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Abstract

Bacteriophages (or phages) play major roles in the evolution of bacterial pathogens via hori-

zontal gene transfer. Multiple phages are often integrated in a host chromosome as pro-

phages, not only carrying various novel virulence-related genetic determinants into host

bacteria but also providing various possibilities for prophage-prophage interactions in bacte-

rial cells. In particular, Escherichia coli strains such as Shiga toxin (Stx)-producing E. coli

(STEC) and enteropathogenic E. coli (EPEC) strains have acquired more than 10 pro-

phages (up to 21 prophages), many of which encode type III secretion system (T3SS) effec-

tor gene clusters. In these strains, some prophages are present at a single locus in tandem,

which is usually interpreted as the integration of phages that use the same attachment (att)

sequence. Here, we present phages integrating into T3SS effector gene cluster-associated

loci in prophages, which are widely distributed in STEC and EPEC. Some of the phages inte-

grated into prophages are Stx-encoding phages (Stx phages) and have induced the duplica-

tion of Stx phages in a single cell. The identified attB sequences in prophage genomes are

apparently derived from host chromosomes. In addition, two or three different attB

sequences are present in some prophages, which results in the generation of prophage

clusters in various complex configurations. These phages integrating into prophages repre-

sent a medically and biologically important type of inter-phage interaction that promotes the

accumulation of T3SS effector genes in STEC and EPEC, the duplication of Stx phages in

STEC, and the conversion of EPEC to STEC and that may be distributed in other types of E.

coli strains as well as other prophage-rich bacterial species.

Author summary

Multiple prophages are often integrated in a bacterial host chromosome and some are

present at a single locus in tandem. The most striking examples are Shiga toxin (Stx)-pro-

ducing and enteropathogenic Escherichia coli (STEC and EPEC) strains, which usually

contain more than 10 prophages (up to 21). Many of them encode a cluster of type III
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secretion system (T3SS) effector genes, contributing the acquisition of a large number of

effectors (>30) by STEC and EPEC. Here, we describe prophages integrating into T3SS

effector gene cluster-associated loci in prophages, which are widely distributed in STEC

and EPEC. Two or three different attachment sequences derived from host chromosomes

are present in some prophages, generating prophage clusters in various complex configu-

rations. Of note, some of such phages integrating into prophages are Stx-encoding phages

(Stx phages) and have induced the duplication of Stx phages. Thus, “prophage-in-pro-

phage” represents an important inter-phage interaction as they can promote not only the

accumulation of T3SS effectors in STEC and EPEC but also the duplication of Stx phages

and the conversion of EPEC to STEC.

Introduction

Horizontal gene transfer (HGT) is an important mechanism for generating genetic and pheno-

typic variations in bacteria [1–3]. Phages are major players in HGT, and many temperate

phages that confer virulence potential to host bacteria through the transfer of virulence-related

genes have been identified [4]. Most temperate phages integrate their genomes into host chro-

mosomes by site-specific recombination to become a part of the chromosomes as prophages

and enter a lysogenic cycle. Recombination takes place between the homologous sequences of

phage and host DNA (attP and attB, respectively) and is mediated by a phage-encoded inte-

grase [5]. Many bacterial species/strains contain multiple prophages [6–8], providing various

possibilities for prophage-prophage interactions [9,10]. In particular, Escherichia coli strains

such as Shiga toxin (Stx)-producing E. coli (STEC) strains have acquired more than 10 pro-

phages (up to 21) [11–14], and some of the prophages are located at the same loci in tandem.

STEC strains cause diarrhea and severe illnesses, such as hemorrhagic colitis (HC) and life-

threatening hemolytic-uremic syndrome (HUS). Their key virulence factor is Stx. While there

are two subtypes (Stx1 and Stx2) with several variants and STEC produces one or more Stx

subtypes/variants [15–18], the known stx genes are all encoded by prophage genomes. In addi-

tion, typical STEC strains share the locus of enterocyte effacement (LEE) encoding T3SS with

enteropathogenic E. coli (EPEC), and more than 30 effectors have been carried into STEC and

EPEC by multiple prophages [19–22]. Thus, EPEC strains are generally regarded as progeni-

tors of typical STEC strains. For example, O157:H7 STEC evolved from an ancestral EPEC

O55:H7 through the phage-mediated acquisition of stx along with a serotype change [23,24].

In this study, we initially analyzed the two copies of an Stx2-encoding prophage (referred to

as Stx phage) present in two loci of an STEC O145:H28, one of the major types of non-O157

STEC [25,26], and found that one of them is integrated into another prophage. We then identi-

fied its attB sequence. By subsequent analyses of prophages carrying similar attB sequences,

we show that phage integration in prophage (referred to as prophage-in-prophage) is a genetic

event widely occurring in STEC and EPEC and represents a mechanism underlying the evolu-

tion and diversification of these bacteria.

