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Abstract: The clinical possibilities of interferon (IFN) became apparent with early studies 
demonstrating that it was capable of inhibiting tumor cells in culture and in vivo using 
animal models. IFN gained the distinction of being the first recombinant cytokine to be 
licensed in the USA for the treatment of a malignancy in 1986, with the approval of IFN-
α2a (Hoffman-La Roche) and IFN-α2b (Schering-Plough) for the treatment of Hairy Cell 
Leukemia. In addition to this application, other approved antitumor applications for IFN-
α2a are AIDS-related Kaposi’s Sarcoma and Chronic Myelogenous Leukemia (CML) and 
other approved antitumor applications for IFN-α2b are Malignant Melanoma, Follicular 
Lymphoma, and AIDS-related Kapoisi’s Sarcoma. In the ensuing years, a considerable 
number of studies have been conducted to establish the mechanisms of the induction and 
action of IFN’s anti-tumor activity. These include identifying the role of Interferon 
Regulatory Factor 9 (IRF9) as a key factor in eliciting the antiproliferative effects of IFN-α 
as well as identifying genes induced by IFN that are involved in recognition of tumor cells. 
Recent studies also show that IFN-activated human monocytes can be used to achieve 
>95% eradication of select tumor cells. The signaling pathways by which IFN induces 
apoptosis can vary. IFN treatment induces the tumor suppressor gene p53, which plays a 
role in apoptosis for some tumors, but it is not essential for the apoptotic response. IFN-α 
also activates phosphatidylinositol 3-kinase (PI3K), which is associated with cell survival. 
Downstream of PI3K is the mammalian target of rapamycin (mTOR) which, in conjunction 
with PI3K, may act in signaling induced by growth factors after IFN treatment. This paper 
will explore the mechanisms by which IFN acts to elicit its antiproliferative effects and 
more closely examine the clinical applications for the anti-tumor potential of IFN.  
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1. Historical Perspective 

In 1957 Isaacs and Lindenmann first described interferon (IFN) as an antiviral agent. [1] The 
antiproliferative effects of IFN were first described in 1962 by Paucker, who showed that a 24 hour 
exposure of L cells to either UV-irradiated Newcastle Disease Virus or to interferon led to a temporary 
decline in the growth of the cells. [2] This effect is seen in both malignant as well as non-malignant 
cells of many cell lineages with the degree of the effect varying greatly among cell lines. Shortly 
thereafter, the ability of IFN preparations to both slow the growth and inhibit cellular transformation 
ability of oncogenic viruses (e.g., Polyoma virus) was described. Oxman and others showed that the 
cellular transformation and neoantigen (SV40 T antigen) formation induced by oncogenic viruses like 
SV40 could be blocked by pre-treatment of cell cultures with IFN. Interestingly, this effect was seen 
when normal 3T3 cells were pre-treated with IFN and subsequently infected with SV40 but was not 
observed in a line of SV40-transformed 3T3 cells [3]. This IFN pre-treatment effect on oncogenic 
viruses was also seen in animals inoculated with polyoma virus as evidenced by delay in tumor 
appearance as well as a decrease in tumor size and number. Given the apparent necessity for 
pretreatment with IFN, results of work done with mice infected with Friend and Rauscher leukemia 
virus was unexpected. Interferon treatment of the mice post-infection was seen to reduce 
characteristics associated with leukemia (e.g. splenomegaly) with an increase in mouse survival. [4,5] 
In addition to IFN’s effect on Friend and Rauscher virus, it was shown to both inhibit both the growth 
of the Mouse Sarcoma Virus (MSV) as well as its ability to transform mouse embryo fibroblasts 
(MEFs). Indeed, it was shown that a continued treatment of cell cultures infected with MSV resulted in 
an inhibitory effect of MSV focus formation [5,6], and in 1970 Chany showed that when MEFs were 
exposed to IFN induced by Newcastle Disease Virus (NDV) for 200 passages the resulting cells lost 
properties of the cell population originally transformed by MSV. Unlike the ability of transformed 
cells to produce colonies in soft agar, the IFN-treated transformed cells no longer had this ability. In 
addition, cells treated with IFN lost their spindle shape and became epithelial. The changes were so 
significant that Chany gave the new, IFN-treated line the name MSV-IF+. In addition, Chany draws a 
parallel with his in vitro work and that of Gresser’s in vivo work in which Gresser showed that even 
highly purified mouse IFN can decrease the replication of some ascetic tumor lines induced by 
carcinogens [7,8].  

