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With the large-scale optimization problems in the real world becoming more and more complex, they also require different
optimization algorithms to keep pace with the times. Particle swarm optimization algorithm is a good tool that has been proved to
deal with various optimization problems. Conventional particle swarm optimization algorithms learn from two particles, namely,
the best position of the current particle and the best position of all particles. /is particle swarm optimization algorithm is simple
to implement, simple, and easy to understand, but it has a fatal defect. It is hard to find the global optimal solution quickly and
accurately. In order to deal with these defects of standard particle swarm optimization, this paper proposes a particle swarm
optimization algorithm (SHMPSO) based on the hybrid strategy of seed swarm optimization (using codes available from https://
gitee.com/mr-xie123234/code/tree/master/). In SHMPSO, a subpopulation coevolution particle swarm optimization algorithm is
adopted. In SHMPSO, an elastic candidate-based strategy is used to find a candidate and realize information sharing and
coevolution among populations. /e mean dimension learning strategy can be used to make the population converge faster and
improve the solution accuracy of SHMPSO. Twenty-one benchmark functions and six industries-recognized particle swarm
optimization variants are used to verify the advantages of SHMPSO. /e experimental results show that SHMPSO has good
convergence speed and good robustness and can obtain high-precision solutions.

1. Introduction

So far, optimization algorithm has been a popular research
problem. Particle swarm optimization algorithm is a pop-
ulation-based optimization algorithm, which was first
invented by Dr. Eberhart and Dr. Kennedy in 1995 [1, 2].
Particle swarm optimization algorithm is inspired by the
behavior of birds looking for food. Particle swarm opti-
mization is a search algorithm in which particles cooperate
with each other. Of course, particle swarm optimization
algorithm is a population intelligent optimization algorithm.
In addition to particle swarm optimization algorithm,
common intelligent algorithms include differential evolu-
tion algorithm (DE) [3], ant colony optimization (ACO)
algorithm [4], artificial bee colony (ABC) [5], programming
algorithm (FEP) [6], simulated annealing algorithm [7],
neural network [8], text clustering [9], resource allocation

[10], and task allocation [11]. Particle swarm optimization
algorithm has been widely accepted with the advantages of
rapid convergence, excellent robustness, and concise
understanding.

At present, many optimization algorithms have achieved
significant results in many fields. It includes many appli-
cations, such as optimal tuning of type-1 and type-2 fuzzy
controllers [12], optimal tuning of interval type-2 fuzzy
controllers [13], scheduling planning [14], undergraduate
systems engineering curriculum optimization technology
[15], improving the performance of FinFET devices [16],
brain models of fear processing and conflict modulation
[17], multiobjective dynamic optimization problem [18, 19],
mixed-variable Newsvendor problems [20], and feature
selection [21].

With the advantages of particle swarm optimization
algorithm [22], many applications use particle swarm
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optimization algorithm, such as image processing [23],
neural network [24], feature selection [25], data clustering
[26], and mixed-variable optimization problems (MVOPs)
[27].

Although particle swarm optimization algorithm has
been preeminently optimized and improved, it still has some
problems to be solved. In particular, when the dimension of
the population becomes higher, the particle swarm opti-
mization algorithm is extremely prone to early convergence,
whichmakes it hard to jump out of the local optimal solution
in the final stage of the algorithm. In order to continue to
improve the performance of particle swarm optimization
algorithm, countless particle swarm optimization re-
searchers are committed to four improvement directions,
namely, particle swarm optimization parameter adjustment,
learning strategy improvement, topology selection, and
integration with other algorithms. /ese four aspects are
described as follows:

Parameter control: it includes setting inertia weight,
acceleration coefficient, and population size. /e particle
swarm optimization algorithm with constant inertia weight
balances the ability of global development and local ex-
ploration. /is method limits the particle swarm optimi-
zation algorithm in a sense. Another adaptive control
parameter is proposed to control local balance and global
exploration through adaptive parameters. Shi and Eberhart
et al. proposed a PSO algorithm with an inertia weight set to
a constant value to balance the global exploration and local
exploitation abilities of the algorithm [28]. /e inertia
weight is constant, which greatly limits the potential search
ability of particle swarm optimization. Zhan et al. proposed
an APSO algorithm with adaptive control parameters. APSO
achieves a locally and globally stable search state through
adaptive control parameters [29].

Learning strategy improvement: it includes some com-
prehensive learning strategies, biogeography-based learning
strategies, segmentation based advantage learning strategies,
domain based learning strategies, and dynamic domain
learning strategies. Yang et al. proposed the SPLSO algo-
rithm that used segment-based predominant learning. /is
model first segments the dimensions of each poor-per-
forming particle; then, each segment is learned from a
better-performing particle, allowing the algorithm to capi-
talize on the information from the better particles and avoid
premature convergence [30]. Liang and Suganthan proposed
a DMS-PSO algorithm with a dynamic neighborhood
structure in which the learning of each particle is no longer
limited to one population; instead, it also includes other
populations [31].

Topology: topology can effectively use particle infor-
mation in the field, but it ignores the global optimal in-
formation to a certain extent. Common topologies include
ring topology, star topology, network topology, dynamic tree
topology, and dynamic competition topology. Li et al.
proposed an adaptive particle swarm optimization algorithm
using scale-free network topology. Based on the charac-
teristics of scale-free network topology with a power-law
distribution, the algorithm can construct a corresponding
neighborhood for each particle [32]. Janson et al.

constructed a dynamically changing tree topology in which
each particle learns from its parent to utilize the information
of each particle effectively [33].

Hybrid algorithm integration: mixing with other algo-
rithms is one of the main research fields of particle swarm
optimization algorithm, which can effectively improve the
performance of the algorithm. Zhang et al. proposed the
DSPSO algorithm by combining the differential mutation
operation with the SLPSO algorithm [34]. Valdez et al.
proposed a new hybrid approach for optimization by
combining particle swarm optimization (PSO) and genetic
algorithms (GAs) using fuzzy logic to integrate the results
[35].

According to the above analysis, an excellent particle
swarm optimization algorithm is to have better local ex-
ploration and global exploration capabilities. To achieve
both, the diversity of population is essential, which can
prevent the premature convergence of particle swarm op-
timization algorithm. Because each optimization problem is
different, it is difficult for a single evolutionary strategy to
meet each optimization problem. Relevant literature has
shown that the combination of several strategies helps to
improve the possibility of particle swarm convergence to
global optimization. In order to adapt to more optimization
problems, inspired by the MPCPSO algorithm, this paper
proposed a joint strategy of subpopulation cooperative
particle swarm optimization algorithm. /e particle swarm
is initialized, and the fitness values of all particles for the first
time are recorded [36]. According to the fitness values, the
population is divided into two populations: dominant
population (DP) and poor population (PP). For the two
populations, the first population and the second population
adopt different evolutionary strategies, respectively, the
second population adopts candidate learning strategy, and
the first population adopts mean dimension learning. By
comparing with other algorithms, the effect of the two
strategies in this paper is feasible, and the solution of the
function can be obtained at the same time.