Results

Integration of inducible and packageable Stx2a phages into a prophage

integrated into the ompW locus in STEC O145:H28

We previously identified 18 prophages in the finished genome of O145:H28 strain 112648

[27], including two Stx2a phages found at the ompW (P09) and yecE loci (P12). The two Stx2a

phage genomes were identical in sequence; thus, they were considered duplicated prophages.
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As the lambda-like P08 prophage was also found at ompW, we initially thought that P08 and

P09 had been integrated in tandem. However, by analyzing the potential att sequences of the

three PPs, we found that, while P08 was integrated into the ompW gene with an attL/R
sequence of 121 bp, P09 was integrated into the P08 genome with a 21-bp attL/R sequence

which is similar to the attL/R of P12 in the yecE gene (Fig 1A). By analyzing the prophages at

the ompW and yecE loci in O145:H28 strains, we identified another strain (12E129) that carries

the same set of prophages: a lambda-like prophage at ompW, an Stx2a phage in the prophage

at ompW, and another Stx2a phage at yecE. The potential att sequences of the three prophages

were identical to those of the corresponding prophages in strain 112648 (S1 Fig). Although the

genomes of the two Stx2a phages in strain 12E129 were also nearly identical, the left end

regions including the cI gene significantly differed in sequence (Fig 1B). Therefore, there are

two possibilities for the acquisition of two copies of Stx2a phage by this strain; the left end seg-

ment has been replaced by recombination after duplication or two Stx2a phages were infected

independently. Hereafter, prophages integrated into the same locus are collectively referred to

as PPxxx (where xxx denotes the integration locus), such as PPompW.

To precisely determine the att sequences of each prophage, we amplified and sequenced the

attP-flanking regions of excised and circularized genomes of these phages. Although the two

Stx2a phages in strain 112648 were indistinguishable, those of strain 12E129 were distinguish-

able, allowing sequence determination of the attP-flanking regions of three prophages from

mitomycin C (MMC)-treated cell lysates. This analysis confirmed that the predicted att
sequences exactly represented those of the three prophages and revealed that their genomes

were excised and circularized by MMC treatment (S1 Fig). The att sequences of P08 and P09/

Fig 1. Integration sites of the inducible and packageable duplicated Stx2a phages in two STEC O145:H28 strains. (A) The duplicated Stx2a phages and their att
sequences in strain 112648. The genome structures of three prophages (P08, P09, and P12) are drawn to scale. The att sites of each prophage are indicated by open (attL)

or filled (attR) symbols (P08, rhombus; P09, circle; P12, square). The att sequences of the Stx2a phages (P09 and P12) are shown in the inset. (B) The genome structures

of two Stx2a phages and a lambda-like phage integrated into ompW (PPompW) in strain 12E129. Sequence homology between the two Stx2a phages is also shown, with

their integration sites indicated in parentheses. Homologous regions are indicated by shading with different colors according to sequence identity. The integrase gene of

PPompW and the cI gene on each Stx2a phage were targeted by the PCR primers used in Fig 1C. (C) Detection of packaged DNA of the three prophages in the DNase-

treated lysates of strain 12E129 with (+) or without (-) MMC treatment. The chromosome backbone (CB) region was amplified as a negative control.

https://doi.org/10.1371/journal.ppat.1009073.g001
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P12 in strain 112648 were also confirmed using the same strategy. These results indicate that,

in both strains, one of the two Stx2a phages has been integrated into PPompW.

We further examined the packageability of these prophage genomes into phage particles by

PCR analysis of DNase-treated culture supernatants of strain 12E129 with or without MMC

treatment (Fig 1C). This analysis detected DNase-resistant genomic DNA of the two Stx2a

phages, but did not that of PPompW, indicating that these Stx2a phages were both packaged

into the phage particles. In a similar analysis of strain 112648, the packaged genome of Stx2a

phage (P09 and/or P12) was detected (S1D Fig). That of P08 (PPompW) was also not detected.

The deficiency of the two PPompWs in genome packaging can be explained by the mutation in

a gene for head formation (Fig 1A and 1B). These PPompWs contained an insertion sequence

(IS)-mediated deletion of the lysis gene cassette-encoding region and one or more additional

pseudogenes, thus both are apparently defective.

Dynamics of PPompWs, phages integrated into PPompW, and PPyecEs in

STEC O145:H28

To investigate the distribution of PPompWs and the attB sequences found in two PPompWs

among O145:H28 strains, we selected 64 genomes from 239 strains analyzed in our previous

study (S1 Table) [27]. This set comprised 8 finished and 56 draft genomes and encompassed

seven of the eight clades previously identified in the major lineage (sequence type (ST) 32) and

a minor lineage (ST137/6130) of O145:H28, thus largely representing the overall phylogeny of

O145:H28 as shown by a whole genome-based maximum likelihood (ML) tree (Fig 2).

