CNNs, has been widely employed 

in medical image analysis for tumour detection and organ 
segmentation tasks. These techniques have demonstrated the 
potential to enhance diagnostic accuracy and alleviate radiologists’ 
workloads. However, they frequently encounter challenges with 
the complexity and variability of mediastinal lesions, which are 
compounded by overlapping structures and diverse pathologies.

•	 This study introduces a novel self-attention network specifically 
designed for detecting mediastinal lesions on CT images, offering 
significant improvements over traditional CNNs. Our model 
enhances detection accuracy and minimizes false positives by 
concentrating on pertinent features and relationships within the 
images. Validated on a comprehensive dataset, it demonstrates 
robustness and generalizability, underscoring its potential for 
precise and reliable medical imaging applications in real-world 
clinical environments.

What is the implication, and what should change?
•	 Accurate detection of lesions is crucial for early diagnosis of various 

conditions.
•	 Future research should focus on integrating these advanced 

diagnostic tools into clinical workflows to enhance early detection 
and treatment planning.
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within CT scans to enhance the detection accuracy 
of complex mediastinal lesions.

	 Specia l ized mediast inal  focus :  ta i lor ing AI 
methodologies specifically to the challenges of 
mediastinal lesion detection, a step beyond the 
general focus on lung nodules and masses.

	 Enhanced diagnostic efficiency: the algorithm 
is designed to integrate seamlessly into clinical 
workflows, providing real-time analysis and results 
that expedite clinical decision-making and potentially 
reduce diagnostic errors.

By pushing the boundaries of AI in medical imaging, 
this study aims to set new standards in the accuracy and 
efficiency of mediastinal lesion detection, ultimately 
improving patient outcomes by enabling earlier and more 
precise interventions. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
jtd.amegroups.com/article/view/10.21037/jtd-24-679/rc).

Methods

Data acquisition and lesion annotation

Two separate large-scale open datasets were collected: the 
National Institutes of Health (NIH) DeepLesion dataset (18) 
for the pretraining stage and the Medical Image Computing and 
Computer Assisted Intervention (MICCAI) 2022 Mediastinal 
Lesion Analysis (MELA) Challenge dataset (19) for the 
training and validation stages. The NIH DeepLesion dataset 
included 10,594 abnormal CT images from 4,427 patients  
accumulated in the NIH Clinical Center’s Picture Archiving 
and Communication Systems (PACS) system (20). Only 
921 abnormal CT images with mediastinal lesions were 

enrolled in the pretraining set. For training and validation, 
880 abnormal CT images were collected from the MICCAI 
Challenge dataset acquired between 2009 and 2020 in an 
ultra-high volume tertiary hospital (Shanghai Pulmonary 
Hospital, Shanghai, China) (21). The dataset was randomly 
split into a training set and a validation set in a ratio of 8:2 
at the patient-level. The detailed information on the CT 
images enrolled in this study is listed in Table 1.

Each CT image was reviewed by experienced radiologists 
who annotated abnormalities with bounding boxes. While 
our dataset captures a range of mediastinal lesions, it does 
not specify detailed classifications, such as the density or 
exact borders of the lesions. This study focuses on detecting 
these lesions regardless of their specific types, addressing 
the challenge of detecting well-defined and less distinct 
abnormalities. In this study, we uniformly transferred the 
annotations in the format of [left(x), top(y), width, height] 
for network training and further validation. 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This retrospective 
study was approved by Institute of Medical Information & 
Library, Chinese Academy of Medical Sciences & Peking 
Union Medical College, Beijing, China review board 
(IRB number: IMICAMS/02/24/HREC, approval date: 
30/01/2024).

Image preprocessing

The size of all CT images was the same (512×512 pixels) with 
different x-y spacing in the two datasets, and the z-axis pixel 
spacing ranged from 0.5 to 5 mm and from 0.7 to 2.5 mm,  
respectively. To effectively distinguish the “pathologic” 
mediastinal lesion from “normal” mediastinal structures, 

Table 1 The detailed information of the CT images enrolled in this study

Variable
NIH DeepLesion, 

pretraining set

MICCAI 2022 MELA
P value

Training set Validation set

Number of CT slices (n) 921 704 176 –

Number of lesions (n) 1,672 707 177 –

Diameter of lesions (min/max, mm) 3/78 13/204 10/201 –

Thickness of lesions (min/max, mm) 0.5/5 0.7/2.5 0.7/2 –

Age (mean ± SD, years) 53.8±16.1 57.1±12.5 55.3±13.9 0.26

Gender (male, %) 59.8 49.2 47.2 0.13

CT, computed tomography; NIH, National Institutes of Health; MICCAI, Medical Image Computing and Computer Assisted Intervention; 
MELA, Mediastinal Lesion Analysis; SD, standard deviation.

https://jtd.amegroups.com/article/view/10.21037/jtd-24-679/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-24-679/rc
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we set the minimum and maximum window as −175 and  
275 Hounsfield units (HU). 

