
Modeling Structure-Function Relationships in Synthetic
DNA Sequences using Attribute Grammars
Yizhi Cai, Matthew W. Lux, Laura Adam, Jean Peccoud*

Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America

Abstract

Recognizing that certain biological functions can be associated with specific DNA sequences has led various fields of
biology to adopt the notion of the genetic part. This concept provides a finer level of granularity than the traditional notion
of the gene. However, a method of formally relating how a set of parts relates to a function has not yet emerged. Synthetic
biology both demands such a formalism and provides an ideal setting for testing hypotheses about relationships between
DNA sequences and phenotypes beyond the gene-centric methods used in genetics. Attribute grammars are used in
computer science to translate the text of a program source code into the computational operations it represents. By
associating attributes with parts, modifying the value of these attributes using rules that describe the structure of DNA
sequences, and using a multi-pass compilation process, it is possible to translate DNA sequences into molecular interaction
network models. These capabilities are illustrated by simple example grammars expressing how gene expression rates are
dependent upon single or multiple parts. The translation process is validated by systematically generating, translating, and
simulating the phenotype of all the sequences in the design space generated by a small library of genetic parts. Attribute
grammars represent a flexible framework connecting parts with models of biological function. They will be instrumental for
building mathematical models of libraries of genetic constructs synthesized to characterize the function of genetic parts.
This formalism is also expected to provide a solid foundation for the development of computer assisted design applications
for synthetic biology.
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Introduction

‘‘How much can a bear bear?’’ This riddle uses two homonyms of

the word ‘‘bear’’. The first instance of the word is a noun referring to

an animal, and the second is a verb meaning ‘‘endure’’. Although

the word ‘‘bear’’ has over 50 different meanings in English, its

meaning in any given sentence is rarely ambiguous. In a simple case

like this riddle, the meaning of each word can be deciphered by

looking at other words in the same sentence. In other cases, it is

necessary to take into account a broader context to properly

interpret the word. For instance, it may be necessary to read several

sentences to decide if ‘‘bear claw’’ refers to a body part or a pastry. A

reader will progressively derive the meaning of a text by recognizing

structures consistent with the language grammar. It is often difficult

to understand the meaning of a text by relying exclusively on a

dictionary.

It is interesting to compare this bottom-up emergence of

meaning with the top-down approach that made genetics so

successful. The discipline was built upon a quest to define

hereditary units that could be associated with observable traits well

before the physical support of heredity was discovered [1,2]. The

one-to-one relationship between genes and traits was later refined

by Beadle and Tatum’s hypothesis that the gene action was

mediated by enzymes [3,4]. Cracking the genetic code has been

one of the major milestones in understanding the information

content of nucleic acids sequences. By demonstrating the

colinearity of DNA, RNA, and protein sequences, the genetic

code was instrumental in the identification of specific DNA

sequences as genes. The influence of this legacy on contemporary

biology cannot be underestimated. Models used in quantitative

genetics predict phenotypes from unstructured lists of alleles at

different loci [5,6]. Similarly, genome annotations remain very

gene-centric. Most bioinformatics databases have been designed to

collect information relative to coding regions or candidate genes.

Few, if any, annotations of non-coding regions or higher order

structures are being systematically recorded even for model

organisms like yeast [7,8].

Yet, despite its success, the notion of gene appears insufficient to

express the complexity of the relation between an organism

genome and its phenotype [1,9] The elucidation of the molecular

mechanisms controlling gene expression has revealed a web of

molecular interactions that have been modeled mathematically to

show that important phenotypic traits are the emerging properties

of a complex system [10–15]. The development of this more

integrated understanding of the cell physiology leads to a

progressive adoption of the more neutral notion of genetic part

as a replacement for the notion of genes associated with specific

traits. Making sense of the list of parts generated in genomics,

proteomics, and metabolomics has been a major challenge for the

systems biology community [16–21].
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It is becoming apparent that the genetic code captures only a

small fraction of the information content of DNA molecules

[22,23]. Yet, if there is a general agreement that the cell dynamics

is somehow coded in genetic sequences, no formal relationship

between DNA sequences and dynamical models of gene

expression has been proposed so far. In particular, the formaliza-

tion of the biological functions of genetic parts has remained

elusive. As a result, building models of gene networks encoded in

DNA sequences remains a labor-intensive process. This limitation

has hampered the development of large families of models needed

to analyze phenotypic data generated by libraries of related

genetic constructs [24–28].