PPompWs were present in all 64 strains analyzed, including the two aforementioned strains.

All-to-all sequence comparison of the PPompWs from eight finished genomes and 12

PPompWs sequenced in this study revealed that the PPompW genomes were highly conserved

with average nucleotide identity (ANI) values of>97.0%, although sequence diversification

and segment replacement, probably by recombination, were detected in some parts of several

PPompWs (S2A Fig). Further analysis of the 20 PPompWs revealed that all contained the

21-bp att sequence (Fig 2), with one exception where the 21-bp attB-containing region had

been lost by IS insertion. These results indicate that a PPompW containing the 21-bp attB
sequence was acquired by an ancestral strain and has been stably maintained in O145:H28. It

should be noted that, as seen in the two aforementioned strains, all PPompWs analyzed in this

study contained multiple gene inactivations and deletions, and thus appear to be defective.

Examination of the attB in PPompW and yecE loci in the 64 strains revealed that prophages

are integrated into the two loci in 14 and 21 strains, respectively, with marked variation in the

prophage content between strains (Fig 2). At the attB in PPompW, Stx2a phages were present

in 10 strains and non-Stx phages in four strains (all belonging to ST32 clade H). More variable

prophages were found at yecE: Stx1a phages in 11 strains, Stx2a phages in eight strains, Stx2d

phage in one strain, and non-Stx phages in two strains. Two aforementioned strains (112648

and 12E129) carrying two Stx2a phages belonged to different ST32 clades, indicating that their

acquisition of two copies of Stx2a phages occurred independently.

All-to-all sequence comparison of 27 prophage genomes integrated into the attB in

PPompW (n = 8; all were Stx2a phages) or yecE (n = 19; 9 Stx1 phages, 8 Stx2a phages, one

Stx2d phage, and one non-Stx phage) locus revealed that the Stx1a phage genomes were rela-

tively well conserved (ANI: >98.1%), with several regions with sequence divergence probably

introduced by recombination (S2B Fig). In contrast, the Stx2a phage genomes were highly var-

iable except for those in the ST32 clade A/B/C strains. Interestingly, although the Stx2a phage

of strain RM9872 (clade C) was integrated into yecE, this phage was similar to the Stx2a phage

at the attB in PPompW in clade A/B strains (ANI: >98.1%). Considering the high conservation
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of Stx1a phages at the yecE locus in these clades, it is likely that the Stx1a phage at yecE has

been replaced by the Stx2a phage originally integrated into the PPompW in strain RM9872.

Wide distribution of PPompWs and the 21-bp attB sequence in E. coli
We next examined the distribution of PPompWs and the 21-bp attB sequence (or sequences

similar to it) in the entire E. coli lineage by searching for them in all publicly available complete

E. coli genomes (n = 767). Although this set was biased to STEC/EPEC strains (n = 252; S2

Table), particularly STEC O157 (n = 91; S3 Table), we used this set because detailed and accu-

rate analyses of prophage configurations and sequences were possible only in complete

Fig 2. Variation in the prophage content at the ompW, attB in PPompW, and yecE loci in STEC O145:H28. In the left panel, an ML tree of 64 O145:H28 strains is

shown. Completely sequenced strains are indicated in bold (plasmids were not finished for strain 2015C-3125). The tree was constructed based on the recombination-

free SNPs (3,277 sites) identified on the conserved chromosome backbone (3,961,936 bp in total length) by RAxML using the GTR gamma substitution model [43]. The

reliabilities of the tree’ s internal branches were assessed using bootstrapping with 1,000 pseudoreplicates. Along with the tree, the geographic and ST/clade information

of strains, the presence or absence of prophages at three loci (ompW, attB in PPompW, and yecE) and the types of prophages at the attB in PPompW and yecE loci are

shown. Prophages sequenced in this study and those in the finished genomes are indicated by asterisks and daggers, respectively. Note that the attB in PPompW
sequence is missing from the PPompWs of strains EH2246 and 12E109; a deletion in the latter stain was detected in its draft genome assembly. The bar indicates the

mean number of nucleotide substitutions per site. In the right panel, the patterns of the prophage content at the three loci are schematically presented. Strains showing

each pattern are also indicated in the left panel by diagrams. For more details about the T3SS effector set, see Fig 3 and main text. Note that we detected recombination

between the Stx2a phage at attB in PPompW and a prophage present at the ydfJ locus that induced a large chromosome inversion in strains 10942 and 499. In strain