Notably, the image slice thickness can vary across 
patients and data sources, so trilinear and nearest sampling 
methods were separately applied to standardize the data to 
2 mm in original images and corresponding annotations 
(bounding box) to avoid device bias. To balance the tradeoff 
between memory limitation and contextual information, 
the 3D images fed into the network included only the key 
slice and one more extended slice in forward and backward 
directions on the z-axis, which allowed the construction 
of a fixed size image of 3×512×512 pixels. Moreover, each 
3D image was standardized by the min–max approach for 
denoising and efficient convergence in the training period.

Multiscale feature aggregation

The model utilized a ResNet50-based feature pyramid 
network (FPN) for feature aggregation (22), incorporating 
two-pathway feature convolution, upsampling, and 
connections. In the FPN, the downsampling of feature 
maps in the first three levels was achieved using a stride of 
2 during the convolution operations. This downsampling 
process reduces the spatial resolution of the feature maps, 
enabling the network to capture larger receptive fields and 
more abstract features as it progresses. The subsequent 
region proposal network (RPN) was designed with three 
layers. To address potential feature inconsistency issues as 
network depth increases, dilated convolutions were applied 
between the last two layers. Dilated convolutions expand 
the receptive field without reducing spatial resolution, thus 
maintaining feature integrity and improving the model’s 
ability to learn contextual information. Additionally, the 
residual blocks (23) employed in the network utilized 
two types of shortcut connections corresponding to fixed 
and changing sizes of feature maps. These connections 
effectively integrate shallow features with deeper ones, 
enhancing the convergence speed during training and 
boosting overall network performance by preserving 
essential spatial information throughout the deeper layers.

Channel-aware attention block (CAAB)

In the model development, the CAAB was adopted to 
capture the pixel dependence globally for more indicated 
information in the aggregated features from the backbone 
network. Specifically, in this approach, pixel relationships 
are quantitatively measured using the attention feature maps 

via aggregation of the pixel point with the same weight and 
suppression with different direction. As shown in Figure 1, 
the input feature map Z is generated to three vectors, Q, 
K, and V, which represent the height, width, and channel 
feature, respectively.
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where mnp , mh , and nw  are the value of each pixel on the 

spatial similarity matrix, the feature vector value of width, 
and the feature vector value of height, respectively; and Y 
represents the final output feature map.

Model training and evaluation

The structures of feature aggregation, the RPN, and 
detection branches in our proposed model were similar 
to those of the faster region-based convolutional neural 
network (R-CNN) model (24). The size and ratio of 
anchors were set as 16, 24, 32, 48, and 96 and as 1:2, 1:1, 
and 2:1, respectively. The classification and regression heads 
were used to predict the score (i.e., confidence score) and 
the location of the detected lesions, respectively, which were 
calculated by the network’s last layer (i.e., fully connected 
layer). The softmax function was further used to normalize 
the confidence score as follows:
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where fz  is the value of the foreground, and C is the 

number of classes.
For data augmentation, horizontal and vertical flip 

methods were adopted as general transformers for raw inputs 
into the network. To ensure better network performance, 
the pretrained model was first developed on the DeepLesion 
dataset, which was then fine-tuned by transfer learning on 
the training set using five-fold cross-validation. For training, 
the model was developed on two GeForce RTX 2080 Ti 
GPUs with the PyTorch framework. The learning rate was 
initially set to 0.001, the decay rate was 0.1 every 20 epochs, 
the minibatch size was 16 for 500 epochs at maximum, 
and the early-stopping function was set to 20 consecutive 
epochs. The report evaluation for our model training 
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process was considered to be the value of the Dice similarity 
coefficient (DSC), which was calculated as follows:

( ) ( ), 2DSC A B A B A B= +

	
[5]

Therefore, the loss function for lesion detection was the 
following:

( ),Loss DSC A B= −
	

[6]

Precision was included as the standard metric for the 
object detection in this study and was calculated as follows:

( )Precision TP TP FP= +
	

[7]

where TP is true positive, and FP is false positive, with 
TP and FP representing the number of correct positive 
predictions and the number of incorrect positive predictions 
with respect to the ground truth (GT), respectively. To 
quantitatively evaluated multiple lesions per image, the 
average sensitivity (AS) at several FPs as calculated by 
different thresholds was defined. In this study, we only 
evaluated AS at six values of FPs (0.25, 0.5, 1, 2, 3, and 4), 

considering that images with one lesion accounted for the 
majority of the enrolled data. Sensitivity was calculated as 
follows:

( )Sensitivity TP TP FN= +
	

[8]

where FN is false negative, representing the number of 
negative incorrect predictions with respect to the GT. The 
free-response receiver operating characteristic (FROC) 
curve was defined to determine the value of AS in relation 
to the different numbers of FPs per image. Furthermore, a 
competition performance metric (CPM) was used to evaluate 
the average level of sensitivities from the six FP rates.

Statistical analysis

The proposed model was implemented using PyTorch 
(version 1.7.1). All statistical analyses were conducted 
with R version 3.5.3 (The R Foundation for Statistical 
Computing, Vienna, Austria). The Student’s t-test and Chi-
squared ( 2x ) test were used for continuous and categorical 
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Figure 1 Overview of the proposed network. The red box signifies the prediction of true positives, aligning with the ground truths and 
indicating the accurately detected lesion locations by the model, while the numerical value in red represents the confidence score of lesion 
detection. Conversely, the yellow box denotes false positives, indicating regions erroneously labeled as lesions by the model. FPN, feature 
pyramid network; RPN, region proposal network; R-CNN, region-based convolutional neural network; ROI, region of interest; CAAB, 
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data respectively, and a P value <0.05 indicated a statistically 
significant difference. 

Results

Average precision (AP) of the proposed model in 
mediastinal lesion detection

During the pretraining stage with the DeepLesion dataset, 
the model demonstrated optimal performance around 
250 epochs, achieving an 82.2% AP score in mediastinal 
lesion detection before gradually entering an overfitting 
stage (Figure 2A). In the training stage with the MICCAI 
2022 MELA Challenge dataset, the proposed model 
achieved rapid convergence, resulting in reduced training 
and validation loss within approximately 100 epochs, and 
attained an 89.3% AP score in mediastinal lesion detection 
(Figure 2B). The model consistently identifies lesions larger 
than 10 mm with high confidence; however, sensitivity 
decreases for smaller lesions due to the intricate anatomical 
structures within the mediastinum and the subtle nature 
of these lesions. This variability in sensitivity underscores 
the importance of lesion size and contrast in optimizing 
detection performance.

Confidence score of the proposed model in mediastinal 
lesion detection

In this study, we found that our proposed model could 
identify comparable large lesions with high confidence 
scores (over the value of 0.8), indicating its ability to discern 
lesions (Figure 3A) effectively. Moreover, the intersection-
over-union (IoU) threshold was set to 0.5, which means 
the candidates with overlapping areas between themselves 
and corresponding GTs >0.5 were considered TPs, making 
the area of TPs as large as possible. In contrast, for some 
lesions, detection was challenging due to the influence of 
similar shape, location, or texture with that of GTs or due 
to their extremely small area (Figure 3B). 