/e first section of this paper is organized as follows:
Section 2 mainly introduces the related work of writing this
article. Section 3 introduces the two learning strategies and
SHMPSO in detail. In Section 4, the SHMPSO algorithm is
tested by using twenty-one benchmark functions and six
famous PSO variants. At the end of the article, Section 5
gives the relevant conclusions.

2. Related Work

/is part mainly introduces some harvest before completing
the experiment. Inspired by two particle swarm optimization
algorithms, the first is the classical particle swarm optimi-
zation algorithm, and the second is the particle swarm
optimization algorithm based on biogeography. Basically, all
PSO variants are improved on the classic PSO.

2.1. Classic PSO. /e classical particle swarm optimization
algorithm is an optimization algorithm based on the whole
population. Each particle represents the possibility of a
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solution. All particles update their positions according to
their own historical best positions and global historical best
positions. Generally, there are D dimensions in the search
space of the whole particle swarm. /e position vector of
particle i at a certain time t is Xi � (xi1, xi2, . . . xi D), and
the velocity vector is Vi � (vi1, vi2, . . . vi D). All particles of
the next-generation population can be generated according
to the position vector and velocity vector. /e update
equation for generating optimized next-generation parti-
cles is

Vi d � ωVi d(t) + c1r1 Pi d(t) − Xi d(t)( 􏼁

+ c2r2 Pg d(t) − Xi d(t)􏼐 􏼑,
(1)

Xi d(t + 1) � Xi d(t) + Vi d(t + 1), (2)

where ω is an inertia weight, c1 and c2 are an acceleration
factor, and r1 and r2 are a random number between [0, 1].
/ese two equations are the core equations of standard
particle swarm optimization. /e equation for speed and
position is updated.

Although particle swarm optimization algorithm has
made many improvements in recent decades, there is still an
algorithmic barrier that is hard to breakthrough. For ex-
ample, the algorithm is difficult to find the extreme value in
the case of high dimension, and it is simple to fall into local
optimization. At present, many strategies have been pro-
posed to solve these difficulties./e following introduces the
comprehensive learning strategies and biogeography
learning strategies.

2.2. Particle Swarm Optimization Algorithm with the Com-
prehensive Learning Strategy. Liang et al. proposed a CLPSO
algorithm, which is different from the conventional particle
swarm optimization algorithm introduced earlier [37].
CLPSO never learns from the previously mentioned global
optimal particle, but each dimension of the particle is like the
historical optimal learning of the sample constructed in its
field, and the learning probability is Pc. CLPSO canonical
learning scheme avoids falling into local optimization in
some multimodal problems. /e revised scheme proposed
by CLPSO is described as follows:

Vi d(t + 1) � ωVi d(t) + cr Pfi(d)(t) − Xi d(t)􏼐 􏼑, (3)

where ω is the inertia weight, c is an acceleration coefficient,
and r is a random number between (0, 1). fi(d) represents
that in the D dimension, the particle i changes from fi(d) in
p best that is an optimum position of particle history and
fi(d) � [fi(1), fi(2), . . . , fi(D)]. All sample vectors of
particle i are defined in fi(d). In CLPSO, equation (3) shows
that each different particle can learn from different particles
from different dimensions. /e main core methods of
CLPSO are shown in the following flow chart:

(1) Generate random number P between (0, 1), and
judge the size of p and Pc.

(2) If P>Pc, the current particle i updates according to
its optimal position.

(3) If P<Pc, the optimal particle is selected by com-
paring the fitness values of all particles. Let the
particle replace the personal optimal position of the
particle i and guide particle i to update.

/e algorithm employs a comprehensive learning
strategy whereby the best position before other particles is a
paradigm that can be learned by any particle, and each
dimension of a particle has the potential to learn from a
different paradigm./e new strategy allows particles to have
more learning paradigms and a larger potential flight space.

2.3. Learning Particle Swarm Optimization Algorithm Based
on Biogeography (BLPSO). BLPSO is improved according to
CLPSO, which is based on biogeographic migration. BLPSO
proposes a new learning strategy particle swarm optimiza-
tion algorithm based on biogeography [38]. All particles in
the population are updated by biogeographic migration
using their own optimal location and the optimal location
combination of other particles. All particles have a migration
in andmigration out rate, respectively, αi and βi to represent:

(1) Sort each particle, and calculate the migration rate of
each particle after sorting αi and βi.

(2) Generate the index of the sample vector,fi(d) �

[fi(1), fi(2), . . . , fi(D)].
(3) Generate a random number r. When r< αi, the index

j sum of a particle and its migration rate is selected
by the roulette selection probabilities βj. Assign j to
fi. Otherwise, assign i to fi.

(4) If fi is equal to particle i, randomly select a particle j

that is not equal to particle i, randomly select a
dimension l, and assign the dimension of j to fi(l).

Contrastingly, the biogeography-based learning strategy
employs a ranking technique whereby particles can learn
more from particles with high-quality personal best posi-
tions, and this effectively enhances the exploitation of the
original CLPSO.

3. Particle SwarmOptimization Algorithmwith
the Hybrid Strategy of Seed
Swarm Optimization

/e third section mainly introduces the particle swarm
optimization algorithm based on the hybrid strategy of seed
swarm optimization. Section 3.1 mainly introduces the
learning strategies of the mean dimension. Section 3.2
mainly introduces the candidate generation strategy based
on elasticity. /e overall operation framework of this
strategy will be given in Section 3.2. At the end of this
section, the whole process of SHMPSO is shown in the form
of pseudo code.

3.1. Learning Strategy of Mean Dimension. /e particle
swarm optimization algorithm for subpopulation has been
around for a long time, and it has received excellent feedback
on some issues. /e CMPSODMO proposed by Liu et al. in
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2017 handles multiobjective dynamic optimization problems
in a complex and changing environment and uses a mul-
tiswarm-based particle swarm optimization framework to
optimize problems in a dynamic environment [39]. /e
algorithm has achieved excellent results. In the FTPSO,
proposed by Yazdani et al. in 2013, it was clearly proposed
that in the algorithm, the advantages of multiple groups
should be used to cover multiple peaks of the multiobjective
problem in a dynamic space [40]. Inspired by TSLPSO, it was
proposed by Xu et al. in 2019 [41]. TSLPSO proposes to
adopt two populations and uses different strategies to iterate
the two populations in the search space, respectively, and
obtain significant results. Yen and Daneshyari proposed a
method to exchange information among multiple swarms
[42].

In the SHMPSO algorithm proposed in this paper, firstly, a
population is initialized, and the population is divided into two
populations by using the fitness ranking mechanism. /e
ranking order is ascending. In each iteration process of the
algorithm, the part of particles with smaller fitness values is
divided into the dominant population, and the other part is
classified as the poor population. /e proportional coefficient
of the dominant population particle is s. /e dominant pop-
ulations use the mean dimension learning strategy to optimize
the population, and the poor population uses the candidate
generation strategy based on elasticity to learn. In this way,
different evolutionary strategies for different populations can
effectively ensure the diversity of populations and avoid falling
into local optimization. /e dominant population can guide
the search direction of the whole population and make the
population further converge to the solution quickly. /ere is
also a strange phenomenon in PSO algorithm, which is called
“spiral rise,” that is, the phenomenon of “two steps forward and
one step backward” [43]. /is means that although the fitness
of the particles has been improved, the effects of the minority
components of the particles have worsened. In order to
overcome this problem, it is inevitable that the evaluation
function needs to be changed frequently. Basically, all variants
of PSO algorithm have some phenomena that the convergence
speed is slow when the whole algorithm runs to the later stage.
In SHMPSO, all particles are learning from the dominant
population to achieve faster convergence speed.