EH1910, an inversion appeared to have occurred by the recombination between PPompW and a prophage at ydfJ.

https://doi.org/10.1371/journal.ppat.1009073.g002
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genomes. PPompW was found in 44% of the E. coli strains examined (338 strains of 92 sero-

types; all but O145:H28 and O26:H11 comprised a single ST). Phylogenetic analysis of the E.

coli strains representing each of the 92 serotypes showed that PPompWs are widely distributed

in E. coli (Fig 3). In contrast, after excluding the 21-bp attB sequence in yecE, 21-bp sequences

identical to the attB in the PPompW of O145:H28 strain 122715 (S1C Fig) or with a 1-base

mismatch (hereafter, collectively referred to as 21-bp sequences) were detected in 150 strains

of 20 serotypes belonging to five different E. coli phylogroups (Fig 3 and S3 Table). In 145 of

the 150 strains, the 21-bp sequence was present in PPompWs, but 28 of the 145 strains (all

were serotype O157:H7) contained an additional 21-bp sequence in the second PPompW
located in tandem (n = 4), a prophage cluster atmlrA (n = 1), or prophage clusters at ydfJ
(n = 23). Among the remaining five strains, one atypical O157:H7 strain (PV15-279) contained

a 21-bp sequence in a prophage cluster at ydfJ and four strains (all were serotype O177:H25)

contained one or two 21-bp sequences in a prophage or prophage cluster at ydfJ. (Note that

PPompW was not present in these O177:H25 strains.)

Fig 3. Phylogenetic positions of E. coli strains carrying PPompW and the genome structures of their EELs associated with 21-bp attB sequence. In the upper panel,

an ML tree of 92 complete genomes of E. coli strains that carry PPompW is shown. The tree was constructed based on 109,927 SNP sites in 2,642 core genes and rooted by

cryptic Escherichia clade I strain TW15838 (No. AEKA01000000) used as an outlier. Along with the tree, strain IDs used in this paper (see S5 Table for more details),

phylogroups, and the presence (colored) or absence (open) of 21-bp attB sequence in each strain are indicated. The bar indicates the mean number of nucleotide

substitutions per site. In the lower panel, the repertoires of T3SS effector genes that were encoded by the effector exchangeable loci (EELs) in the PPompWs containing

the 21-bp attB sequence are shown. The genomic structures of EELs are drawn to scale. All effector genes were aligned using BLASTN, and orthologous genes (sequence

identity;>90%, coverage;>90%) are indicated by the same color. Genes with over 90% identity but less than 90% coverage and those containing indels and nonsense

mutations in the sequence alignment to intact genes are indicated by asterisks.

https://doi.org/10.1371/journal.ppat.1009073.g003
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By examining the 145 strains containing the 21-bp sequence in PPompW, we identified

three non-O145:H28 strains carrying prophages integrated in PPompW: one O157:H7 strain

and two O145:H25 strains (S4 Table). Moreover, similar to the two aforementioned O145:H28

strains, the acquisition of two copies of Stx2 phage (one in the attB in PPompW and the others

in the yecE loci) occurred in two of the three strains (Stx2d phage in O157:H7 strain 28RC1

and Stx2a phage in O145:H25 strain CFSAN004176). These Stx2 phages appear to have been

duplicated in each strain because the two Stx2 phages in each strain were nearly identical

across the entire genome (ANI: >99.8%; S3 Fig), although one Stx2a phage in the O145:H25

strain contained a large genomic deletion and its stx2A gene was inactivated by multiple inser-

tions and deletions [14].

Close association of the 21-bp attB sequence with the prophage regions

encoding T3SS effector genes

Comparison of the PPompW genomes containing the 21-bp attB sequence (S4 Fig) revealed

that while the early regions were relatively well conserved, the late regions were highly variable.

In particular, the PPompW genomes of phylogroup A strains have been highly degraded by

deletions. Other PPompW genomes also contained IS insertions and multiple gene inactiva-

tion and deletion, and all PPompWs appear to be defective, as seen in O145:H28 strains. In

fact, we detected no packaged DNA of the PPompW of strain E2348/69, which contained a rel-

atively well conserved gene set (E329 in Figs 3 and S4). However, multiple T3SS effector genes

are present just upstream of the 21-bp attB sequence in all PPompWs including those of O145:

H28 strains. Only exception was that in an O182:H25 strain, from which effector genes have

apparently been deleted (Figs 3 and S4). Thus, the 21-bp attB sequence is closely linked to the

T3SS effector-encoding locus located at the very end of PPompW genomes. Such regions of

lambda-like phages encoding various T3SS effector genes are called exchangeable effector loci

or EELs [20]. All PPompWs containing the 21-bp attB sequence were also lambda-like phages.