Sensitivity comparison between the faster R-CNN model 
and the proposed model 

The FROC curve was plotted to compare the sensitivity 
between the faster R-CNN model (a classical two-stage 
object detection algorithm) and our proposed model in 
the validation set. As shown in Figure 4A and Table 2, our 
proposed model achieved a performance increase of almost 
2% at the level of CPM compared to the faster R-CNN 
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Figure 2 Model training and evaluation. (A) Pre-training stage using the DeepLesion dataset. The blue line represents the training 
loss, indicating how the model’s learning progresses with the training data. The red line shows the validation loss, reflecting the model’s 
performance on unseen data from the same dataset. The green line depicts the evaluation metric—specifically, the AP—achieved by the 
model on the validation set. The AP measures the model’s accuracy in identifying positive instances (such as lesions) while minimizing false 
positives. A higher AP signifies superior performance in terms of both precision and recall. (B) Training stage using the MICCAI 2022 
MELA challenge dataset. As in (A), the blue and red lines represent training and validation losses, respectively. The green line illustrates 
the evaluation metric, AP, on the validation set, demonstrating the model’s generalization ability on new data from the MELA challenge. tr, 
training set; val, validation set; AP, average precision; MICCAI, Medical Image Computing and Computer Assisted Intervention; MELA, 
Mediastinal Lesion Analysis. 
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Figure 3 Representative images of CT scanning, detection, and annotation. (A) Representative images of true-positive predictions (first 
row: DeepLesion; second row: MICCAI 2022 MELA). Green boxes correspond to ground truths, red boxes correspond to true positives, 
and yellow boxes indicate false positives. The number in red is the confidence score for the lesion detection. (B) Representative images of 
false-positive predictions (first row: DeepLesion; second row: MICCAI 2022 MELA). Green boxes correspond to ground truths, and yellow 
boxes correspond to false positives. CT, computed tomography; MICCAI, Medical Image Computing and Computer-Assisted Intervention; 
MELA, Mediastinal Lesion Analysis.

A B

Figure 4 Sensitivity comparison between the faster R-CNN model and the proposed model. (A) The FROC curve for lesion detection with 
the faster R-CNN model and our proposed model in the validation set. (B) Sensitivity evaluation under various thresholds. R-CNN, region-
based convolutional neural network; FP, false positive; FROC, free-response receiver operating characteristic.
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Table 2 The sensitivity comparison between the faster R-CNN and the proposed model

Model
FPs per image

0.25 0.5 1 2 3 4 CPM

Faster R-CNN, 3 slices 84.05 89.48 92.17 92.65 94.13 94.22 91.12

Proposed model (with channel-aware attention), 3 slices 86.67 92.41† 93.73† 93.98† 94.94† 95.20† 92.82†

†, the best score. R-CNN, region-based convolutional neural network; FP, false positive; CPM, competition performance metric.

model. In addition, we observed that the sensitivity was 
higher than that of the faster R-CNN model and was still 
over 92.4% at a cost as low as 0.5 FPs/image.

It is considerably challenging to balance the tradeoff 
between sensitivity and FPs. As shown in Figure 4B, the 
value of 0.05 seems to be ideal cut-off for mediastinal lesion 
detection model in this study, ensuring an outstanding 
sensitivity (93.95%) with a comparably low FP rate  
(1.02 FPs/image). 

Discussion

The emergence of AI, particularly through the utilization 
of advanced algorithms, represents a substantial evolution 
in diagnostic radiology. The incorporation of AI brings 
a significant advantage by reducing the workload of 
radiologists, thus enabling them to devote more attention 
to complex cases and delicate aspects of patient care. In 
this study, we have designed a self-attention network-
based algorithm capable of accurately detecting and 
localizing multiple mediastinal lesions on chest radiographs. 
Additionally, we have evaluated its diagnostic accuracy. 
With a high FROC score and precise lesion detection, the 
model demonstrates the potential of AI to facilitate early 
diagnosis and enhance treatment, ultimately improving 
patient outcomes. Our model achieved a remarkable 
performance improvement of nearly 2% at the CPM level 
in detecting mediastinal lesions compared to the faster 
R-CNN model. While this numerical improvement may 
appear small, its practical significance in clinical applications 
is considerable. This advancement suggests that a broader 
range of patients could benefit from timely and precise early 
diagnoses, potentially leading to better treatment results. 
Moreover, improved performance decreases the chances of 
misdiagnoses and overlooked conditions, essential for patient 
satisfaction and alleviating the healthcare system’s burden. 
This underscores the profound impact of even incremental 
technological progress on clinical practice. There are two 
strengths in our proposed model. First, our model was pre-

trained with the DeepLesion dataset and then trained with 
the MICCAI 2022 MELA Challenge dataset, which helped 
to improve the performance. An attention mechanism 
is needed to make the network focus on the most salient 
feature maps to determine the feature space on the z-axis 
with limited slices. The self-attention (25) method is useful 
for capturing the rich contextual relationships in the feature 
space. Second, our proposed model was adopted. CAAB, 
which facilitated the localization of most of the mediastinal 
lesions with high precision. 