Classical PSO requires two guiding particles, which are
the current particle historical best value and the global
historical best value. However, there are many algorithms
that only have one guiding particle, such as the CLPSO and
BLPSOmentioned above (Section 2)./e advantage of this is
that the speed update formula has fewer parameters and is
easy to understand. /e difficulty lies in how to construct
this guide particle. For the dominant population, this article
uses a guide particle. /e following is an introduction to the
evolution strategy of the dominant population.

For the whole dominant group, when the particle ve-
locity is updated, the current particle will only receive the
influence of m best generated by the comprehensive di-
mension learning.

/e velocity update equation of particles is

Vi d(t + 1) � ωVi d(t) + cr m besti d(t) − Xi d(t)( 􏼁, (4)

where ω, c, and r have the same meanings as in equation (3).
Inspired by MPCPSO, m besti d is obtained from equation
(5). Its purpose is to help particles get rid of the local optimal
state. As can be seen from equation (9), m besti d is regarded
as the only learning paradigm used to guide particle motion.
Suppose the algorithm falls into the local extremum,
m besti d seldom actively help particles find better solutions.
In mean dimension learning, each particle learns not only
from other particles but also from other related dimensions,
which greatly increases the universality of particle domain
learning.

m besti d �
ρr

D
􏽘

D

d�1
Xi d +

(1 − ρ)(1 − r)

N
􏽘

N

i�1
Xi d, (5)

where D represents the dimension of particles, r is a random
number between [0, 1], and N represents the total number of
particles in the dominant population. Among them, ρ is a
dynamically defined value./e specific solution is as follows:

ρ �
1

1 + exp − Xi d − 1/D 􏽐
D
d�1 Xi d􏼐 􏼑􏼐 􏼑

. (6)

/e location update equation is as follows:

Xi d(t + 1) � ϕXi d(t) + Vi d(t + 1), (7)

where φ is a dynamic parameter. Its equation (8) is given
below:

φ �
1

1 + exp −ave1/N1 􏽐
N
i�1 f xi( 􏼁􏼐 􏼑􏼐 􏼑

iter, (8)

where N1 is the current population size (the dominant
population), ave1 refers to the average fitness of the dom-
inant population after the first iteration of the population,
and iter represents the current number of iterations. Based
on the above iterative updating, the dominant population
can be updated in a good direction.

It can be seen from equation (7) that the convergence
speed of particles of the dominant population will be
accelerated to a great extent. With the acceleration of
convergence speed, it is inevitable that mean dimension
learning is simple to fall into local optimization. In order to
avoid this situation, a differential mutation operator is in-
troduced to increase the diversity of the population [44, 45].
Here, we need an operation to randomly select two particles
from the dominant population. /e values of these two
particles cannot be the same as those of the current iteration.
At this time, we need to calculate the differential of these two
random particles and make them a differential vector. /is
differential vector also needs to be mutated with the scaling
factor of F. After mutation, it is summed with the global
optimum (Pg d). /e whole operation is described by the
following equation:

Xi d(t + 1) � Pg d(t) + F Xa(t) − Xb(t)( 􏼁, (9)
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where Pg d is the global optimal position of the current
population, F is a mutation coefficient. a and b represent the
index of randomly selected particles and meet the condition
requirements i≠ a≠ b. /e equation of mutation operation
not only improves the search ability of the algorithm in the
dominant particle swarm optimization but also expands the
diversity in the process of population search. Algorithm 1
lists the pseudo code of mean dimensions learning.

3.2. Candidate Generation Strategy Based on Elasticity.
Next, the strategy of poor population is the candidate
generation strategy based on elasticity. SHMPSO uses dif-
ferent populations and adopts different evolutionary strat-
egies to evolve, respectively. /is strategy is conducive to the
rapid convergence of the population without losing the
diversity of the population. /e most important thing about
this is how to generate candidates, which is the core part of
the whole strategy. Here, the speed update equation has
changed, instead of learning from the global optimization
(Pg d) like the traditional particle swarm optimization al-
gorithm, but introducing candidates and learning from
candidates. New speed update equation is as follows:

Vi d(t + 1) � ωVi d(t) + c1r1 p best 2i d(t) − Xi d(t)( 􏼁

+ c2r2 Candidatei d(t) − Xi d(t)( 􏼁,
(10)

where ω, c1, c2, r1, and r2 have the same meanings as in
equation (1). /e vector p best 2i d represents the historical
optimum of the current particle in the poor population. /e
generation method of Candidatei d is given below. Inspired
by the elastic force generated by spring compression, an
elastic coefficient prob is introduced here. /e elastic co-
efficient of the poor population particle is set as prob � 0.5.
/is parameter size is set by the user. Like a spring, it can be
stretched or compressed. Particles are sorted in ascending
order according to the fitness value, the larger the value, the
worse the performance of the particles. A random number r

between [0, 1] is randomly generated. If the elastic coefficient
prob is greater than r, then the Candidatei d is generated by
the equation:

Candidateid � g best 1id.∗ step zizeid ∗N, (11)

where the vector of g best 1id represents the global optimal
position of the dominant population. N represents the
number of particles. /e vector of step zizei d is a D-di-
mensional vector obtained by equation (17) and generated
by Levy flight. An introduction to Levy flight is given below.
/e generation of Levy flight random number includes two
parts. /e first part is the selection of random direction, and
the second part is the generation of Levy distribution.
Random walks are derived from Levy stability. /is distri-
bution is a simple power-law equation:

L(s) ∼ |s|
− 1− β

, (12)

where 0< β< 2. It is an index.

Definition 1. To determine Levy distribution mathemati-
cally, it defined by the following equation:

L(s, c, μ) �

���
c

2π

􏽲

exp −
c

2(s − μ)
􏼢 􏼣

1
(s − μ)

3/2, if 0< μ< s<∞,

0, if s≤ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

where the parameter μ is a control displacement parameter
or position, c> 0 represents the scale parameter (the scale
used to control the distribution).

Definition 2. Usually, Levy distribution is defined by Fourier
transform. /e specific equation is given in the following:

F(k) � exp −α|k|
β

􏽨 􏽩, 0< β≤ 2, (14)

where α is a parameter in the interval [−1, 1], which is usually
called skewness or scale factor. Stability index β is controlled
between (0, 2), which is also commonly referred to as Levy
index. β in most cases, his analytical form of integration is
unknown. For random walking, the step S can be calculated
by Mantegna’s equation:

S �
u

|v|
1/β, (15)

where u and v in equation (13) obey a positive distribution:

u ∼ N 0, σ2u􏼐 􏼑, v ∼ N 0, σ2u􏼐 􏼑,

σu �
τ(1 + β)sin(πβ/2)

τ[1 + β/2]β2(β− 1/2)
􏼨 􏼩

1/β

.