Considerable work has been done on the effects of interferon on human malignancies. Work done 
by Gresser and colleagues which examined the ability of IFN to reverse the phenotype of transformed 
and tumorigenic cells to a more normal phenotype showed a partial reversion in human osteosarcoma 
cells (OHA) but no reversion in bladder carcinoma EJ cells after long-term IFN treatment. [9] A delay 
in mammary tumor development in female mice after receiving IFN led to work on the effects of IFN 
on human breast cancer xenografts implanted in athymic nude mice. Two of the three human tumors 
were sensitive to IFN-α [10,11]. Clinical trials were also done examining the effects of IFN treatment 
on malignant melanoma, multiple myeloma and acute granulocytic leukemia and chronic lymphatic 
leukemia, all showing some activity as marked by tumor regression or delay in tumor growth but the 
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malignancy with the distinction of being the first licensed application of IFN-α was Hairy Cell 
Leukemia (HCL) which occurred in 1986.  

The fact that interferons can bring about long-term remissions in certain malignancies is well 
established however, the mechanism(s) by which this is achieved is a matter of continued study. In this 
review, we will explore the numerous aspects of IFN’s ability to inhibit tumor growth and the 
mechanisms that lead to growth inhibition and cell death. We will also discuss how human immune 
cells, e.g., monocytes, used in conjunction with IFN can enhance the anti-tumor effect. Given the 
pleiotropic nature of IFN, a description of some of the proteins expressed as a result of IFN and their 
possible role in the anti-tumor mechanism is presented. Finally, this review would not be complete 
without citing the anti-tumor clinical applications of those IFNs which have been licensed by the 
United States Food and Drug Administration. 

2. Molecular Mechanisms of IFN Action 

2.1. Cell cycle inhibition and antiproliferation 

Interferon is known to affect different phases of the mitotic cycle in different cell systems with the 
most common effect being G1 arrest [12]. Eukaryotic cells are dependent on the sequential formation 
and activation of a series of serine/threonine protein kinases which are comprised of the regulatory 
component cyclin and a catalytic component known as cyclin-dependent kinase (Cdk) [13]. Work done 
by Asano et al. on the effect of IFN-α on cell cycle arrest of mouse macrophages showed that the Cdk 
inhibitors p19 and p21 were strongly up-regulated after treatment with IFN-α, and that that the binding 
of these inhibitors to the G1 cyclin/Cdk complex leads to reduction of its kinase activities and results 
in G1 arrest in the early phases of IFN treatment [14]. Interferon treatment also induces Cdk inhibitors 
p15 and p27 [15–17], resulting in cell-cycle arrest at the G1 phase. Interferon’s effect on cell growth 
inhibition was studied in three human lymphoid cell lines: Daudi, U-266 and H9, the latter of which is 
completely resistant to the antiproliferative effects of interferon. The Daudi and U-266 cells differ in 
that they arrest at different phases of the cell cycle, with Daudi cells accumulating in a G0-like state 
(with consequent inhibition of cyclins D3 and cdc25A) and the U-266 cells arresting subsequent to the 
G1 phase [18,19].  

The transcription factor c-myc has been shown to be down regulated in response to type I 
interferon, resulting in cell-cycle arrest [20–23] and the induction of cell-cycle progression by c-myc is 
due in part to inhibition of translation by dephosphorylation of 4E-BP1 and activation of eIF4E and 
increased phosphorylation of the alpha subunit of eIF2α [24,25]. Activation of the IFN-inducible gene 
RIG-G also results in up regulation of Cdk inhibitors p21 and p27 [26]. Interferon inhibits 
phosphorylation of the tumor suppressor protein pRb. The unphosphorylated form binds the 
transcriptional activator E2F, resulting in cell cycle arrest at the G1 phase [27–29].  

Other signaling pathways have been shown to be activated by IFN treatment. Binding of Type-I 
IFNs to the IFNAR complex induces phosphorylation of the vav proto oncogene, which in turn 
activates the GTPase Rac1, resulting in phosphorylation of p38 MAPK [30,31]. It is also activated by a 
wide array of stress responses, such as radiation and heat shock, and play roles in the signaling 
cascades that induce gene transcription for induction of cytokines, organize the actin skeleton, and 
regulate hepatocye growth [32,33].  
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Figure 1. Type I IFN Signaling. Type-I IFNs bind to a heterodimer composed of the 
transmembrane receptor subunits IFNAR1 and IFNAR2, which results in activation of the 
receptor-associated kinases Jak1 and Tyk2. In the canonical signaling pathway, the 
cytoplasmic signal transducers and activator of transcription (Stat) proteins are recruited to 
the receptor docking sites, phosphorylated, and dimerize to form the active transcription 
factors ISGF3 (Interferon stimulated gene factor 3), composed of phosphorylated Stat 1 
and Stat2, and IRF9 (p48/ISGF3γ), and AAF/GAF (alpha activation factor/gamma 
activation factor), which is composed of two phosphorylated subunits of Stat1. These 
induce transcription of hundreds of interferon-stimulated genes (ISGs). IFN treatment also 
leads to induction of other non-canonical signaling pathways, including those involving 
p38 MAPK, Akt, and Crk. Upstream signaling from the IFNR complex leads to p38 
phosphorylation, which modulates IFN activity and leads to growth inhibition of cells. 
CrkL and CrkII are tyrosine phosphorylated by Tyk2 after IFN treatment, and CrkL can 
also form transcription factor complexes with phosphorylated Stat5. Signaling pathways 
downstream of PI3K, involving Akt and mTOR, or PKCδ, are also important in mediating 
the biological activities of IFN. 