By analyzing T3SS effector genes in the EELs in the PPompW genomes, we identified seven

effector genes belonging to the nleA, nleH, nleF, and espM families and three nleG subfamilies

(G1-3) (Fig 3). Although there were variations in the effector gene repertoire between

PPompWs and gene inactivation due to various types of mutations (mostly deletions) was

detected in several PPompWs, a similar set of effector genes was found at the PPompW EELs.

As one or more IS elements were present at all EELs, the variation in effector gene repertoire

was probably generated by IS insertion-associated events. The conservation patterns of effector

genes among the 19 EEL-positive PPompW genomes suggest that the EELs of O157:H7 strain

Sakai (phylogroup E, E731 in Fig 3) and EPEC O76:H7 strain FORC_042 (phylogroup B1,

E398 in Fig 3) represent the ancestral structure encoding seven effector genes.

It should be noted that, in all 150 strains that were found to contain the 21-bp attB
sequence, the sequence was associated with these seven effector genes or a single nleG variant

(see S5 Table for the details). These strains possessed the eae gene, a marker gene of the LEE

(S3 Table and S5 Table for more details on each strain) with no exception, indicating that they

are all EPEC or typical (LEE-positive) STEC.

Prophage clusters that contained prophages carrying the 21-bp attB
sequence and identification of additional attB sites in prophage genomes

Among the aforementioned 28 O157:H7 strains that contained two 21-bp attB sequences, four

strains contained these sequences in the EEL-associated region of two PPompW genomes inte-

grated in tandem (Fig 4A and type a1 in S5 Fig). In these strains (as represented by FRIK2069

in Fig 4A), while one of the EELs encoded an effector gene set similar to that of other PPompW
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EELs, the other encoded an nleG variant different from the three nleG subfamilies at other

PPompW EELs.

In other 24 O157:H7 strains, one 21-bp sequence was present in PPompW, and the other

was present in prophage clusters comprising two to four prophages. In one of the 24 strains

(FRIK944; Fig 4B and type b in S5 Fig), the prophage cluster was present atmlrA (synonyms:

yehV) and comprised two prophages, an Stx1 phage and a lambda-like phage. By analyzing the

attL/R sites of each prophage, we found that while Stx1 phage is integrated intomlrA [9], the

lambda-like phage has been integrated into the Stx1 phage, using the 96-bp att sequence (see

S6 Fig for the sequence) which is associated with an EEL similar to PPompW EELs. The

lambda-like phage also contained an nleG variant, but the 21-bp sequence was present between

attL and the integrase gene and was not associated with the nleG variant. Hereafter, we

referred to the 96-bp att sequence as attB-in-PP_2 and the 21-bp attB sequence which first

identified in PPompWs as attB-in-PP_1. Intriguingly, between the attB-in-PP_1 and the inte-

grase gene of the lambda-like phage, the 121-bp attB sequence for PPompWs was present.

Although phage integration into the 121-bp sequence in prophage genomes has yet to be iden-

tified, this sequence can serve as a potential attB site in prophage genomes. We therefore refer

to it as attB-in-PP_3.

In the remaining 23 O157:H7 strains, prophage clusters comprising two to four prophages

were present at ydfJ (as represented by that of strain PV15-279 in Fig 4C; see types c2 and c 3

in S5 Fig for those of other strains). In these strains, one or two lambda-like phages, which

carry EELs similar to the PPompW EELs or encode multiple nleG variants, were integrated

into ydfJ (see S7 Fig for the attB sequences). The former type of EEL was associated with attB-

in-PP_2, into which another lambda-like phage was integrated. The phages integrated into

PPydfJ contained the attB-in-PP_1 and attB-in-PP_3 sequences downstream of the integrase

gene and encoded nleG variants at the opposite end. This organization is similar to that of the

above-mentioned phage integrated into PPmlrA (Fig 4B). Moreover, in strain PV15-279

shown in Fig 4C (an atypical O157:H7 strain [28]), an Stx2a phage was integrated into the

attB-in-PP_1 of the prophage integrated into PPydfJ.
Among the four aforementioned O177:H25 strains that contained one or two attB-in-PP_1

sequences, a similar but slightly different pattern of prophage integration into prophage

genomes was observed (Fig 4D and types d1 and d2 in S5 Fig). In these strains, the attB-in-

PP_1 sequence was found in a region that comprised two highly degraded prophages inte-

grated in tandem between the trg and rspB genes. EELs similar to the PPompW EELs, attB-in-

PP_2 and attB-in-PP_1 were found in this order, and a lambda-like phage was integrated into

attB-in-PP_2. Moreover, the lambda-like phages integrated into attB-in-PP_2 contained the

attB-in-PP_1 and attB-in-PP_3 sequences and multiple nleG variants, similar to the phages

integrated into PPmlrA or PPydfJs (Fig 4D). This finding indicates that the distribution of

these three attB sequences in prophage genomes is not limited to O157:H7 strains.