(16)

/e step size can then be calculated by the following
equation:

step size � 0.01 × S, (17)

where the factor 0.01 comes from the typical step factor
L/100 , and L is a typical length ratio. Otherwise, Levy flight
will become too radical and jump out of the design plan
(waste evaluation).

When the elasticity factor prob< r, in order to ensure the
diversity of the population, two particles m, n are selected
from the dominant population. /ese two particles and the
global optimal particle Pg d are required which is different
from each other. Compare particle Xm d and Xn d fitness
value, and select the particle with a smaller fitness value Xn d.
Candidatei d is obtained by the equation:

Candidatei d � Xn d.∗ step zizei d ∗N, (18)

where stepzizei d and N have the same meanings as in (12).
/e candidate improves the diversity of the population in
this way. Algorithm 2 lists the pseudo code of the candidate
generation strategy based on elasticity.

3.3. Overall Framework of the SHMPSOAlgorithm. Based on
the improved strategies of 3.1 and 3.2, SHMPSO is con-
structed. /e specific steps of the SHMPSO algorithm are as
follows:
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Step 1: initialize the population and set the parameters,
the mutation factor F� 0.5, the population proportion
scale factor s� 0.5, and the times of falling into local
optimum M� 6.
Step 2: calculate the fitness value f(Xi) and the global
optimal value (Pg d) of all particles.
Step 3: sorting in ascending order according to the
fitness value, taking s∗N (all particles) particles as the
dominant population (DP) and the rest particles as the
poor population (PP)
Step 4: optimizing disadvantaged populations based on
flexible candidate strategy, which uses equations (2)
and (10). /e mean dimension learning is used to
optimize the DP subpopulation through equations (4)
and (7).
Step 5: when M> 6, equation (9) is used to update the
position of particles in the dominant population (DP).
Step 6: recalculate the fitness values of all particles, and
update the current global optimal value (Pg d).
Step 7: repeat steps 3–6 when the maximum allowed
times of iteration is bigger than the times of the
maximum number of iterations.

/e algorithm flow chart of SHMPSO is shown in
Figure 1./is algorithmmainly uses the global search ability
to find a better search space. /e algorithm starts from the
global situation, finds the current global optimal position,
and can converge to the global optimal solution faster.
/irdly, the general framework of the algorithm is given in
Algorithm 3.

4. Experiment

In this section, in order to verify the reliability and efficiency
of the proposed SHMPSO, twenty-one widely used
benchmark functions are adopted. Comparing SHMPSO
with other varieties of PSO, the results are verified. /e
experiment process is as follows.

4.1. Benchmark Function andParameter Setting. /e twenty-
one benchmark functions listed in Table 1 are used to
demonstrate the superiority of SHMPSO. In Table 1, the first
column represents the function number, the second column
represents the function name, the third column represents
the function mathematical expression, the fourth column
represents the function search range, and the fifth column

Input: elitist population PP
Output: position vector Xi, velocity vector Vi

(1) for i � 1⟶ N1 do
(2) Calculate the mean of Xi ⟶ X meani

(3) Calculate the mean of Xd⟶D meand

(4) Calculate m best by equation (5)
(5) if M> 6 then %M is the number of the algorithm falls into the local optimum
(6) Update Xi, Vi by equations (4) and (9)
(7) else
(8) Update Xi, Vi by equations (4) and (7)
(9) end if
(10) end for

ALGORITHM 1: Mean learning strategy.

Input: dominant population DP, poor population PP
Output: position vector Xi, velocity vector Vi

(1) for i � 1⟶ N2 do
(2) if probi > rand() % prob is an elastic factor
(3) Update Candidatei d by equation (11)
(4) else
(5) if probi < rand()
(6) Select two particles Xm d, Xn d randomly and calculate their fitness values
(7) Choose particles with less fitness Xi d; % it is different from Pg d

(8) end if
(9) Update Candidatei d by equation (18)
(10) end if
(11) Update Xi, Vi by equations (2) and (10)
(12) end for

ALGORITHM 2: Strategy of candidate generation based on elasticity.
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Figure 1: Continued.
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Figure 1: Convergence curves of 1–12 functions. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f ) f6. (g) f7. (h) f8. (i) f9. (j) f10. (k) f11. (l) f12.

(1) Initialization: particle’s position Xi, velocity Vi, F� 0.5, M� 6
(2) Calculate particle’s fitness value f(Xi), Pg d, fit� Pg d

(3) while iter<max gen do
(4) Plan the number of DP, PP; N1� s × N, N2�N−N1;
(5) Sorting population based on fitness values into DP, PP;
(6) for i � 1⟶ N2 do
(7) Update Candidatei d by equations (12) and (18)
(8) Update Xi, Vi by equations (2) and (10)
(9) end for
(10) for i � 1⟶ N1 do
(11) Calculate m best by equation (5)
(12) if M> 6 then
(13) Update Xi, Vi by equations (4) and (9)
(14) else
(15) Update Xi, Vi by equations (4) and (7)
(16) end if
(17) end for
(18) Calculate new particle’s fitness value f(Xi)

(19) Update Pg d

(20) if Pg d < fit then
(21) fit� Pg d, M� 0
(22) else
(23) M�M+ 1
(24) end if
(25) end while

ALGORITHM 3: Grouping-mixed-based particle swarm optimization algorithm.
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shows the minimum value of the function. /e tested
functions include 11 unimodal functions (f1 − f2,f4 − f12)
and 10 multimodal functions (f3, f13 − f21). /e optimal
value of all benchmark functions tested is 0. In order to
compare the superior performance of the algorithm, six PSO
variants are selected, including inertia weight PSO [40],
ACPSO [46], SLPSO [47], CLPSO [37], BLPSO [38], and
MPCPSO [36].

4.2. Selection of the Population Proportion Coefficient. In
order to get a fairer comparison result, all the parameters
used in the data experiment are the same, including the
maximum number of independent runs (runNumber), the
number of evaluations (maxFEs), and themaximumnumber
of iterations (maxgen) where N represents the number of all
particles in the population. All the comparison algorithms
tested the twenty-one benchmark functions and got the
mean and standard deviation after 30 runs. /e parameter
settings of all PSO variants are given in Table 2. According to
the experimental results, all the functions are ranked and
compared. In order to test the proportion of the dominant
population in the SHMPSO algorithm, parameter c is tested,
and the experimental results are as follows.

/rough the overall analysis of Table 3 and ranking of
each function, it is concluded that when s� 0.5, when the
proportion of the dominant population in this paper is kept
at 50%, the population optimization effect is the best. All the
following comparisons are the experimental results based on
the population scale coefficient of 0.5.

4.3. Comparison of Experimental Data between SHMPSO and
Other PSO Variants. At the same time, 30, 50, and 100
dimensions are used to evaluate the given test function. /e
total population of SLPSO has its own definition, and all
other functional population sizes are tested at (N� 100).
When the particle dimension of all populations is 30 di-
mensions, maxgen is set to 3×10̂3, and the function eval-
uation times maxFEs is set to 3×10̂5. When the dimension
of the particle is 50 dimensions, maxgen is set to 5×10̂3, and
the function evaluation times maxFEs is set to 5×10̂5. When
the particle dimension is 100 dimensions, the population’s
maxgen is set to 1× 10̂4, and the function evaluation times
maxFEs is set to 1× 10̂6.