 

Stress-induced responses result in p38 MAPK-induced phosphorylation of Stat1 at S727, but this 
has not been shown to be the case for IFN-γ [34]. The precise mechanism by which this kinase induces 
IFN-induced gene transcription therefore remains elusive. It is a key mediator of inflammation as well 
as immune response and it regulates the expression of multiple cytokines and cellular receptors [35]. 
P38 MAP kinases also play an important role in cell differentiation and apoptosis and are thought to be 
important mediators of tumor progression [36,37].  
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Both Type-I and Type-II IFN treatment activates the Crk signaling pathway. CrkL and CrkII are 
tyrosine phosphorylated by Tyk2 after IFN treatment [38,39]. These proteins may interact with the 
GTPase Rap1, which antagonizes the Ras pathway and may lead to the IFN-induced antiproliferative 
effect on bone marrow hematopoietic progenitor cells [33,39]. In addition, CrkL also forms 
transcription factor complexes with activated Stat5 and binds to GAS sequences to induce gene 
transcription [33,40] (Figure 1). 

2.2. Apoptosis and Cytotoxicity 

Unlike antiproliferation, apoptosis is a form of programmed cell death (PCD). Its biological 
implications first being appreciated almost 40 years ago, apoptosis is now accepted both as a 
mechanism which can suppress tumorigenesis as well as being important in anti-neoplastic therapy. It 
is interesting to note that different cell types may have either pro- or anti-apoptotic reactions to IFN 
and that the apoptotic response to IFN treatment is not observed with many malignant cells. For 
example, more than ten years ago, cell lines which were established from moderately differentiated 
squamous cell carcinomas underwent cell death when exposed to IFN-α with no flow cytometric 
evidence of cell cycle arrest. In addition, transmission electron microscopy (TEM) of the cells revealed 
morphological changes associated with apoptosis (e.g., cellular shrinkage, condensation of nuclear 
chromatin) supporting an association between IFN-α and induction of apoptosis in these cells [41]. 
Conversely, in certain cell systems, IFN-α has been reported to actually protect certain cells from 
chemical- or glucocorticoid-induced apoptosis while IFN-γ can protect against p53-induced 
apoptosis [42]. Milner et al. found that in a panel of Burkitt’s lymphoma cell lines tested, all but Daudi 
cells were protected from apoptosis induced by ionomycin, which is a calcium ionophore known to 
stimulate rapid apoptosis in the presence of IFN [43]. One year prior to this, it was shown that B-
chronic lymphocytic leukemia (B-CLL) cells which, while they undergo apoptosis in culture, are 
prevented from doing so when in the presence of IFN-α [44]. There are a few possible reasons for the 
disparity in IFN action as either inducing or protecting against apoptosis. It may be tumor-related, 
associated with the environment of the tumor or due to other cellular components and their secreted 
factors. The degree of cellular differentiation may also play a role, with certain cells being more likely 
to target genes that regulate apoptosis.  

The differentiation between inhibition of proliferation and apoptosis can be made using flow 
cytometry and transmission electron microscopy, and it is aided by the availability of agents known to 
induce apoptosis (e.g., corticosteroids, gamma irradiation). It has been shown that the two mechanisms 
are independent of each other and possibly indicative of each mechanism following a different 
pathway [18]. 

Treatment with IFN-α,β or γ results in the up regulation of pro-apoptotic proteins such as Fas, Fas-
ligand (FasL) and TRAIL [45–50]. These proteins can interact with FADD (Fas associated death 
domain) or TRAIL-receptor proteins, resulting in initiation of apoptosis through activation of caspase-
8 [51,52]. Interferon can also up regulate caspase-4 and caspase-8 in certain cell lines [53–55], and can 
activate the initiator caspases-8 and 9, as well as the effector caspase-3 (Figure 2). These proteins can 
result in increased sensitivity of cells to pro-apoptotic stimuli such as TNF-α. 

 In some cells, the tumor suppressor gene p53, which functions to initiate cycle-arrest or apoptotic 
pathways, as well as pro-apoptotic members of the Bcl-2 gene family, Bak and Bax [53], have been 
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shown to be up regulated in response to IFN. However, neither p53 nor Bcl-2 appear to be required for 
IFN mediated induction of apoptosis [53,56,57]. 