Synthetic biology is likely to be instrumental in refining our

understanding of the design of natural biological systems [29]. Just

like the genetic code was partly elucidated through the de novo

chemical synthesis of DNA molecules [30,31], the redesign of

genomic sequences will shed a new light on the relations between

structure and function in genetic sequences [32–34]. By

considering biological parts as the building blocks of artificial

DNA sequences [35], designing new parts that do not exist in

nature [26–28], and making parts physically available to the

community [36], synthetic biology calls for a systematic functional

characterization of genetic parts [37]. These efforts are still limited

by the difficulty in expressing how the function of biological parts

may be influenced by the structure of the DNA sequence in which

they are used. It has been shown that a partial redesign of the

genomic sequences of two viruses had a significant effect on the

virus fitness even though the redesigns preserved the protein

sequences [33,38]. Just as the context of the expression ‘‘bear

claw’’ helps understand its meaning, it is necessary to consider the

entire structure of the DNA molecule coding for particular genes

to appreciate how those genes contribute to the phenotype.

One possible approach to this problem is to extend the linguistic

metaphor used to formulate the central dogma. The notions of

genetic code, transcription, and translation are derived from a

linguistic representation of biological sequences. Several authors

have modeled the structure of various types of biological sequences

using syntactic models [39–46]. However, these structural models

have not yet been complemented by formal semantic models

expressing the sequence function. An interesting attempt to use

grammars to model the dynamics of gene expression did not rely

on a description of the DNA sequence structure. Instead, this

grammar described how various inducible or repressible promot-

ers can transition between different states under the control of

environmental parameters [47]. The simple semantic model stored

in a knowledge base established a correspondence between the

strings generated by the syntax and the physiological state of the

cell. The Sequence Ontology [48] and the Gene Regulation

Ontology [49] represent other attempts to associate semantic

values with biological sequences. Their controlled vocabularies

can be used by software applications to manage knowledge.

However, the semantics derived from these ontologies is a

semantics of the sequence annotation, not of the sequences

themselves.

Model

We recently described a fairly simple syntactic model of synthetic

DNA sequences [50] capable of generating a large number of

previously published synthetic genetic constructs [24,25,51]. We

have now enhanced this initial syntactic model with a formal

semantic model capable of expressing the dynamics of the molecular

mechanisms coded by the DNA sequences. Specialized terms like

syntax, semantics, and others are defined in Table 1. Our approach

uses attribute grammars [52], a theoretical framework developed in

the 60s to establish a formal correspondence between the text of a

computer program and the series of microprocessor operations it

codes for [53,54]. Even though other types of semantic models have

been developed since then [55,56], attribute grammars still

represent a good compromise between simplicity and expressivity,

an important characteristic to ensure that the framework can be

used by non-computer scientists. Attribute grammars make it

possible to use well characterized compilation algorithms to

translate a DNA sequence into a mathematical model of the

molecular interactions it codes for. As the static source code of a

program directs the dynamic series of operations carried out by the

microprocessor based on user inputs, the compilation process

translates the static information of cells coded by DNA sequences

into a dynamical model of the development of a phenotype in

response to environmental influences [57].