It can be seen from Tables 4 and 5 that the performance
tested by the proposed SHMPSO is relatively stable in 30 and
50 dimensions, and the results obtained are similar. It can be
seen that the performance of SHMPSO is excellent in the 30-

dimensional and 50-dimensional convergence processes.
SHMPSO is in f1,f3, f5 − f10, f12, f14, f16, f17, f19, and
f20. /e optimal solution of these 14 functions can be found
by the strategy proposed in this paper. /ese results explain
that the strategy proposed in this paper can be well applied to
these functions. Of course, the effects of f15 and f21 become
worse with the increase of dimensions, and the optimization
effect of SHMPSO on some multimodal functions which are
difficult to optimize needs to be improved. In f18, the effect
of SHMPSO is not as good as that of CLPSO, BLPSO, and
SLPSO. However, in the overall 21 test functions, the average
rank of SHMPSO ranks first, 1.61 and 1.67, respectively.
/rough the above analysis, the performance of SHMPSO is
better than that of other six comparison algorithms.

In order to further verify the scalability and high effi-
ciency of SHMPSO analysis, the proposed strategy is used to
solve the 100-dimension problem, and the set parameters are
the same as those in Table 4. /e experimental results are
shown in the following table.

In Table 6, it can be seen that SHMPSO still has high
convergence accuracy and good robustness when solving
high-dimensional problems. SHMPSO and MPCPSO rank
first on the 100-dimensional problem. Further analysis, the
performance of f15, f18, and f21 deteriorates drastically with
increasing dimension. But the performance of other func-
tions is still very good.

It can be seen from Figures 1 and 2 that the convergence
performance of SHMPSO has obtained the global optimal
value on most problems. Especially in f3, f8,f13, f19, f20,
these five problems not only rank first in convergence ac-
curacy but also the fastest convergence speed. Analyzing the
reasons for convergence, there are three main reasons as
follows. First of all, the information is highly shared among
particles in the dominant population, and the guiding
particles formed by the information sharing promote the
dominant population to quickly converge to the global
optimal value. Second, in order to prevent the population
from falling into the local optimal value prematurely, a
mutation operation is performed on the global optimal
particle. /ird, the use of random dominant population
particles to guide the poor population particles not only
improves the convergence speed of the poor population but
also increases the diversity of the population./e particles of
the dominant population are selected to guide the particles
of the poor population, rather than the global optimal value
of the poor population to guide the poor population. /ere
are two reasons as follows: the first reason is that the fitness
value of the poor population particles is larger than the

Table 2: Parameter settings of different PSO variants.

Algorithm Parameter setting
PSO ω � 0.729, c1 � c2 � 1.49445, Vmax � 0.2 × range
ACPSO ω � 0.9 ∼ 0.4, c1 � c2 � 1.49445, Vmax � 0.2 × range, alpha � 0.1; beta � 0.1
SLPSO m � M + floor(D/100), c � D/M∗ 0.01,M � 100
CLPSO ω � 0.9 ∼ 0.2, gamp � 5, c � 1.49445, Vmax � 0.2 × range
BLPSO ω � 0.9 ∼ 0.2, gamp � 5, I � E � 1, c � 1.49445, � 0.2 × range
MPCPSO ω � 0.729, c1 � c2 � 1.49445, F � 0.5, t � 0.5, Vmax � 0.2 × range
SHMPSO ω � 0.729, c1 � c2 � 1.49445, F � 0.5, s � 0.5, prob � 0.5, Vmax � 0.2 × range
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Table 3: Selection of parameter s.

s� 0.1 s� 0.2 s� 0.3 s� 0.4 s� 0.5 s� 0.6 s� 0.7
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f1 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00 + 00 1.00E+ 00 1.00E+ 00

f2 Std. 6.78E – 16 6.78E− 16 6.78E – 16 6.78E− 16 6.78E− 16 6.78E− 16 6.78E− 16
Rank 1 1 1 1 1 1 1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f3 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 4.70E – 03 1.34E− 05 3.38E – 04 3.10E− 13 2.28E− 216 2.80E− 202 3.74E− 193

f4 Std. 2.57E – 02 5.10E− 05 1.80E – 03 1.70E− 12 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 5 6 4 1 2 3
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f5 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f6 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f7 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f8 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f9 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f10 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 0 1 1 1 1 1 1
Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00

f11 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f12 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 8.88E – 16 8.88E− 16 8.88E – 16 8.88E− 16 8.88E− 16 8.88E− 16 8.88E− 16

f13 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f14 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 1.07E+ 00 4.47E− 01 4.51E – 01 5.90E− 01 2.19E− 01 1.01E+ 00 1.75E− 01

f15 Std. 7.80E – 01 2.73E− 01 4.98E – 01 1.43E+ 00 1.59E− 01 3.47E+ 00 1.20E− 01
Rank 7 3 4 5 2 6 1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f16 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f17 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 6.18E – 06 3.71E− 06 4.44E – 07 7.78E− 07 2.57E− 07 3.67E− 08 2.49E− 07

f18 Std. 7.85E – 06 7.21E− 06 1.54E – 06 3.19E− 06 6.04E− 07 1.10E− 07 1.34E− 06
Rank 7 6 4 5 3 1 2
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f19 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f20 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
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Table 3: Continued.

s� 0.1 s� 0.2 s� 0.3 s� 0.4 s� 0.5 s� 0.6 s� 0.7
Mean 2.62E+ 00 2.89E+ 00 3.10E+ 00 2.81E+ 00 2.85E+ 00 2.83E+ 00 2.96E+ 00

f21 Std. 6.76E – 01 6.23E− 01 1.60E+ 00 4.34E− 01 2.98E− 01 5.88E− 01 2.03E− 01
Rank 1 5 7 2 4 3 6

Average rank 1.86 1.71 1.81 1.57 1.29 1.38 1.38

Table 4: Comparison of results of benchmark functions on various PSO variants (30-D).

