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More than 100 years after the discovery of the sinus node (SN) by Keith and Flack, the function and structure of the SN have not
been completely established yet. The anatomic architecture of the SN has often been described as devoid of an organized structure;
the origin of the sinus impulse is still a matter of debate, and a definite description of the long postulated internodal specialized
tract conducting the impulse from the SN to the atrioventricular node (AVN) is still missing. In our previously published study, we
proposed a morphologically ordered structure for the SN. As a confirmation of what was presented then, we have added the results
of additional observations regarding the structural particularities of the SN. We investigated the morphology of the sinus node
in the human hearts of healthy individuals using histochemical, immunohistochemical, optical, and electron microscopy (SEM,
TEM). Our results confirmed that the SN presents a previously unseen highly organized architecture.

1. Introduction

The first observation of the SN structure dates back to 1910,
when Arthur Keith andMartin Flack introduced the world to
the location of the sinus node (SN), observing that “we noted
this structure, but attached no functionalmeaning to it” [1, 2].
A century after its discovery, the structure and function of the
SN still remain amystery which has yet to be unfolded. To the
best of our knowledge, our previous published study on the
architecture of the SN was the first to propose a model with a
morphologically ordered structure [3].

First of all, the anatomic architecture of the SN has often
been described as devoid of a definitive shape or an organized
structure [4–10]. The results of the 3D reconstructions of
the atrial elements [11–14] and the mathematical [15, 16] and
ultrastructural models [17] of the SN are strongly divergent.
The fact that the SN presents a different shape in humans, as
compared to othermammals, complicates the task of creating
a reliable model of this structure even more [6].

Second, the origin of the sinus impulse is still a matter
of debate: what triggers it? Research in the fields of electro-
physiology [18] and molecular biology [19–24] has pointed
out that ion channels and intracellular Ca2 signalling are
necessary for the proper setting of a pacemaker mechanism
[25–38]. Brain-type Na channels have also recently been
discovered, but their role is still unclear [39–41]. Sinus node
automaticity is not fully understood, but it seems to arise from
a dynamic balance between positive inward currents which
favour depolarization and positive outward currents [42]
which promote repolarization [43]. Depolarizing currents are
indeed involved in highly stable phase-4 depolarization and
pacemaking [15]. Each of these currents provides a potential
target for pacemaker regulation [44]. Nevertheless, these
currents are not sufficient to explain the pacemaking function
of the SN; in particular, they fail to explain the synchronous
depolarization mechanism of the sinoatrial cells [45, 46].
Mangoni and Nargeot have clearly synthesized this complex
question in their recent complete review confirming that it
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is still not completely clear, for example, which ion channels
are essential for generating diastolic depolarization in the
SN, atrioventricular node (AVN), and the Purkinje fibers
network and which mechanisms play a dominant role in the
autonomic regulation of automaticity in humans [25].

Third, anatomists and pathologists are still not in agree-
ment regarding the internodal tract conducting the impulse
from the SN to the AVN. According to Anderson and Ho,
“There is no evidence of morphologically specialized tracts
between the sinus and the atrioventricular nodes” [4] and
they proposed “preferential conduction more likely reflects
the arrangement of the working internodal cells and their
related cellular properties.” There has been much research
carried out in vain in order to identify this “preferential
conduction” cellular pathway. Cells expressing HCN4 and
Cx45 [23, 46] in the atrium have recently been proposed as
candidates for SN to AVN preferential conduction, but the
authors also acknowledge that “There was not a continuous
tract ofHCN4-expressing cells between the SN and theAVN”
[46].

For those reasons, the aim of the current study was
to investigate the morphology of the SN in depth, inte-
grating standard histological procedures with SEM and
TEM microscopy, histochemistry, and immunohistochem-
istry. Moreover, together with the standard SN section tech-
nique based on orthogonal cutting on the SN artery plane, we
introduced a new slicing approach, sectioning the SN parallel
to the SN artery.

2. Materials and Methods

The collection technique of the SN and the procedures for
the examination of the cardiac conduction system using optic
and electronic microscopy are identical to those described in
the previous communication [1].

Twenty-five autoptic cases in which neither pathologic
modifications of the conduction system nor dysplastic mod-
ifications of the SN artery were present were chosen. The
SN was examined according to the procedure suggested by
Balbi et al. [3]; the specimenswere sectioned perpendicular to
the terminal crest and fixed in FineFix (Milestone, Bergamo,
Italy) and microwave-processed (ATP1, Kaltek, Italy). The
tissues were paraffin-embedded.

For histology, staining with hematoxylin-eosin and luxol
fast blue was carried out; observations were conducted
with direct and polarized light; for histochemistry, toluidine
blue and orcein were used (all reagents from Histo-Line
laboratories, Milano, Italy). For immunohistochemistry, c-
kit (CD117), vimentin, S100, 𝛼-tubulin, synaptophysin, neu-
rofilaments, calretinin, desmin, calcitonin, and Ck AE1-AE3
were tested as were the following neuroendocrine markers:
serotonin, somatostatin, chromogranin, and neuron specific
enolase (all reagents are from NBL Int).

For scanning electron microscopy (SEM), fixed material
was dehydrated in an alcohol-ascending series for prelim-
inary drying, then critical-point-dried, and finally gold-
coated (50A thickness). A SEM Philips 505 equipped with a
backscattered detector and digital image recording was used.
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Figure 1: SN architecture. Elastic fibers geometrically arranged to
form contiguous compartments; these fibers suggest a structurewith
orthogonally oriented walls (histochemistry: orcein HCl, ×800).