The model’s integration into clinical settings is poised 
to enhance the radiological interpretation of CT scans, 
potentially increasing diagnostic accuracy and reduce 
radiologists’ workload. By automating initial screenings and 
enhancing the detection of diverse lesion characteristics, the 
model improves accuracy and supports more customized 
diagnosis and management plans. This technological 
advancement is especially valuable in remote and resource-
limited environments, where it is a crucial support tool, 
aiding healthcare providers in validating diagnostic 
impressions and making informed decisions. Designed to 
augment, not replace, radiological expertise, the model 
enhances workflow and allows radiologists to focus on 
complex diagnostic tasks. Crucial to its success is the 
seamless integration of this AI into clinical workflows, 
featuring adaptable and user-friendly systems that align 
with clinical needs and improve patient care efficiency and 
quality.

The model showed high confidence in identifying 
large lesions with distinct features such as strong contrast 
and clear borders. However, the retrospective nature 
of our validation dataset introduces potential selection 
bias, limiting the model’s generalizability. More critically, 
excluding normal imaging from the training dataset impairs 
the model’s ability to distinguish between healthy tissue 
and lesions, likely increasing the rate of false positives and 
reducing clinical utility.

The model’s sensitivity in detecting mediastinal lesions 
is significantly affected by lesion size and contrast with 
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surrounding tissues. The model demonstrates high 
confidence in identifying lesions larger than 10 mm. 
However, for smaller lesions, sensitivity decreases due to 
the complex anatomy of the mediastinum and the subtle 
presentation of these lesions. Clinically, our analysis 
indicates that many detected lesions are significant and 
can influence patient management. The model effectively 
identifies critical pathological conditions, such as malignant 
tumors and enlarged lymph nodes, essential for staging 
and treatment planning. Conversely, while the model 
accurately detects benign conditions like simple cysts, these 
findings may not substantially alter clinical management. 
Nonetheless, the model’s ability to exclude serious 
conditions provides reassurance and can reduce the need for 
invasive diagnostics. 

Furthermore, the study acknowledges inherent biases in 
the training data, which could lead to diagnostic inaccuracies 
and potentially raise ethical and legal concerns, especially 
in misdiagnosis cases. Dependence on biased AI systems 
might diminish medical practitioners’ diagnostic skills 
over time, highlighting the need for a balanced approach 
that integrates technology while preserving professional 
expertise. Ethical considerations, particularly regarding 
privacy and AI transparency, are crucial as AI becomes 
increasingly prevalent in clinical settings. Addressing 
these issues requires robust information technology (IT) 
infrastructure, continual radiologist training, and clear 
guidelines for AI integration into clinical decisions.

Although our AI model shows promise in detecting 
mediastinal lesions, its limitations underscore the need for 
thoughtful future development. This includes enriching 
the dataset to include more diverse and rare lesion types, 
addressing inherent biases, enhancing the interpretability 
of AI decisions, and evaluating the impact of contrast-
enhanced imaging on diagnostic performance. We will 
also implement rigorous model evaluation metrics and 
validation protocols to ensure the improvements translate 
into clinically meaningful outcomes.

Future research will expand the training and validation 
datasets to improve diagnostic precision. This expansion 
will incorporate diverse lesion characteristics such as 
density, borders, and contrast enhancement. By doing so, 
the AI can more accurately classify lesions into clinically 
relevant categories, enhancing diagnostic specificity. 
Furthermore, improving our model’s ability to distinguish 
between clinically significant and insignificant lesions will 
maximize its practical utility in clinical settings. Continuous 
refinement of AI algorithms, guided by radiologist feedback, 

is essential. This process will help align the models with 
clinical needs and enable learning from real-world data.

Moreover, we plan to further integrate advanced deep 
learning architectures, such as transformers and graph 
neural networks, to enhance our model’s detection and 
classification capabilities. These state-of-the-art models 
have demonstrated superior performance in various 
computer vision tasks and promise to improve the 
robustness and accuracy of medical image analysis.

Our future goal is to further develop a reliable, ethical, 
and effective diagnostic model that augments radiologists’ 
expertise, thus improving patient outcomes while preserving 
the essential human element in healthcare. By systematically 
addressing these challenges and incorporating advanced 
models and evaluation methods, we aspire to create a robust 
diagnostic tool that meets the evolving demands of clinical 
practice.

Conclusions

In conclusion, our proposed AI model showed excellent 
performance in the detection of mediastinal lesions on 
CT images and has the potential to drastically reduce the 
workload of radiologists, improve their performance, and 
speed up the reporting time in real-world situations. 
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