PSO CLPSO BLPSO ACPSO SLPSO MPCPSO SHMPSO
Mean 1.34E+ 01 9.66E− 11 5.10E− 30 1.00E – 11 2.08E− 140 0.00E+ 00 0.00E+ 00

f1 Std. 1.47E+ 01 3.51E− 11 4.15E− 30 1.27E− 11 3.39E− 140 0.00E+ 00 0.00E+ 00
Rank 7 6 4 5 3 1 1
Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00

f2 Std. 6.78E− 16 9.38E− 13 4.65E− 16 0.00E+ 00 6.78E− 16 6.78E− 16 6.78E− 16
Rank 3 7 2 1 3 3 3
Mean 1.05E+ 00 1.89E− 07 0.00E+ 00 5.48E− 02 5.75E− 04 0.00E+ 00 0.00E+ 00

f3 Std. 6.97E− 02 1.23E− 07 0.00E+ 00 3.27E− 02 2.21E− 03 0.00E+ 00 0.00E+ 00
Rank 7 4 1 6 5 1 1
Mean 0.00E+ 00 2.66E− 08 5.58E− 07 8.65E− 14 1.10E− 06 3.49E− 18 5.98E− 184

f4 Std. 0.00E+ 00 4.12E− 08 8.24E− 07 1.22E− 13 1.72E− 06 1.91E− 17 0.00E+ 00
Rank 1 5 6 4 7 3 2
Mean 3.13E+ 01 8.20E− 05 1.24E− 16 1.50E− 04 2.70E− 70 0.00E+ 00 0.00E+ 00

f5 Std. 1.44E+ 01 1.70E− 05 6.60E− 17 9.56E− 05 3.09E− 70 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 3 1 1
Mean 1.50E+ 01 1.17E+ 01 6.12E− 01 5.21E− 03 1.14E− 37 0.00E+ 00 0.00E+ 00

f6 Std. 3.55E+ 00 9.31E− 01 2.62E− 01 4.08E− 03 1.09E− 37 0.00E+ 00 0.00E+ 00
Rank 7 6 5 4 3 1 1
Mean 2.10E+ 02 1.17E− 04 1.49E− 16 1.70E− 04 3.17E− 69 0.00E+ 00 0.00E+ 00

f7 Std. 1.38E+ 02 2.44E− 05 8.02E− 17 6.14E− 05 2.02E− 69 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 3 1 1
Mean 5.55E+ 00 3.54E− 28 1.54E− 47 7.56E− 49 0.00E+ 00 0.00E+ 00 0.00E+ 00

f8 Std. 1.17E+ 01 6.44E− 28 5.49E− 47 2.67E− 48 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 6 5 4 1 1 1
Mean 0.00E+ 00 2.62E− 11 2.75E− 23 1.50E− 11 0.00E+ 00 0.00E+ 00 0.00E+ 00

f9 Std. 0.00E+ 00 9.72E− 12 3.65E− 23 1.89E− 11 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 7 5 6 1 1 1
Mean 6.40E+ 01 2.97E− 09 5.47E− 27 9.22E− 10 1.07E− 138 0.00E+ 00 0.00E+ 00

f10 Std. 3.67E+ 01 1.08E− 09 5.16E− 27 9.09E− 10 1.81E− 138 0.00E+ 00 0.00E+ 00
Rank 7 6 4 5 3 1 1
Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00

f11 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 6.44E+ 01 1.18E+ 01 4.00E− 05 1.77E− 05 2.11E+ 00 0.00E+ 00 0.00E+ 00

f12 Std. 3.60E+ 01 2.35E+ 00 4.30E− 05 2.46E− 05 2.27E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 6 4 3 5 1 1
Mean 8.53E+ 00 1.48E− 04 2.95E− 14 1.88E− 05 5.74E− 15 8.88E− 16 8.88E− 16

f13 Std. 9.51E− 01 2.87E− 05 1.79E− 14 9.74E− 06 1.23E− 15 0.00E+ 00 0.00E+ 00
Rank 7 6 4 5 3 1 1
Mean 7.33E+ 00 5.68E− 04 2.16E− 10 1.54E− 05 5.00E− 17 0.00E+ 00 0.00E+ 00

f14 Std. 2.56E+ 00 1.13E− 04 5.15E− 10 9.12E− 06 1.31E− 16 0.00E+ 00 0.00E+ 00
Rank 7 6 4 5 3 1 1
Mean 2.89E− 01 5.33E− 02 6.84E− 03 8.89E− 03 4.42E− 02 7.36E+ 00 2.19E− 01

f15 Std. 1.01E− 01 6.61E− 03 1.55E− 03 3.70E− 03 9.95E− 03 1.03E+ 01 1.59E− 01
Rank 6 4 1 2 3 7 5
Mean 5.43E− 01 1.01E− 01 1.00E− 01 1.00E− 01 1.00E− 01 0.00E+ 00 0.00E+ 00

f16 Std. 2.53E− 01 3.44E− 04 2.94E− 06 3.21E− 06 1.13E− 16 0.00E+ 00 0.00E+ 00
Rank 7 6 4 5 3 1 1
Mean 6.91E+ 01 1.14E− 04 0.00E+ 00 2.48E− 07 1.34E+ 01 0.00E+ 00 0.00E+ 00

f17 Std. 1.20E+ 01 4.23E− 05 0.00E+ 00 6.30E− 07 3.87E+ 00 0.00E+ 00 0.00E+ 00
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Table 4: Continued.

PSO CLPSO BLPSO ACPSO SLPSO MPCPSO SHMPSO
Rank 7 5 1 4 6 1 1
Mean 6.27E− 11 3.52E− 12 3.53E− 12 3.51E− 12 8.54E− 12 9.64E− 05 2.57E− 07

f18 Std. 4.87E− 11 1.33E− 15 8.58E− 14 5.05E− 19 1.45E− 12 2.81E− 04 6.04E− 07
Rank 5 2 3 1 4 7 6
Mean 1.68E+ 03 2.38E+ 03 1.33E+ 01 7.40E− 02 1.72E− 11 0.00E+ 00 0.00E+ 00

f19 Std. 1.09E+ 03 4.68E+ 02 6.45E+ 00 1.07E− 01 2.36E− 11 0.00E+ 00 0.00E+ 00
Rank 6 7 5 4 3 1 1
Mean 5.78E+ 02 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f20 Std. 2.18E+ 02 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 1 1 1 1 1 1
Mean 8.23E+ 01 3.95E− 08 2.71E− 26 3.95E+ 07 1.35E− 32 2.91E+ 00 2.82E+ 00

f21 Std. 9.32E+ 01 1.50E− 08 1.97E− 26 2.16E+ 08 5.57E− 48 1.30E− 01 3.37E− 01
Rank 6 3 2 7 1 5 4

Average rank 6 4.95 2.73 4.05 3.1 1.95 1.71

Table 5: Comparison of results of benchmark functions on various PSO variants (50-D).

PSO CLPSO BLPSO ACPSO SLPSO MPCPSO SHMPSO
Mean 4.38E+ 01 8.38E− 11 8.18E− 35 3.50E− 12 8.09E− 160 0.00E+ 00 0.00E+ 00

f1 Std. 2.67E+ 01 2.48E− 11 8.13E− 35 2.59E− 12 1.44E− 159 0.00E+ 00 0.00E+ 00
Rank 7 6 4 5 3 1 1
Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00

f2 Std. 2.26E− 16 6.21E− 16 3.66E− 16 0.00E+ 00 4.46E− 16 2.26E− 16 2.26E− 16
Rank 2 7 5 1 6 2 2
Mean 1.58E+ 00 2.19E− 08 0.00E+ 00 2.43E− 02 1.64E− 03 0.00E+ 00 0.00E+ 00

f3 Std. 1.31E− 01 9.27E− 09 0.00E+ 00 2.76E− 02 3.85E− 03 0.00E+ 00 0.00E+ 00
Rank 7 4 1 6 5 1 1
Mean 0.00E+ 00 1.16E− 08 2.99E− 07 8.88E− 17 1.52E− 06 8.36E− 11 2.24E− 179