Although traditionally associated with the antiviral activity of IFNs, 2’-5’ OAS and RNaseL may 
also play a role in induction of apoptosis and antiproliferative responses through the inhibition of 
cellular protein synthesis by degradation of cellular RNA [58,59]. Furthermore, the antiviral protein, 
Protein Kinase R (PKR), acts to promote apoptosis in virus-infected cells [60]. Over expression of 
PKR results in toxic effects as well as increased susceptibility to induction of apoptosis [55].  

Type I-IFN stimulation also leads to phosphorylation of the insulin receptor subunits 1 and 2 (IRS1 
and IRS2), resulting in subsequent binding of the p85 regulatory subunit of phosphatidylinositol  
3-kinase (PI3K) [61,62]. Protein Kinase C-δ (PKC-δ) is then activated and can act in the downstream 
regulation of apoptosis [63,64] (Figure 1) 
 

Figure 2. Apoptotic Signaling in Response to DNA Damage. The caspase cascade is 
initiated by chemical damage to DNA which stimulates Bid cleavage leading to 
permeability transition of the mitochondrial membrane. The mitochondria releases 
cytochrome c in response to apoptotic signals and serves to activate Apaf-1 with 
consequent activation of Caspase 9 and the remainder of the caspase cascade. These 
caspases transmit the apoptotic signal which eventually leads to cell death. 

 

 
The role of the PI3K/mTOR pathway in apoptosis remains unclear. PI3K has been shown to 

function as a cell survival factor as well an inducer of apoptosis [65]. In tumor cells, PI3K/mTOR is 
necessary for the induction of apoptosis after treatment with IFN-α [66]. In addition, PI3K has been 
shown to be involved in the regulation of cytokine expression. Activation of PI3K pathways, results in 
production of interferon-γ [67,68]. 
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2.3. Anti-tumor  

 In addition to an antiproliferative or apoptotic effect, interferon treatment is known to also be 
capable of eliciting a direct cytotoxic effect on some tumor cells. One of the first references to this 
effect was in work done by Vilcek and others 25 years ago, in which he found that of five tumor lines 
tested, two, an adenocarcinoma line and a rhabdomyosarcoma line, were highly sensitive to either 
purified natural or recombinant interferon-gamma even at concentrations of 1 unit/mL with the effect 
being abrogated by the addition of a specific monoclonal anti-interferon gamma antibody [69]. Almost 
10 years after this, Einhorn and colleagues observed a direct cytotoxic effect of interferon (IFN-α2b) 
on malignant cells from a patient with multiple myeloma. Interestingly, this effect was not observed 
with other malignant cells compared in the same study, namely cells from patients with B-cell 
lymphoma, chronic lymphocytic leukemia, hairy cell leukemia and chronic myelogenous leukemia 
raising the possibility that a direct cytotoxic effect of interferon in myeloma cells may be specific for 
this malignancy [70]. Worthy of mention here is the fact that two of the above-mentioned malignancies 
not undergoing a direct cytopathic effect by IFN-α treatment, Hairy cell leukemia and chronic 
myelogenous leukemia are two of the approved indications for IFN-α 2 in the United States, the first 
being approved for both IFN-α2a (Hoffman-La Roche©) and –α2b (Schering-Plough©) and having the 
distinction of being the first approved indication for both in 1986 whereas chronic myelogenous 
leukemia (CML) is an approved indication only of IFN-α2a.  

2.4. Indirect / Immunomodulatory effects of Interferon on cell growth and survival 

Interferon treatment results in reduced production of basic fibroblast growth factor (bFGF) in 
human renal carcinoma cells [71], as well as a reduction in transcription and secretion of the vascular 
growth factor VEGF [72–74].  This could account for reduction in angiogenesis after IFN treatment of 
some tumors [75]. In addition, IFN has been shown to have a negative effect on hematopoiesis, which 
may account for some of the negative side effects of IFN therapy [76,77]. It has been shown that IFN-
α can enhance the expression of the Epidermal Growth Factor Receptor (EGF-R) in some tumor cells 
(e.g. bladder cancer cell lines and KB cells) and that EGF can antagonize the apoptotic cell death 
induced by IFN-α and that IFN-α, in turn, can enhance the activity of EGF on certain cells [78– 80]. 

Type-I and Type-II IFNs also play a role in T cell differentiation and B cell development, and may 
also aid in immune surveillance by increasing antigen processing and up regulating MHC-I expression, 
thus facilitating recognition by cytotoxic CD8+ T-cells. In addition, interferon-γ can also up regulate 
expression of MHC-II in antigen presenting cells, resulting in enhanced CD4+ T-cell response [81,82]. 

The presence of IFN may also result in the activation of moncytes and macrophages. Activated 
macrophages produce reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI) which 
have cytotoxic effects on targeted cells. [83] In addition, activated monocytes produce cytokines, 
which initiate a Th1 response.  