The translation of a gene network model from a genetic

sequence is very similar to the compilation of the source code of a

computer program into an object code that can be executed by a

microprocessor (Figure 1). The first step consists in breaking down

the DNA sequence into a series of genetic parts by a program

called the lexer or scanner. Since the sequence of a part may be

contained in the sequence of another part, the lexer is capable of

backtracking to generate all the possible interpretations of the

input DNA sequences as a series of parts. All possible

combinations of parts generated by the lexer are sent to a second

program called the parser to analyze if they are structurally

consistent with the language syntax. The structure of a valid series

of parts is represented by a parse tree [50] (Figure 2). The semantic

evaluation takes advantage of the parse tree to translate the DNA

sequence into a different representation such as a chemical

reaction network. The translation process requires attributes and

semantic actions. Attributes are properties of individual genetic

parts or combinations of parts. Semantic actions are associated

with the grammar production rules. They specify how attributes

are computed. Specifically, the translation process relies on the

semantic actions associated with parse tree nodes to synthesize the

attributes of the construct from the attributes of its child nodes, or

Author Summary

Deciphering the genetic code has been one of the major
milestones in our understanding of how genetic informa-
tion is stored in DNA sequences. However, only part of the
genetic information is captured by the simple rules
describing the correspondence between gene and pro-
teins. The molecular mechanisms of gene expression are
now understood well enough to recognize that DNA
sequences are rich in functional blocks that do not code
for proteins. It has proved difficult to express the function
of these genetic parts in a computer readable format that
could be used to predict the emerging behavior of DNA
sequences combining multiple interacting parts. We are
showing that methods used by computer scientists to
develop programming languages can be applied to DNA
sequences. They provide a framework to: 1) express the
biological functions of genetic parts, 2) how these
functions depend on the context in which the parts are
placed, and 3) translate DNA sequences composed of
multiple parts into a model predicting how the DNA
sequence will behave in vivo. Our approach provides a
formal representation of how the biological function of
genetic parts can be used to assist in the engineering of
synthetic DNA sequences by automatically generating
models of the design for analysis.

Formal Semantics of DNA Sequences
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to inherit the attributes from its parental node. In our

implementation, the product of the translation is a mass action

model of the network of molecular interactions encoded in the

DNA sequence. By using the standardized format of Systems

Biology Markup Language (SBML), the model can be analyzed

using existing simulation engines [58–60].

Table 1. Glossary of specialized terms used throughout this article.

Attribute grammar An attribute grammar is a context free grammar augmented with attributes, semantic rules, and conditions.
Attribute grammars were developed as a means of formalizing the semantics of a context free grammar.

Context free grammar A context free grammar is a quadruple (V, S, P, S) where V is a finite set of non-terminal symbols, S (the
alphabet) is a finite set of terminal symbols, P is a finite set of rules, and S is a distinguished element of V
called the start symbol. A rule P is of the following form ARv where A is a single non-terminal symbol and v
is a string of terminals and/or non-terminals (possibly empty). The term ‘‘context-free’’ expresses the fact that
non-terminals are rewritten without regard to the context in which they occur.

Cusp bifurcation A codimension 2 bifurcation formed by the tangential meeting of two loci of saddle-node bifurcations. In
other words, a cusp bifurcation traces the path of the points bounding a bistable region as they change with
changes in two parameters. Bistability is implied within the cusp bounds.

Direct left recursion A direct left recursion in context free grammar refers to rules of the form ARAv. Parsing left recursion can
possibly lead the parser down an infinite branch of the search tree in the corresponding logic program.

PoPS The measurement of polymerase per second transcribing past a defined point of DNA.

SBML The Systems Biology Markup Language (SBML) is a machine-readable language, based on XML, for
representing models of biochemical reaction networks.

Semantics Semantics reveals the meaning of syntactically valid strings in a language. For natural languages, this means
correlating sentences and phrases with the objects, thoughts, and feelings of our experiences. For
programming languages, semantics describes the behavior that a computer follows when executing a
program in the language.

Syntax Syntax refers to the ways symbols may be combined to create well-formed sentences (or programs) in a
language. Syntax defines the formal relations between the constituents of a language, thereby providing a
structural description of the various expressions that make up legal strings in the language. Syntax deals
solely with the form and structure of symbols in a language without any consideration given to their
meaning.

doi:10.1371/journal.pcbi.1000529.t001

Figure 1. Workflow of generating the gene network model encoded in a DNA sequence. The input for this process is a DNA sequence that
is first broken down into parts by the scanner. The combination of the parts is validated by the parser according to a syntactic model. After validation
by the parser, the sequence is translated by applying semantic actions attached to the rules to transform the series of parts into a set of chemical
equations. The resulting equations can then be solved using existing simulation engines. Each step takes the output of the previous step as input, so
the workflow can start from any step if the appropriate input is provided.
doi:10.1371/journal.pcbi.1000529.g001
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Results