f4 Std. 0.00E+ 00 1.78E− 08 2.24E− 07 2.71E− 16 1.11E− 06 4.58E− 10 0.00E+ 00
Rank 1 5 6 3 7 4 2
Mean 7.91E+ 01 9.12E− 05 1.04E− 19 1.34E− 04 9.39E− 81 0.00E+ 00 0.00E+ 00

f5 Std. 3.68E+ 01 1.24E− 05 6.29E− 20 2.81E− 05 1.56E− 80 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 3 1 1
Mean 2.33E+ 01 1.50E+ 01 1.41E+ 00 6.37E− 03 1.69E− 28 0.00E+ 00 0.00E+ 00

f6 Std. 2.60E+ 00 1.10E+ 00 2.77E− 01 2.11E− 03 3.90E− 28 0.00E+ 00 0.00E+ 00
Rank 7 6 5 4 3 1 1
Mean 9.10E+ 02 1.38E− 04 5.29E− 20 1.50E− 04 2.00E− 79 0.00E+ 00 0.00E+ 00

f7 Std. 1.89E+ 02 2.09E− 05 2.52E− 20 3.13E− 05 2.02E− 79 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 3 1 1
Mean 1.20E+ 03 7.04E− 29 1.15E− 45 6.36E− 54 0.00E+ 00 0.00E+ 00 0.00E+ 00

f8 Std. 1.44E+ 03 7.10E− 29 4.92E− 45 2.80E− 53 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 6 5 4 1 1 1
Mean 4.00E+ 01 8.82E− 11 3.24E− 23 6.60E− 12 0.00E+ 00 0.00E+ 00 0.00E+ 00

f9 Std. 5.63E+ 01 2.56E− 11 2.83E− 23 3.31E− 12 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 6 4 5 1 1 1
Mean 4.92E+ 02 5.20E− 09 2.40E− 31 4.80E− 10 8.33E− 158 0.00E+ 00 0.00E+ 00

f10 Std. 1.75E+ 02 1.15E− 09 3.14E− 31 2.07E− 10 2.17E− 157 0.00E+ 00 0.00E+ 00
Rank 7 6 4 5 3 1 1
Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00

f11 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 2.70E+ 02 5.06E+ 01 7.70E− 03 6.54E− 09 1.83E+ 02 0.00E+ 00 0.00E+ 00

f12 Std. 9.69E+ 01 7.82E+ 00 4.95E− 03 3.77E− 09 3.04E+ 01 0.00E+ 00 0.00E+ 00
Rank 7 5 4 3 6 1 1
Mean 1.18E+ 01 1.06E− 04 6.45E− 15 1.01E− 05 6.34E− 15 8.88E− 16 8.88E− 16

f13 Std. 8.40E− 01 1.31E− 05 9.01E− 16 2.35E− 06 6.49E− 16 0.00E+ 00 0.00E+ 00
Rank 7 6 4 5 3 1 1
Mean 2.17E+ 01 1.13E− 03 9.04E− 11 3.83E− 05 1.85E− 16 0.00E+ 00 0.00E+ 00
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Table 6: Comparison of results of benchmark functions on various PSO variants (100-D).

PSO CLPSO BLPSO ACPSO SLPSO MPCPSO SHMPSO
Mean 4.10E+ 02 2.01E− 11 9.65E− 40 2.73E− 07 8.53E− 179 0.00E+ 00 0.00E+ 00

f1 Std. 2.77E+ 02 3.26E− 12 1.85E− 39 7.60E− 08 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 3 1 1
Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00

f2 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1
Mean 3.82E+ 00 1.15E− 09 1.11E− 17 9.76E− 03 9.86E− 04 0.00E+ 00 0.00E+ 00

f3 Std. 4.56E− 01 4.82E− 10 3.39E− 17 1.05E− 02 3.08E− 03 0.00E+ 00 0.00E+ 00
Rank 7 4 3 6 5 1 1
Mean 7.49E− 01 1.49E− 09 1.60E− 07 0.00E+ 00 4.33E− 07 1.51E− 182 2.26E− 217

f4 Std. 5.53E− 01 1.88E− 09 2.31E− 07 0.00E+ 00 3.96E− 07 0.00E+ 00 0.00E+ 00
Rank 7 4 5 1 6 3 2
Mean 3.31E+ 02 5.58E− 05 1.94E− 24 2.24E− 02 2.67E− 91 0.00E+ 00 0.00E+ 00

f5 Std. 2.00E+ 02 5.49E− 06 3.15E− 24 2.89E− 03 4.86E− 91 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 3 1 1
Mean 2.96E+ 01 1.92E+ 01 4.20E+ 00 2.50E− 01 1.43E− 12 0.00E+ 00 0.00E+ 00

f6 Std. 2.80E+ 00 6.32E− 01 5.58E− 01 3.29E− 02 1.02E− 12 0.00E+ 00 0.00E+ 00
Rank 7 6 5 4 3 1 1
Mean 1.95E+ 03 9.77E− 05 5.23E− 25 2.21E− 02 1.23E− 89 0.00E+ 00 0.00E+ 00

f7 Std. 2.03E+ 02 1.21E− 05 4.15E− 25 3.14E− 03 1.18E− 89 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 3 1 1
Mean 1.08E+ 05 1.73E− 30 8.17E− 41 7.07E− 28 1.51E− 317 0.00E+ 00 0.00E+ 00

f8 Std. 9.88E+ 04 1.04E− 30 1.90E− 40 6.30E− 28 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 3 1 1
Mean 2.30E+ 02 1.64E− 10 2.77E− 17 5.44E− 07 0.00E+ 00 0.00E+ 00 0.00E+ 00

f9 Std. 1.60E+ 02 2.82E− 11 1.19E− 16 1.60E− 07 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 1 1 1
Mean 4.74E+ 03 2.65E− 09 1.29E− 35 7.50E− 05 5.73E− 176 0.00E+ 00 0.00E+ 00

f10 Std. 1.36E+ 03 5.23E− 10 4.69E− 35 2.55E− 05 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 3 1 1
Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00

Table 5: Continued.

PSO CLPSO BLPSO ACPSO SLPSO MPCPSO SHMPSO
f14 Std. 5.10E+ 00 1.74E− 04 4.94E− 10 1.70E− 05 2.62E− 16 0.00E+ 00 0.00E+ 00

Rank 6 5 4 7 3 1 1
Mean 5.13E− 01 7.88E− 02 1.24E− 02 1.01E− 02 1.29E− 01 6.22E+ 00 2.96E+ 00

f15 Std. 1.22E− 01 7.61E− 03 2.09E− 03 3.16E− 03 2.24E− 02 1.41E+ 01 6.63E+ 00
Rank 5 3 2 1 4 7 6
Mean 2.73E+ 00 1.02E− 01 1.00E− 01 1.00E− 01 1.00E− 01 0.00E+ 00 0.00E+ 00

f16 Std. 8.90E− 01 4.24E− 04 2.40E− 06 6.10E− 05 7.06E− 17 0.00E+ 00 0.00E+ 00
Rank 7 6 4 5 3 1 1
Mean 1.87E+ 02 2.30E− 04 3.79E− 15 1.87E− 07 3.01E+ 01 0.00E+ 00 0.00E+ 00