Whether it is inhibition of proliferation, apoptosis, a direct cytotoxic effect or an 
immunomodulatory one, it should be noted that IFN’s ability to elicit these mechanisms varies 
considerably between cells of different lineage. The level of responsiveness to interferon may be 
related to genetic and/or signaling variances at different stages of the cell cycle. [84] There is also a 
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variance based on cell type with some cells responding more strongly than others to the IFN used  
for treatment.  

3. Antitumor Activity of Interferon-Activated Monocytes in Vitro. 

The immunomodulatory properties of IFNs include strong activation of monocytes/macrophages 
[85, 86]. Activated monocytes are established to play a natural role against bacteria, viruses, and tumor 
cells [87–94]. Non IFN activators of macrophages might also act by inducing IFNs [85,95]. These 
include CpG [96,97] lipoplysaccaride (LPS),monoclonal antibodies (mAb) to surface molecules on 
monocytes [98], as well as dsRNA and other nucleic acids [99], transforming growth factor [100], 
cytokines and chemokines [101–104]. In the early antitumor studies of macrophages the degree of 
antitumor activity was substantial but did not reach eradicative levels but recent studies are more 
promising, reporting near-eradicative effects in some cases [89,99]. Importantly, the antitumor activity 
of activated monocytes appears to be relatively selective for tumor cells over normal cells. 
[89,105,106]. Also, since other leukocytes may exert antitumor activity, it is important that the effector 
cells in the reported monocyte studies were shown to be monocytes and not other contaminating cell 
types [89]. 

Some experimental clinical studies used IFN in combination with other cytokines or lymphocytes or 
macrophages to treat cancer. [87,105]. These adoptive innate immunotherapies have had encouraging 
success against some tumors and limited success with other tumors. The limited successes may 
indicate that more effective immunotherapies are needed.  

Effect of IFN-activated human monocytes on some tumor cell lines 

When 30-100 colony forming units of tumor cells were exposed to the combination of IFN-α plus 
purified monocytes, tumor colony formation was reduced by 20-fold (95%) compared with 2-fold 
inhibition by monocytes alone or 3-fold by IFN-α alone. It appears the reduction of both colony size 
and colony number supports the antiproliferative and cytocidal actions of the IFN and monocyte 
mixture. Similar results were obtained with both LOX melanoma and A549 lung tumors. Completely 
resistant to the eradicative effects of human monocytes and IFN is the human glioma SNB-19. Of note 
is the fact that the minimal effective concentration of IFNs needed to activate antitumor activity of 
monocytes approach the very low concentrations that activate antiviral activity (108.3antiviral 
units/mg). Interestingly, no inhibition was observed when the human diploid cell lines, WI38, FS4, and 
MRC5 were assayed as above [107]. 

Direct contact between the human monocytes and the tumor cells was required for this inhibitory 
effect as opposed to said effect being the result of soluble cytokines alone [89,99,105,107–110]. 
Consequently, methods to optimize direct contact in vivo might be essential for eradication in vivo. In a 
small study of tumor patients treated locally or distally with IFNγ-activated monocytes [111,112] 
reduction of ascites tumors in two of seven patients occurred only when the monocytes were 
administered locally (i.p.) [105,106,113]. In these patients, low-grade fever and laboratory changes in 
fibrin accompanied infusion of human monocytes activated with IFNγ (108 units) [105,106,114]. 
Toxicity of the activated monocytes for normal cells may not be a limiting problem, as the former do 
not appear to be cytotoxic for normal diploid cells or in mice [89,98,109,111,115,116] and these side 



Pharmaceuticals 2010, 3  1002

effects were tolerated by patients. Furthermore, direct local therapy of tumors may minimize systemic 
side effects. 

Of medical importance would be a demonstration of this strong antitumor activity in animal models 
and whether established tumors can be eradicated [115,117]. Also important would be identification of 
the mechanisms responsible for the higher sensitivity of many tumor cells over diploid cells [109]. 
Thus, because of its potency and relative specificity, the IFN activated monocyte may be a candidate 
for therapy of human tumors such as localized skin and brain tumors as well as residual tumors at the 
site of excision. An additional advantage may be that this local therapy of tumors may minimize 
systemic side effects. 

4. Clinical Applications 

The only interferons licensed for anti-tumor applications are IFN-α2a (Roferon-A, Hoffman-La 
Roche, Nutley, NJ) and IFN-α2b (Intron-A®, Schering-Plough, Kenilworth, NJ) (Table 1). 