Compilation of a DNA sequence
We have developed a simple grammar compact enough to be

presented extensively, yet sufficiently complex to represent basic

epistatic interactions. The grammar generates constructs com-

posed of one or more gene expression cassettes. The gene

expression cassettes are themselves composed of a promoter,

cistron, and transcription terminator. Finally, a cistron is

composed of a Ribosome Binding Site (RBS) and a coding

sequence (gene). The syntax is composed of 12 production rules

(P1 to P12) displayed in bold characters in Figure 3 where each

entry is composed of a rewriting rule (bold), and semantic actions

(curly brackets). The symbol e refers to an empty string, [ , ] to a

list, [] to an empty list, and the ‘+’ sign indicates the concatenation

operation on two lists. This syntax is comparable to the one

described previously [50] except that we introduced the extra non-

terminal restConstructs to allow the generation of constructs

with multiple cassettes without introducing parsing problems due

to direct left recursions [61].

The attributes of a part include the kinetic rates related to this part

and the interaction information. For example, the attributes of a

promoter include a transcription rate along with a list of proteins

repressing it and the kinetic parameters of the protein-DNA

interactions. For non-terminal variables corresponding to combina-

tions of parts such as cistrons, the attributes include a list of proteins,

a list of promoters, and a list of chemical equations. The equation list

is used to store the model of the system behavior, while the lists of

promoters and proteins are recorded for computing the molecular

interactions resulting from the DNA sequence. The complete set of

attributes used in this simple grammar is listed in Table 2.

If many attributes can be computed locally by only

considering a small fragment of the DNA sequence, other

attributes are global properties of the system. For instance, the

computation of protein-DNA interactions requires access to a

global list of proteins expressed by the constructs. However,

this list is not available until all of the different cassettes have

been parsed. The problem is overcome by using a multiple-

pass compilation method. In the first pass, the compiler does

not do any structural validation but builds the list of proteins in

the system and passes the list as an inherited attribute to the

second pass. In the second pass, the promoter-protein

interactions can be calculated locally at the level of each

cassette. Rules P1 to P5 define the structure of a design, while

rules P6 to P12 cover the selection of a specific part for each

category. In the semantic action, the relation between

an attribute and its variable is indicated by a dot and con-

stants are enclosed by brackets. For instance, gene.mRNA_
degration_rate=[k6] indicates that the value of the

attribute mRNA_degration_rate of a gene is a constant k6.

The attribute repressor_list used in P6 and P7 includes

the name of the repressor, the stoichiometry, and the kinetic

constants of the forward and reverse reactions of the protein-

DNA interaction. Table S1 details the parsing steps and

computational dependence of each step. Finally, the equation

writing operations are handled by functions typed in italics in

Figure 3 and defined in Figure 4.

The translation of the DNA sequence into a mathematical model is

available as the equation_list attribute of constructs. The model

outputs are generated by equations generators, which are purposely

decoupled from the semantic actions. The decoupling enables the

flexibility of using different equation formats to describe a biological

process. The translation of the construct composed of the parts pro_u
rbsAgene_vt1pro_vrbsB gene_u t1 generates the equations

displayed in the [Reactions] section of Figure 5. Each line is

composed of a reaction index (R1 to R12), the chemical equation itself,

and one or two reaction parameters depending on the reaction

reversibility. The initial values have been computed by assigning 1 to

variables representing DNA sequences and prompting the user to set

the initial condition of proteins. The scripts and data used in this report

are available in Dataset S1.