It should be noted that, similar to PPompWs, many of the prophages in the prophage clus-

ters described in this section, including all prophages which were found to be integrated by

other phages, are apparently defective due to small or large genome deletions and multiple

gene inactivation (S5 Fig).

Origins of attB sequences in prophages

Finally, to explore the origins of these attB sequences in prophages, we compared their flank-

ing sequences with E. coli chromosome sequences. The attB-in-PP_1-flanking sequences in

PPompWs and other prophages (all are integrated into prophages as shown in S5 Fig) were

highly conserved (S8 Fig), implying that these sequences have a common origin. Moreover,
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the 100-bp sequences including the 21-bp attB-in-PP_1 sequence showed a notable similarity

(87% identity) to the corresponding yecE region (Fig 5; see S8 Fig for sequence alignment),

suggesting that the attB-in-PP_1 and its flanking sequence originated from the yecE locus.

Sequence similarity was also detected between the 96-bp attB-in-PP_2 sequence in the

PPompWs and the ykgJ/ecpE intergenic region of the E. coli chromosome (about 81% identity)

(Fig 5; see S9 Fig for more details including sequence alignment). As the homologous sequence

extended to 125 bp in PPmlrA and PPydfJ (S9 Fig), we performed an additional search of E.

coli complete genomes and identified seven attB-in-PP_2-containing prophages, although this

search was limited to six STEC genomes, in which their prophages were fully annotated. The

prophages identified in this search included the Stx1a phage (Sp15) atmlrA of O157:H7 strain

Sakai [11], the aforementioned duplicated Stx2a phages of O145:H28 strain 112648, duplicated

Stx2a phages of the atypical O157:H7 strain PV15-279 (one in PPompW and the other in yecE;

carrying an nleC effector gene), and two non-Stx phages in O26:H11 and O111:H8 STEC

strains [12] (at ydfJ and ssrA, respectively; the former carries an nleC effector gene). In these

seven prophages, homologous sequences further extended to 309 bp with 84% identity (Figs 5

and S9). Contrary to the observation for attB-in-PP_1 and its flanking sequences, there was

notable diversity in the attB-in-PP_2 sequence (23/96 polymorphic sites) between the

Fig 4. Prophage clusters that contained prophage carrying potential att sequences in O157:H7 and O177:H25

strains. The genomic structures of three representative prophage clusters of the 33 clusters found in O157:H7 and that

of O177:H25 strains are shown (A, strain FRIK2069; B, strain FRIK944; C, atypical O157:H7 strain PV15-279; D,

O177:H25 strain SMN152S1). The identified attB sequences, coding sequences (CDSs) (including pseudogenes), and

ISs in each prophage are indicated. T3SS effector genes found in the PPompW EELs (Fig 3) and other effector genes

(nleG variants) are distinguished by different colors. In panel C, the attB sequence indicated by an asterisk is truncated

by an IS insertion, and integration of an Stx2a phage into the attB-in-PP_1 site is schematically presented. The

integrase (int) genes and the nleH genes that have been degraded are indicated by (d). The genome structures of all

prophage clusters identified in this analysis are illustrated in S5 Fig.

https://doi.org/10.1371/journal.ppat.1009073.g004

Fig 5. Locations of the attB-in-PP sequences in prophages and the prophage genome regions homologous to E.

coli chromosome regions. Three loci in the E. coli chromosome showing sequence homology to three identified attB-

in-PP sequences and their flanking sequences are shown at the top. The left- and right-end regions of representative

prophages that contained the att-in-PP sequences are shown below. Homologous sequences are indicated by the same

color. The color used for each attB-in-PP sequence is the same as that used in Figs 4 and S5. See these figures for the

details of “PPompWs” and “prophages in PPmlrA/PPydfJ” and S9 Fig for information on the prophages inmlrA, ydfJ,
ssrA, and yecE and PPompW. Alignments of the attB-in-PP_1 and attB-in-PP_2 sequences and their flanking

sequences with corresponding chromosome sequences are shown in S8 and S9 Figs, respectively.

https://doi.org/10.1371/journal.ppat.1009073.g005
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PPompWs, PPmlrA in strain FRIK944, PPydfJ in strain 141 and the other seven prophages (S9

Fig). These findings indicate that the attB-in-PP_2 and its flanking sequences originated from

the ykgJ/ecpE intergenic region on the chromosomes of E. coli or its close relatives, but acquisi-

tion of the sequences by phages might have occurred multiple times.