4.1. Chronic Myelogenous Leukemia 

In 1987, Gutterman, et al. first addressed the use of IFN-α in the treatment of Chronic Myelogenous 
Leukemia (CML) and observed a 71% positive response rate in 51 patients treated with doses of 3 to 9 
million international units (MIU) daily but it was not established as the standard of care for the disease 
until the early 1990s when it was determined to be better than standard chemotherapy by several 
randomized controlled trials [118]. Interestingly, CML was the first human malignancy in which a 
consistent chromosomal abnormality was identified. This is a reciprocal translocation between 
chromosome 9 and 22 (BCR-ABL translocation) resulting in the formation of what is known as the 
Philadelphia + (Ph+) chromosome. Since approximately 95% of patients with CML have this 
abnormality, its presence is a sensitive test for the disease although it is not specific enough to 
diagnose it as it can also be found in patients with acute lymphoblastic leukemia [119]. Suppression of 
the Ph chromosome accompanied by complete hematological repression has been seen with IFN-α 
administration [120], but as in some of the other malignancies mentioned above, higher response rates 
have been observed in CML when IFN-α is used in combination with chemotherapy (e.g. cytosine 
arabinoside) [121]. Although pegylated IFN-α2a (Pegasys) is not licensed for the treatment, recent 
randomized trials revealed that it showed significantly greater complete hematologic as well as 
cytogenetic responses than those observed when unpegylated IFN-α was used in the treatment of CML 
patients. Imatinib (Gleevec), which is also licensed for the treatment of CML, and IFN-α are the two 
most active forms of non-transplant therapy and have been shown, in vitro, to have additive or 
synergistic antiproliferative effects using cells positive for the above-mentioned chromosomal 
abnormality (BCR-ABL) and in colony-forming assays using samples from CML-positive patients. 
[121] Discontinuation of Gleevec has been shown to result in very high relapse rates which might be 
the result of a resistance to the drug by CML stem cells. Interestingly, patients initially receiving IFN-
α who then were switched to Gleevec treatment demonstrated long term remission at a high rate. It has 
been proposed that this pre-treatment with IFN-α results in the CML stem cells becoming sensitized to 
Gleevec [122]. A number of clinical trials are in place designed to compare either combination IFN-
α/Imatinib or combination PEG-IFN-α/Imatinib therapies (www.clinicaltrials.gov). 
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4.2. Follicular Lymphoma 

This malignancy is a slow-growing, low grade (indolent) Non-Hodgkin’s lymphoma and its 
incidence has increased over the past twenty years. Extensive studies have been conducted on the use 
of IFN-α2 both in conjunction with chemotherapy and/or as maintenance therapy after remission has 
been accomplished but the results of these studies have been mixed. Some trials which used IFN have 
shown both prolonged Progression-Free Survivals (PFS) as well as Overall Survivals (OS) whereas in 
others, there was no demonstrable survival improvement [123, 124]. The safety and efficacy of Intron-
A® (IFN-α2b) in combination with the chemotherapeutic cocktail CHVP (cyclophosphamide, 
doxorubicin, vindesine and prednisone) was assessed by its manufacturer (Schering-Plough) in patients 
with Stage III/IV follicular Non-Hodgkin’s Lymphoma with one study group receiving both and the 
other receiving IFN-α2b alone. Progression-free survival among the patients receiving combination 
therapy was significantly greater (2.9 vs. 1.5 years) compared to the patients who received IFN 
monotherapy. The median survival after a 6.1 year follow-up was 5.5 years in patients treated with 
CHVP alone while that of patients treated with both CHVP and Intron-A® has not yet been reached 
(Intron-A® package insert). The use of IFN-α2b in conjunction with chemotherapy in patients with 
follicular lymphoma was approved by the FDA in November of 1997. Comparison of combination 
chemotherapy plus IFN-α and combination chemotherapy and Rituximab (a monoclonal antibody also 
licensed for Follicular Lymphoma) is the subject of an ongoing clinical trial. 

4.3. Malignant Melanoma 

Safety and efficacy of Intron-A® was evaluated as an adjuvant to surgical treatment in patients with 
melanoma who were disease free (post surgery) but still considered to be at high risk for systemic 
recurrence. In a randomized control trial comparing high-dose IFN-α2b to patient observation  
(N = 280), 143 patients received 20 MIU/m2 of Intron-A® (I.V., 5 times per week x 4 weeks) followed 
by a maintenance dose of 10 MIU/m2 (S.C, 3 times per week x 48 weeks) while the remaining patients 
(N = 137) underwent observation for that time period. Both relapse-free and overall survival rates were 
increased in the patients receiving Intron-A®. (Intron-A® Package Insert) Conflicting results from 
additional trials has led to controversy about the use of IFN-α2b as an adjuvant therapy in the 
treatment of malignant melanoma. Nevertheless, the number of clinical trials which demonstrate 
relapse-free survival rates with the use of high-dose IFN-α2b in this disease still supports this 
treatment option today. In addition, high-risk patients who have chosen to forego initial IFN-α therapy 
receive some benefit from it should they present with a resectable recurrence of the malignancy after 
either observation or another form of initial therapy [125]. Clinical trials are ongoing comparing the 
therapeutic efficacy of IFN-α or other cytokines (e.g., interleukin-2 and interleukin-12) with or without 
chemotherapeutics (e.g., vinblastine, cisplatin) in treating malignant melanoma in addition to those in 
which biologics (e.g. IFN-α, aldesleukin, IL-2) are administered subsequent to chemotherapy. 
(www.clinicaltrials.gov).  
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4.4. Hairy Cell Leukemia 