Expressing context-dependencies of parts function
The semantic model presented in the previous section is

completely modular since the parameters of the model describing

the construct behavior are attributes of individual parts, not of

Figure 2. Parse tree showing the derivation process of a two-cassette genetic construct. In the derivation tree, terms in ,. corresponds
to the non-terminals in the grammar, while terms in [ ] are terminals, and the dashed lines indicate the transformation to terminals. The subscripts are
used to distinguish different instances of the same category.
doi:10.1371/journal.pcbi.1000529.g002
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higher order structures. For instance, in the previous model

(Figures 3 and 4), translational efficiency is primarily determined

by the RBS sequence [62,63]. This association between RBS and

translation rate was successfully used to design one of the first

artificial gene networks [24] and is still used by many synthetic

biology software applications [64–67]. Yet, it is also well known

that translation initiation can be attenuated by stable mRNA

secondary structures [68–70]. This leads to a situation where a

translational rate can no longer be considered the attribute of an

individual part but needs to be considered as the attribute of a

specific combination of parts. This type of context-dependency can

naturally be expressed using attribute grammars since the

translation reaction is computed at the cistron level, not at the

level of individual parts. Rule P5 of Figure 3 can be modified by

introducing a new function to retrieve the translation rate for

specific combination of gene and RBS.

P5. cistron R rbs, gene
{
cistron.translation_rate=get_translation_

rate (rbs, gene)
cistron.transcript=rbs.name+gene.name
cistron.equation_list=translation(rbs, gene,

cistron.translation_rate)
}
The get_translation_rate function checks for specific cases of

interactions between an RBS and coding sequence first. If none is

found, then the default RBS translation rate is used.

If exists translation_rate(rbs, gene)
translation_rate=translation_rate(rbs, gene)

else
translation_rate=translation_rate(rbs)

endif

Figure 3. An example of attribute grammar.
doi:10.1371/journal.pcbi.1000529.g003
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This approach is illustrated in Table 3 using previously

published data demonstrating the interference between the RBS

and coding sequence [68]. Specifically, this report provides the

relation expression observed in 23 different constructs generated

by combining different variants of the RBS and MS2 coat protein

gene. This data set has been reorganized in Table 3 by sorting the

constructs according to the RBS and gene variants they used.

Three of the constructs using the WT RBS sequence resulted in a

maximum level of expression while the expression of the gene

variants ORF4, ORF5, and ORF6 were expressed at a much

lower level due to the greater stability of the mRNA secondary

structure. A similar pattern is observed for other RBS variants

(RBS1, RBS2, RBS3, RBS7). For all of these RBS variants, it is

possible to define the translation_rate function by associat-

ing the default translation rate with the maximum expression rate.

Specific translation rates associated with particular pairs of RBS

and gene variants are recorded separately.

Exploration of genetic design space
The semantic model in Figures 3 and 4 is a compact proof of

concept example, but it does not capture a number of features

commonly found in actual genetic constructs. In order to

demonstrate that our approach is capable of modeling more realistic

DNA sequences, we have extended this semantic model (Supple-

mentary Materials) to translate the DNA sequences of previously

published DNA plasmids that include polycistronic cassettes in

different orientations [24]. This plasmid library was generated by 32

different genetic parts (three promoters: pLtetO-1, pLs1con, ptrc-2;

eight RBS: rbsA to rbsH; and four genes: tetR, cIts, lacI, and gfp and

one terminator, all in both orientations). The syntax generates 72

different single gene expression constructs in each orientation. By

combining two genes repressing each other in a construct, it is

possible to make bistable artificial gene networks that are represented

in Figure 6. These bistable networks can be used as a genetic switch.

To demonstrate the potential use of a semantic model to search

for a desirable behavior in a large genetic design space, we have

generated the DNA sequences of all 41,472 possible sequences

(72268 RBS for the reporter gene) having the same structure as

Figure 4. Equation generators.
doi:10.1371/journal.pcbi.1000529.g004

Table 2. Attributes associated with non-terminals.