For transmission electron microscopy (TEM), sinoatrial
tissue was carefully recovered from paraffin blocks; the
sampleswere dewaxed in xylene and rehydrated; after fixation
with 1% buffered osmium tetroxide (Histo-Line laboratories,
Milano, Italy), the samples were dehydrated in alcohol and
embedded in epoxy resin; 60 to 80 nm thick sections were
stained with uranyl acetate and lead citrate and were exam-
ined under a Philips 400T transmission electron microscope
(reagents are from C.Erba, Milano, Italy).

3. Results

Our work based on new anatomical samples confirmed the
evidence of the presence of regular periodic architecture
in the SN. Elastic and connective fibres that surround the
inner SN artery as quadrangular chambers are approximately
120 microns long. The major axis of these chambers is
arranged parallel to the inner SN artery (Figure 1). The most
recent data now demonstrate that, at the vertices of these
polyhedrons, the connective and elastic fibres are interlaced,
forming a “hook-like” closure (Figure 2). Three types of cells
were confirmed to be present within the chambers: P (pale)
cells, T (transitional) cells, and fibroblast-like cells. Pale cells
are spherical and/or star-shaped with long cytoplasmic pro-
cesses; only P cells are randomly disposed within the matrix
of the cages (Figure 3). The T cells are similar to myocytes
but with a reduced number of sarcomeres; T cells cover
the internal perimeter of the cages, both horizontally and
vertically. Fibroblast-like cells show long multipolar exten-
sions making contact with other cells, vessels, and connective
tissues forming a thin three-dimensional network (Figure 4).
Immunohistochemistry showed that the three cell types of
the SN expressed mesenchymal markers indicative of their
embryological origin when stained with CD34 (Figure 5),
a 110 KDa transmembrane glycoprotein of unknown function
expressed by progenitor hemopoietic cells, interstitial Cajal
cells, and myofibroblastic soft tissues. Random activated
mast-cells are also present (Figure 6).
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Figure 2: SN architecture. (a) Sections longitudinal to the SN artery; it is easy to appreciate the inside structure of the cage and the knots at
its vertices (SEM ×1250) (Sl: fibroblast-like cell, WK: elastic cage knot). (b) Sections throughout the artery plane showing cages as vortices
(Cap: capillary vessel, Cw: cage wall; HE ×600).

Figure 3: Sinus node (SN) cells. The SN typical cell types (P: pale cells, T: transitional cells, Sl: fibroblast-like cells, and Cap: capillary vessel;
HE ×600).
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Figure 4: Fibroblast-like cells. (a) Thin cell processes interconnected with each other; the cellular extensions are revealed by dark dots (HE
×600). (b) Dots on expanded fibroblast-like extensions (TEM ×10.000).
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Figure 5: CD34 expression in the cell population of the SN (ICH,
CD 34, red color, ×400).
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Figure 6: Mast cells of the SN (toluidine blue, ×400).

A helicoid made up of thick and firm connective tissue,
always located in the middle of the cage, contains a thin cap-
illary vessel at its centre having its own elastic ring (Figure 7).
Figure 8 shows an artistic rendering of the SN chamber
reconstruction according to our observations.

4. Discussion

Our results confirm that the SN has a well-organized
anatomic structure. It presented unique and differentiated
characteristics as compared to the rest of the atrialmyocardia.
The presence of numerous predominantly activated mast
cells, together with their own neural innervation, couldmake
the SN an appropriate and suitable structure to integrate the
humoral and neural stimuli which regulate the heartbeat.The
strong presence ofmast cells in the SN is likely responsible for
some of the clinical effects of histaminic dysregulation such as
the presence of antihistaminic drugs and anaphylactic shock
which can induce alterations of the heartbeat [47–49]. Our
observations could open a new perspective as how to answer
Mangoni’s question concerning “which mechanism plays a
dominant role in the autonomic regulation of automaticity
in humans.” An ordinate and coordinate structure of the
SN, as we described, could perhaps be an introduction to
novel research in order to better understand this automaticity
rather than the current model based on single independent
cells with their own automaticity. In fact, according to this
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Figure 7: SN inner structure. In the center, helicoidal connective
structures can be seen in sections parallel to the SN artery, regularly
twisted whereas, in the transverse sections, they appear as vortices
(on the left, note the inner centered capillary (∗) and on the right,
note SEM ×925, ×1360, and ×1770).
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Figure 8: Artistic rendering of the whole SN structure.

proposed model, the SN cells are supposed to undergo spon-
taneous depolarization; the fastest are the primary pacemaker
cells of the heart which determine the heart rate [25].

Until now, this model has been considered necessary and
sufficient. Anyway, even if the necessary depolarization of
the SN cells in order to create the impulse is not under
discussion and is strongly evidence based, the sufficiency
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criteria of this model, namely, that single cells can impose
their rhythm due to their faster rate, seem to be challenged
by both clinical evidence and our results. Is the structure
itself, rather than the single cells, sufficient to generate a
harmonic and coordinated heartbeat? Could it play a role
in SN function, perhaps coupling the contiguous chambers
electromagnetically? Could it be important in the forensic
study of sudden death?

In fact, an electrical depolarization of the entire atrium
constantly follows SN electrical depolarization. Otherwise,
it may be worth considering that a magnetic pulse is also
constantly generated with each electrical pulse; the heartbeat
generates a magnetic field, which is the strongest magnetic
field of the human body (100 pT) [50, 51]. Also external
electromagnetic fields have been shown to markedly affect
heart function in experimental animals [52].

The current work was designed to demonstrate and con-
firm the order in the structure of the SN. This confirmation
could induce us to hypothesize an important role of this
coupled and organized structure, and not exclusively of the
single cells of the SN, in the generation and conduction of the
electromagnetic cardiac pulse.
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