Although Interferon (IFN) was first described as an antiviral agent both IFN-α2a (Roferon-A®, 
Hoffman-La Roche) and IFN-α2b (Intron-A®, Schering-Plough) were licensed by the U.S. FDA for 
the treatment of the B-cell neoplasm known as Hairy Cell Leukemia (HCL). At that time, a high 
degree of efficacy was observed in its use against the disease as evidenced by reduction in cytopenia 
and clearing of the malignant “hairy cells” from the blood, the presence of both being classic 
symptoms of the disease [126]. Today, however, IFN is not the standard of care in the treatment of 
HCL as better results have been seen using purine analogues (cladribine, pentostatin, e.g.) instead 
[127]. Interestingly, cladribine is also used in the treatment of multiple sclerosis, the only application 
for which IFN-β is licensed. 

4.5. AIDS-Related Kaposi’s Sarcoma  

In November 1988, IFN-α2a and –α2b were licensed for the treatment of AIDS-related Kaposi’s 
Sarcoma (KS). In both cases, likelihood of response to the IFN therapy is greater in patients not having 
systemic symptoms, who have limited lymphadenopathy and who have relatively intact immune 
systems. (Intron-A® Package Insert). Dosing trials with Roferon-A using an escalating regimen of 3 
MIU, 9 MIU, and 18 MIU each daily for three days followed by 36 MIU daily were performed. These 
showed that the 36 MIU dose as well as the escalating regimen provided the best response. Lower 
doses showed poor tumor regression and doses higher than 36 MIU resulted in unacceptable toxicity 
and in 2003 Hoffman-La Roche requested of the FDA that the Kaposi’s Sarcoma indication, 18 and 36 
MIU dose vials be removed from their license. (Roferon-A® Package Insert). Lower doses, however, 
did prove effective when used in conjunction with anti-retroviral therapy which had the added benefit 
of minimizing the interferon-related toxicity. As a single agent, doses of 30 MIU or more were 
required to attain tumor regression. A randomized control trial was conducted on patients with AIDS-
related Kaposi’s Sarcoma in which one group received a low dose (1 MIU) or an intermediate dose (10 
MIU) of IFN-α2b once daily with twice daily doses of the reverse transcriptase inhibitor didanosine 
(Videx). The response rate for the low dose was 40% and that for the intermediate dose was 55% and 
there was no significant difference in survival rate between the two groups. [128] Given the higher 
toxicity observed with the intermediate dose, use of the low (1 MIU) dose may be preferable. The 
standard of care for AIDS-related KS is HAART (highly active antiretroviral therapy) in which health 
care providers prescribe a “cocktail” of antiretroviral drugs (currently the FDA has approved at least 
28 of these) and they fall into three major categories: reverse transcriptase inhibitors, fusion inhibitors 
and protease inhibitors. These new drugs have appeared to surpass IFN-α in the treatment of this 
disease even though it is still one of the more active agents used to treat it. Both recombinant IFN-α2a 
and IFN-α2b as well as lymphoblastoid IFN-α are being used in clinical trials in conjunction with the 
nucleoside analogue zidovudine (AZT), known to be active against HIV-1, in the treatment of patients 
with AIDS-related Kaposi’s Sarcoma (www.clinicaltrials.gov).  
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Table 1. Interferon-αs licensed by the U.S.F.D.A. which have anti-tumor applications 
(highlighted in red). *The market and sale of Roferon-A in the United States was 
discontinued in September 2007. This action was NOT due to the safety or efficacy of the 
product. 

Product Protein Indications Side Effects

Roferon-A®*
IFN-α2a

Chronic hepatitis C, hairy 
cell leukemia, AIDS-
related Kaposi’s Sarcoma, 
chronic myelogenous
leukemia (CML)

Flu-like symptoms, 
anxiety, coughing, 
injection site swelling or 
redness, nausea, weakness

Intron-A® IFN-α2b

Hairy cell leukemia, 
malignant melanoma, 
follicular lymphoma, 
condylomata acuminata, 
AIDS-related Kaposi’s 
Sarcoma, chronic hepatitis 
C, chronic hepatitis B

Flu-like symptoms, 
dizziness, tiredness, 
weight loss, injection site 
swelling or redness, 
nausea, weakness

 

Even though it is no longer licensed in the United States, Wellferon (IFN-alpha n1), which is a 
natural IFN, was licensed for the treatment of Juvenile Laryngeal Papillomatosis (JLP). The 
manufactuer (then Glaxo-Wellcome) withdrew the license for marketing purposes, not because the 
interferon showed no efficacy. 