Non-terminals Inherited Attribute Synthesized Attributes

constructs protein_list promoter_list, equation_list

cassette protein_list promoter_list, equation_list

restConstructs protein_list promoter_list, equation_list

cistron protein_list transcript, equation_list

promoter - name, transcription_rate,
leakiness_rate, repressor_list

RBS - name, translation_rate

gene - name, mRNA_degradation_rate,
protein_degradation_rate

terminator - name

doi:10.1371/journal.pcbi.1000529.t002
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previously described switches. All sequences were translated into

separate model files and a script was developed to perform a

bistability analysis of each model. Parameters of the semantic

model were obtained by qualitatively matching the experimental

results of the six previously published switches [24] and are

summarized in Table S2. Most of the automatically generated

sequences led to inherently non-bistable networks because the

necessary repressor/promoter pairs did not match. Since this

specific example is particularly well understood, we could have

generated a limited number of targeted constructs. Yet, we chose

to generate all possible sequences to demonstrate the generality of

our approach. In particular, it was important to evaluate the

computational cost of generating and translating DNA sequences

to ensure that it would not prevent a systematic exploration of

more complex design spaces. It takes only minutes to generate

41,472 sequences and translate them into SBML files. Hence, the

computational cost of this step is negligible compared to the time

required by the simulation of the SBML files.

Bistability was tested numerically by integrating the differential

equations until they converged to a steady state starting from two

different initial conditions. The two initial conditions started with

one protein level very high and the other very low and vice versa.

We characterized the bistability by computing the ratio of reporter

concentration for the two steady state values. In order to globally

verify the behavior of this large population of models, we focused

on the 3,072 constructs potentially capable of bistability, 1,408 of

which were found to be bistable. We further reduced the number

of constructs used to verify the translation process from 3,072 to

384 by assuming that two constructs differing only in the RBS in

59 of the reporter gene would produce the same ratio of steady

state values. Figure 6 visualizes the behavior of these 384

constructs. Constructs that are not bistable have a ratio of 1. This

ratio gives insight into how the construct is expected to be

experimentally detectable. Since most experimental methods

cannot give an exact value of protein concentration, a high ratio

is desired to rise above experimental noise. Each of the 6 windows

is analogous to the previously described two-parameter bifurcation

diagram for that pair of repressors [24]. This gives confidence that

both the semantic model of DNA sequences and the compiler used

to translate automatically generated DNA sequences give results

consistent with manually developed models of this family of gene

networks. In the long term, the advantage to our approach over a

traditional two-parameter bifurcation is the association of discrete

parameter values with specific parts. This will prove particularly

valuable when the context-dependencies of parameter values are

better documented experimentally.

This example demonstrates the benefit of building a semantic

model of synthetic DNA sequences. Even a small library of genetic

parts can generate large numbers of artificial gene networks having

no more than a few interacting genes. A syntactic model

describing how parts can be combined into constructs is a

compact representation of the genetic design space generated from

the parts library. While it is possible to manually build

mathematical models capturing the dynamics of some of these

artificial gene networks individually, it becomes desirable to

automate the process to ensure the model consistency when

building large families of related models derived from the same

Figure 5. Chemical equations translated from a DNA sequence.
doi:10.1371/journal.pcbi.1000529.g005

Table 3. Context-dependency of experimentally determined
translation rates.

Mutant RBS ORF Expression Translation rate function

1 RBS WT ORF WT 100 translation_rate(RBS WT)

6 RBS WT ORF2 100 translation_rate(RBS WT)

7 RBS WT ORF3 100 translation_rate(RBS WT)

17 RBS WT ORF4 3 translation_rate(RBS WT, ORF4)

20 RBS WT ORF5 6 translation_rate(RBS WT, ORF5)

23 RBS WT ORF6 0.3 translation_rate(RBS WT, ORF6)

4 RBS1 ORF WT 100 translation_rate(RBS1)

2 RBS1 ORF1 100 translation_rate(RBS1)

3 RBS1 ORF2 100 translation_rate(RBS1)

5 RBS1 ORF3 4 translation_rate(RBS1, ORF3)

14 RBS1 ORF4 ,0.003 translation_rate(RBS1, ORF4)

9 RBS2 ORF WT 100 translation_rate(RBS2)

8 RBS2 ORF1 100 translation_rate(RBS2)

10 RBS2 ORF3 100 translation_rate(RBS2)

12 RBS3 ORF WT 100 translation_rate(RBS3)

11 RBS3 ORF1 20 translation_rate(RBS3, ORF1)

13 RBS3 ORF3 100 translation_rate(RBS3)

15 RBS4 ORF4 0.1 translation_rate(RBS4)

16 RBS5 ORF4 0.05 translation_rate(RBS5)

22 RBS6 ORF WT 0.2 translation_rate(RBS6, ORF WT)

18 RBS6 ORF4 80 translation_rate(RBS6)

21 RBS7 ORF WT 100 translation_rate(RBS7)

19 RBS7 ORF4 100 translation_rate(RBS7)

doi:10.1371/journal.pcbi.1000529.t003
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parts library. By considering genetic parts as the terminal symbols