The 121-bp attB-in-PP_3 sequence which was found in many of the phages integrated in

prophages identified in this study (Figs 4 and 5, see S5 Fig for more details) showed 81% iden-

tity to the E. coli ompW, suggesting that its possible origin is also the chromosome of E. coli or

its close relatives. Interestingly, PPompWs and many other phages integrated in prophages

contained two or three attB-in-PP sequences in the same order. The sequences between the

attB-in-PP sequences (indicated by green in Fig 5) were also conserved (up to a 5-single nucle-

otide polymorphism (SNP) difference); however, the location of the attB-in-PP set in

PPompWs was different from that of other phages integrated in prophages. This finding sug-

gests that the region encompassing three (or two) attB-in-PP sequences was once acquired by

either type of phage and spread to the other by recombination between prophages or some

other mechanisms.

Discussion

As summarized in Fig 6, we identified various phage integration patterns in STEC and EPEC

strains, including phage integration into prophages. Most temperate phages are integrated into

host genomes by integrase-mediated recombination between attP and attB. Tandem integra-

tion can occur if the two phages share the same attB site. In contrast to this traditional view of

the mechanism for generating tandem prophages, this study identified many prophages that

contain attB sequences, which allow another phage to be integrated into their genomes, form-

ing a prophage-in-prophage configuration. The combination of the two integration mecha-

nisms generates more complex prophage clusters in host genomes (Fig 6; combination of

tandem prophages and prophage-in-prophage). Frequent colocalization of multiple attB
sequences in prophages potentially generates much more variation than detected in this study.

These attB sequences probably originated from the host chromosome, providing more oppor-

tunities for lysogenization to incoming phages and allowing the duplication of prophages

encoding medically or biologically important genes, such as stx.

Interactions between integrating prophages and their “host” prophages are an important

issue to better understand the processes of prophage-in-prophage formation. In this regard, a

notable finding is that all host prophages identified in this study were apparently defective.

This finding suggests that attB sequences in defective prophages are favorable sites for phage

integration, which represents a hidden biological role of defective phages. The mechanism(s)

of incorporating attB sequences into phage genomes from host chromosomes is another

important issue. Although we were unable to address the molecular mechanism(s) in this

study, intra-chromosomal recombination between prophages might be involved in this pro-

cess. Such recombination, particularly those inducing symmetric chromosome inversions in

respect to the ori-ter axis, could also contribute to the formation and variation of complex pro-

phage clusters and the spread of intra-prophage attB sequences. In fact, we observed recombi-

nation and chromosome inversion between prophages/prophage clusters at ompW and ydfJ in

several strains (Figs 2 and S5).

Notably, most attB sequences in prophages identified are linked to EELs that encode multi-

ple effector genes for the LEE-encoded T3SS, and prophages integrated into the attB in pro-

phages often carry nleC and nleG family effector genes. Thus, the prophage-in-prophage

system has promoted the accumulation and variation of effector genes in EPEC and STEC

strains [21,29], although how it affects the virulence potential of these strains is currently
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Fig 6. Summary of the variable phage integration patterns found in this study.

https://doi.org/10.1371/journal.ppat.1009073.g006

PLOS PATHOGENS Prophage-in-prophage in STEC and EPEC

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009073 April 29, 2021 12 / 21

https://doi.org/10.1371/journal.ppat.1009073.g006
https://doi.org/10.1371/journal.ppat.1009073


unknown and requires further analyses [22,30]. It is also noteworthy that a significant portion

of the phages integrated in attB-in-PP_1 (13/18) encoded stx genes, indicating that the attB-

in-PP_1 sequence can contribute to the acquisition of stx genes and thus the conversion of

EPEC to typical STEC, even if the yecE locus, the origin of attB-in-PP_1 and one of the integra-

tion hot spots of Stx phage [12,31–33], has been occupied by another phage.

In conclusion, the findings obtained here highlight that phage integration systems are

much more complicated than previously recognized and provide additional insights into the

evolution of EPEC and STEC and their genetic diversity. It may be also possible to find similar

prophage integration patterns in other types of E. coli and other prophage-rich species if pro-

phage clusters are carefully investigated. Similar integration systems could also be found for

genetic elements utilizing integrase-mediated integration mechanisms, such as integrative and

conjugative elements (ICEs) [34].

Material and methods

Bacterial strains

The 64 O145:H28 strains analyzed in this study are listed in S1 Table. Of these, 59 were from

our laboratory stock, which were genome-sequenced in our previous study [27], and 5 were

completely genome-sequenced stains (the plasmid genome was not finished in strain 2015C-

3125), the genome sequences of which were downloaded from the NCBI database. To con-

struct the completely genome-sequenced E. coli strain set, a total of 875 complete genomes

were downloaded from the database (accessed on the 20th of July 2019). After excluding labo-

ratory, commercial and re-sequenced strains and substrains, the 767 strains listed in S5 Table

were used for analysis. Annotation was carried out using the DDBJ Fast Annotation and Sub-

mission Tool (DFAST) [35], if necessary.