5. Pharmacokinetics of IFN-αs Licensed by the U.S. FDA 

5.1. IFN-α2a 

Pharmacokinetics of a single intramuscular dose of IFN-α2a (3-198 MIU) are linear in both healthy 
volunteers and patients with disseminated cancer with peak serum concentrations ranging from  
1,500 to 2,580 pg/mL after a single intramuscular (IM) administration of 36 MIU (mean time to peak 
3.8 hrs) and a range of 1,250 to 2,320 pg/mL after subcutaneous (SC) administration (mean time to 
peak 7.3 hours). It should also be noted that a wide intrasubject variation in serum concentration has 
been observed in the two groups. Bioavailability after intramuscular administration ranges from  
80-83% with total body clearance being between 2.14 and 3.62 mL/min per kg. [129] No change was 
seen in either distribution or elimination over a dosing period of 28 days regardless of whether the IFN 
was administered once daily (1-54 MIU), twice daily (0.5-36 MIU) or three times weekly (1-136 
MIU). (Roferon-A® Package Insert, www.medsafe.govt) 

5.2. IFN-α2b 

Healthy volunteers (N = 12) were administered 5 MIU/m2 of IFN-α2b either subcutaneously (SC), 
intramuscularly (IM) or as a 30 minute intravenous (IV) infusion. Mean serum concentrations 
following SC and IM dosages were comparable with maximum concentrations observed 3-12 hours 
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post administration and the elimination half-life being 2-3 hours becoming undetectable at 16 hours. 
Serum concentrations peaked at the end of the infusion for the IV administration and became 
undetectable at 4 hours after the infusion. There were no detectable levels observed in urine samples 
after any of the administration routes (Intron-A® package insert). 

6. Antibodies to Interferon-α 

It is known that IFN-α therapy can result in the development of both neutralizing and non-
neutralizing IFN-α antibodies. After IFN-α2b therapy, serum neutralizing antibodies were detected in 
0% (0/90) of Hairy Cell Leukemia patients, 4% (1/24) of patients with AIDS-related Kaposi’s 
Sarcoma and <3% of patients with other malignancies (Intron-A® package insert). Although the 
manufacturer of IFN-α2b (Schering-Plough) reports that the presence of these antibodies did not 
appear to negatively impact safety of efficacy in their studies, they have the ability to reduce the latter 
thereby resulting in a relapse or refractory disease. More than 10 years ago, Őberg, et al. examined the 
clinical significance of IFN-α antibodies in 327 patients with solid tumors, 215 of which received IFN-
α2b (Intron-A®) and 29 received IFN-α2a (Roferon-A®). 17% of those receiving Intron-A® 
developed neutralizing antibodies but high-titers (>800 neutralizing units/mL) were seen in only 4% of 
the patients. The incidence of neutralizing antibodies developed in patients receiving Roferon-A® was 
greater with 38% being positive in a neutralization assay and 28% having high-titer neutralizing 
antibodies. Of the two groups, there were a total of 17 patients (9 on IFN-α2b and 8 on IFN-α2a) with 
high-titer antibodies and all but five of these had loss of antitumor response as evidenced by higher 
levels of tumor markers as well as tumor progression [130]. Reports of the clinical significance of the 
development of neutralizing antibodies in patients with Hairy Cell Leukemia, Chronic Myelogenous 
Leukemia and Renal Cell Carcinoma as well as carcinoid tumors, show that 63% of those who 
developed neutralizing antibodies to IFN-α experienced relapse or develop resistance to the interferon 
used for initial treatment [131]. In the case of long term therapy with IFN-α2a for Hairy Cell 
Leukemia, however, antibody presence is transient with 100% of patients studied having non-
neutralizing antibodies becoming antibody-negative after a median of 14.5 months while 30% of those 
having neutralizing antibodies becoming antibody-negative [132]. 

7. Conclusions 

Over the past 25 years, a number of clinical applications of IFN-α have been licensed by many 
regulatory agencies around the globe for a variety of cancers. However, much still needs to be learned 
about the mechanism(s) of IFN’s antitumor activity, both its direct roles, e.g. inhibition of cell growth 
and apoptosis and its indirect activity on the immune cells which activates them to kill the tumor cells. 
In addition, there is also a need to understand the mechanism of IFN’s toxicity so that it can be reduced 
in its clinical applications and thus making it more suitable as an anti-tumor agent either alone or in 
combination with other antitumor agents. 
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