of an attribute grammar, it becomes possible to automatically

generate models of numerous artificial gene networks derived from

this parts library and quickly identify the optimal designs [71].

Discussion

Computer assisted design of synthetic genetic constructs
The parameter values used in the previous example were selected

to match an extremely small set of six experimental data points.

Although the under-determination of the model does not make it

possible to precisely estimate the value of these parameters, the

example illustrates how the framework could provide valuable

guidance in selecting specific parts for a design. Considering that the

exact value of parameters for parts is still a far off perspective, the

automatic exploration of the design space presented here will

provide useful guidance in construct design. For example, robust

constructs from the cusp interior of the tetR/cI and lacI/cI pairings

could be built and tested while less robust switches based on the lacI/

tetR pairing would be avoided. As more is learned about these parts

including the specific rates in different genetic contexts, the

predictive ability of such maps will increase. Other motifs could

be explored in a similar manner. For example, oscillators [11] could

be explored by permuting parts and calculating the model-predicted

existence of oscillations as well as their period or amplitude.

The approach presented in this report will be implemented into

GenoCAD [72], the web-based tool we have developed to give

biologists access to our syntactic design framework. Through

GenoCAD, users will benefit from the syntactic and semantic

models of various parts sources (GenoCAD provided library, MIT

Registry of Standard Biological Parts, or user created parts

library). Initially, users will be able to translate their designs into

SBML files that could be imported in SBML-compliant simulation

tools (www.sbml.org/SBML_Software_Guide) for further analysis.

At a later stage, simulation results and more advanced numerical

analyses will be seamlessly integrated in GenoCAD’s workflow.

One of the major obstacles toward the implementation of such

semantic models in GenoCAD is the development of a data model

allowing users to understand and possibly edit the functional

model of the parts they use.

A function description language called Genetic Engineering of

living Cells (GEC) was recently introduced to specify the properties

of a design [67]. GEC is capable of finding a DNA sequence that

implements the desirable phenotypic functions. Several other

software applications have been recently released to design

biological systems from standardized genetic parts. ASMPART

[65], SynBioSS [66], a specialized ProMot package [64] and

TinkerCell (www.tinkercell.com) illustrate this trend. These tools

are still exploratory. One of their limitations is the requirement to

define parts in a specialized format, such as SBML or Modeling

Figure 6. Mapping the behavior of 384 genetic constructs. Each section A to F indicates a different selection of repressors within a toggle
switch: (A) tetR and lacI, (B) lacI and tetR, (C) lacI and cI, (D) cI and lacI, (E) cI and tetR, and (F) tetR and cI. Other networks that cannot give rise to
bistability (e.g. a construct with tetR as both genes) are excluded as are designs that only vary the GFP RBS (see text). Each pair is explored by varying
the RBS (ordered by translational efficiency from low (RBS H) to high (RBS B) as determined by a qualitative fit of the results of Gardner et al. [24] with
consistent letter-based labels) and calculating the detectability ratio, defined as the steady state GFP concentration in the ‘‘on’’ state divided by the
concentration in the ‘‘off’’ state. These ratios are displayed using a color map as indicated by the legend to the right. Monostable constructs have a
ratio of 1 and are indicated by gray boxes. The ratio gives a measure of how easily the two steady states can be distinguished, which is important due
to high experimental noise. Each pane also elucidates the traditional two-parameter bifurcation diagram of each gene pair as the translational rates
are varied by changing RBSs. Constructs near the edge of the cusp operate near saddle-node bifurcations and are more prone to noise-induced
switching. Thus, constructs from the cusp interior are preferred for robust behavior.
doi:10.1371/journal.pcbi.1000529.g006