f17 Std. 3.36E+ 01 7.25E− 05 2.08E− 14 1.08E− 07 8.15E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 5 3 4 6 1 1
Mean 1.17E− 16 1.21E− 20 1.27E− 20 1.21E− 20 3.40E− 20 1.98E− 08 7.73E− 12

f18 Std. 2.25E− 16 7.47E− 24 6.13E− 22 2.18E− 26 4.04E− 21 7.77E− 08 3.83E− 11
Rank 5 2 3 1 4 7 6
Mean 8.29E+ 03 1.21E+ 04 3.47E+ 02 1.26E− 02 2.69E− 03 0.00E+ 00 0.00E+ 00

f19 Std. 3.39E+ 03 1.99E+ 03 8.55E+ 01 7.02E− 03 5.59E− 03 0.00E+ 00 0.00E+ 00
Rank 6 7 5 4 3 1 1
Mean 3.38E+ 03 0.00E+ 00 0.00E+ 00 0.00E+ 00 3.33E− 02 0.00E+ 00 0.00E+ 00

f20 Std. 9.39E+ 02 0.00E+ 00 0.00E+ 00 0.00E+ 00 1.83E− 01 0.00E+ 00 0.00E+ 00
Rank 7 1 1 1 6 1 1
Mean 5.43E+ 04 2.43E− 08 1.20E− 30 6.50E− 06 1.46E− 03 4.88E+ 00 4.89E+ 00

f21 Std. 1.22E+ 05 5.25E− 09 7.11E− 31 3.55E− 05 3.80E− 03 1.61E− 01 5.37E− 01
Rank 7 2 1 3 4 5 6

Average rank 5.9 4.71 3.52 4.29 3.71 1.95 1.81
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Table 6: Continued.

PSO CLPSO BLPSO ACPSO SLPSO MPCPSO SHMPSO
f11 Std. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

Rank 1 1 1 1 1 1 1
Mean 1.54E+ 03 2.38E+ 02 3.27E+ 00 9.07E− 10 9.24E+ 02 0.00E+ 00 0.00E+ 00

f12 Std. 4.11E+ 02 1.98E+ 01 8.08E− 01 4.46E− 10 9.08E+ 01 0.00E+ 00 0.00E+ 00
Rank 7 5 4 3 6 1 1
Mean 1.44E+ 01 3.30E− 05 1.46E− 14 1.70E− 03 1.38E− 14 8.88E− 16 8.88E− 16

f13 Std. 5.44E− 01 2.68E− 06 2.87E− 15 2.56E− 04 4.04E− 15 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 3 1 1
Mean 6.11E+ 01 2.45E− 03 6.56E− 16 7.36E− 03 1.16E− 15 0.00E+ 00 0.00E+ 00

f14 Std. 7.72E+ 00 2.57E− 04 1.47E− 15 1.32E− 03 1.02E− 15 0.00E+ 00 0.00E+ 00
Rank 7 5 3 6 4 1 1
Mean 6.90E− 01 1.49E− 01 2.59E− 02 2.29E− 02 2.79E− 01 1.88E+ 00 3.27E+ 00

f15 Std. 9.15E− 02 1.46E− 02 2.70E− 03 3.60E− 03 3.54E− 02 4.41E− 02 9.98E+ 00
Rank 5 3 2 1 4 6 7
Mean 1.23E+ 01 1.04E− 01 1.00E− 01 1.51E− 01 1.00E− 01 0.00E+ 00 0.00E+ 00

f16 Std. 2.63E+ 00 6.29E− 04 4.18E− 06 1.13E− 02 1.07E− 16 0.00E+ 00 0.00E+ 00
Rank 7 5 4 6 3 1 1
Mean 5.54E+ 02 3.63E− 04 2.98E− 01 1.14E− 01 1.08E+ 02 0.00E+ 00 0.00E+ 00

f17 Std. 3.99E+ 01 7.70E− 05 5.32E− 01 4.63E− 02 2.79E+ 01 0.00E+ 00 0.00E+ 00
Rank 7 3 5 4 6 1 1
Mean 7.45E− 28 4.68E− 42 6.04E− 42 5.51E− 42 1.62E− 41 4.49E− 11 1.68E− 18

f18 Std. 3.03E− 27 4.16E− 45 3.89E− 43 5.39E− 43 1.49E− 42 2.39E− 10 9.22E− 18
Rank 5 1 3 2 4 7 6
Mean 3.71E+ 04 6.84E+ 04 1.30E+ 04 9.40E+ 04 1.61E+ 04 0.00E+ 00 0.00E+ 00

f19 Std. 1.14E+ 04 5.96E+ 03 1.84E+ 03 5.15E+ 05 7.73E+ 03 0.00E+ 00 0.00E+ 00
Rank 5 6 3 7 4 1 1
Mean 1.67E+ 04 0.00E+ 00 0.00E+ 00 0.00E+ 00 4.67E− 01 0.00E+ 00 0.00E+ 00

f20 Std. 2.68E+ 03 0.00E+ 00 0.00E+ 00 0.00E+ 00 1.66E+ 00 0.00E+ 00 0.00E+ 00
Rank 7 1 1 1 6 1 1
Mean 2.49E+ 06 6.38E− 09 2.15E− 30 1.67E+ 08 2.56E− 03 9.82E+ 00 9.95E+ 00

f21 Std. 1.56E+ 06 1.11E− 09 7.87E− 30 9.17E+ 08 4.73E− 03 2.31E− 01 2.38E− 01
Rank 6 2 1 7 3 4 5

Average rank 5.1 3.9 3.29 4.38 3.57 1.76 1.76
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fitness value of the population; the second reason is that the
use of a single poor population global optimal particle is not
conducive to increasing the diversity of the population.

According to the experiments in this paper, SHMPSO
has good performance, and it has good performance in most
functions. /e success of SHMPSO mainly depends on the
strategies proposed in this paper: First, based on the flexible
candidate learning strategy, elite particles are selected from
the dominant population to let the poor population particles
learn, and the two populations share information, effectively
jumping out of the local optimal solution. In addition, the
mean dimension learning strategy can make the population
particles have a better search range in complex and
changeable multimodal functions, greatly improve the
learning samples of particles, and provide more effective
information for all particles. /erefore, SHMPSO has ex-
cellent properties and convergence accuracy.

5. Conclusion

Inspired by MPCPSO, this paper proposes a particle swarm
optimization algorithm based on the strategy of subpopula-
tion mixing. In this paper, the mean dimension learning
strategy ensures the searching ability of the algorithm and the
breadth of learnable samples, which provides the searching
potential for the whole population. At the same time, the
candidate learning strategy is used to improve the diversity of
the population and prevent the population from falling into
local optimum. At the same time, this paper compares
SHMPSO with six well-known PSO variants to verify the
effectiveness of SHMPSO proposed in this paper. Of course,
SHMPSO still has some shortcomings, and f2 and f11 fall
into local optimum. As the population searching ability needs
to be improved, our future work will focus on the global
searching ability of SHMPSO, and at the same time, we will
deeply study the practical application of SHMPSO.
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