Formal Semantics of DNA Sequences

PLoS Computational Biology | www.ploscompbiol.org 8 October 2009 | Volume 5 | Issue 10 | e1000529



Description Language (MDL). Furthermore, instead of defining

parts interactions in the underlying parts data models, these tools

rely on the user to manually define them textually [66] or

graphically [64]. As a result of this specific limitation, several of

these tools do not appear suitable for the automatic exploration of

a design space. Moreover, they tend to rely on a loosely defined

relationship between the structure of the genetic constructs and

their behavior. They allow parts to be assembled in any order

without regard for biological viability.

Still, the scripts developed to generate our results are of lesser

importance than the application of the theory of semantics-based

translation using attribute grammars to the translation of DNA

sequences into dynamical models representing the molecular

interactions they encode. Since this approach is used to develop

the compilers of many computer languages [56,73], a wealth of

existing theoretical results and software tools can find new

applications in the life sciences. For instance, we have implement-

ed semantic models of DNA sequences into two widely used but

very different programming environments, Prolog [74] and

ANTLR [75]. Future research efforts will need to investigate the

pros and cons of different compiler generators and different

parsing algorithms for analyzing even genome-scale DNA

sequences and how they impact the ability of grammars to express

various features of DNA sequences. Also, the type of attributes

associated with parts is flexible. Here we primarily use mass action

kinetic rates as attributes, but we could just as easily have used an

emerging synthetic biology unit like polymerase per second (PoPS)

[37,76].

Ultimately, tools capable of automatically generating models of

the behavior of synthetic DNA sequences will be important for the

advancement of synthetic biology [71]. However, these tools will

need to be able to express that the contribution of a genetic part to

the phenotype of an organism depends largely on the local and

global context in which it is placed. The interference between RBS

and coding sequence is just one example of the biological

complexity that computer assisted design applications will have

to properly consider.

Functional characterization of genetic parts
Before it will be used to build synthetic genetic systems meeting

user-defined specifications, the semantic model of DNA sequences

presented in this report will be instrumental in the quantitative

characterization of structure-function relationships in synthetic

DNA sequences. The vision of applying quantitative engineering

methods to biological problems has been recognized as a

promising avenue to biological discovery [29]. The critical role

of artificial gene networks in the characterization of molecular

noise affecting the dynamics of gene networks [77] illustrates the

potential of synthetic biology as a route to refine the understanding

of basic biological processes.

Ongoing efforts aim to carefully define how parts should fit

together syntactically and what attributes are needed to charac-

terize their function. For example, the sequence between the RBS

and the start codon has been shown to play an important role in

translation rate [63]. The question arises whether the RBS should

be defined to include the spacing, or if there should be a separate

parts category for the spacer. The rapid development of gene

synthesis techniques [78] will make it possible to investigate these

questions with a base-level resolution. Beyond libraries of parts for

designing expression vectors, similar curation efforts could lead to

the identification of parts in genomic sequences, whereby the

hypothetical function of these parts as they are expressed in

attribute grammars could be tested by genome refactoring [33].

Supporting Information

Table S1 Computation dependence corresponding to the

derivation tree in Fig. 2 The computation starts from the leaves

of the tree, and the semantic values computed are transferred to

upstream nodes. The computation of each node cannot proceed

until all of its sub-trees are computed. For example, the

computation of semantic values of ,constructs1. (2) is pending

until its subtrees,cassette1. (3) and ,restConstructs1. (4) are

computed.

Found at: doi:10.1371/journal.pcbi.1000529.s001 (0.01 MB PDF)

Table S2 List of parts used in the ‘‘exploration of genetic space’’

section and values of associated attributes

Found at: doi:10.1371/journal.pcbi.1000529.s002 (0.01 MB PDF)

Dataset S1 Zip file containing the scripts and data used in this

report.

Found at: doi:10.1371/journal.pcbi.1000529.s003 (0.03 MB ZIP)
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