Extraction of total cellular and phage DNA

Bacterial cells were grown overnight to the stationary phase at 37˚C in lysogeny broth (LB)

medium. For prophage induction, cells were grown to the late log phase (0.7–0.9 OD600), and

MMC was added to the culture to a final concentration of 1 μg/ml. After a 3-hr incubation, ali-

quots of the culture were isolated, and the cells were collected by centrifugation. Total cellular

DNA was extracted from the cells using the alkaline-boiling method and used for PCR analy-

ses. Phage particles were isolated from the culture supernatant after a 3-hr incubation with

MMC. The culture was first treated with chloroform, and bacterial cell debris was removed by

centrifugation. The supernatant was filtered through a 0.2-μm-pore-size filter (Millipore) and

incubated with DNase I (final concentration: 400 U/ml, TaKaRa) and RNase A (50 μg/ml,

Sigma) at 37˚C for 1 hr. After inactivating DNase I by incubation at 75˚C for 10 min and add-

ing EDTA (5 mM, Nacalai Tesque), the sample was treated with proteinase K (100 μg/ml;

Wako) and used as packaged phage DNA. Total cellular DNA and packaged phage DNA from

MMC-untreated cultures were prepared with the same protocol. The primers used in these

analyses are listed in S6 Table.

Analyses of phage integration and sequencing of prophage genomes

Phage integration into the ompW, attB in PPompW (later renamed attB-in-PP_1) and yecE
loci in 56 O145:H28 draft genomes was first examined by a BLASTN search as outlined in

S10A Fig. The integration of Stx phages into the attB in PPompW and/or yecE was determined

by long PCR amplification using primers targeting the stx genes and sequences adjacent to

these integration sites, as schematically shown in S10B Fig. The products of long PCR were
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used for sequence determination of each prophage. The primers used in this analysis are listed

in S7 Table.

Sequencing libraries were prepared for each product of long PCR (ranging from 15 to 33

kb) using the Nextera XT DNA Sample Preparation Kit (Illumina) and sequenced on the Illu-

mina MiSeq platform to generate paired-end (PE) reads (300 bp x 2). Prophage genome

sequences were obtained by assembling and scaffolding Illumina PE reads using the Plata-

nus_B assembler (v1.1.0) (http://platanus.bio.titech.ac.jp/platanus-b) [36]; then, gaps were

closed by Sanger sequencing PCR products that spanned the gaps. Annotation of all prophage

genomes was carried out with DFAST, followed by manual curation using IMC-GE software

(In Silico Biology). All sequences have been deposited in the DDBJ/EMBL/GenBank databases

under the accession numbers listed in S1 Table. GenomeMatcher (v2.3) [37] was used for

genome sequence comparison and to display the results.

Searches for PPompWs and the 21-bp attB sequences in the complete E. coli
genomes

Serotypes and stx and eae subtypes of the 767 complete E. coli strains were determined by

BLASTN as previously described [27,29]. Systematic ST determination was performed by a

read mapping-based strategy using the SRST2 program [38] with default parameters. Read

sequences of the complete genomes were simulated with the ART program (ART_Illumina,

version 2.5.8) [39]. The genomes whose ST was not precisely defined (possible ST containing a

novel allele, an uncertain ST, and no STs in the present database) were reanalyzed using MLST

2.0 with “Escherichia coli #1” schemes [40] (https://cge.cbs.dtu.dk/services/MLST/).

The presence of PPompW and the 21-bp attB sequence in PPompW was examined in the

complete genomes by a BLASTN-based search as follows. The presence of PPompW was deter-

mined using two query sequences: one was the integrase gene of O145:H28 strain 112648

(EC112648_1574) (thresholds: >90% identity and>90% coverage), and the other was the

ompW-containing region on the chromosome of E. coli K-12 (No. NC_000913; nucleotide

positions 1,314,020–1,315,224; no phage integration) to examine the absence of phage inser-

tion into the ompW locus (threshold: >85% identity and<60% coverage). When either the

integrase gene or the ompW locus split by some insertion was detected, we analyzed the gene

organization of these regions to determine if PPompW was present. The search for the 21-bp

attB sequence (5’-GTCATGCAGTTAAAGTGGCGG-3’) (S1C Fig) was performed with the

blastn-short task option (thresholds: >95% identity and 100% coverage). The 21-bp sequences

in the yecE gene, which were similar to the 21-bp attB sequence in PPompW, were removed.

SNP detection and phylogenetic analysis

The SNP sites (3,277 sites) of the core genomic sequences of the 64 O145:H28 strains were

detected by MUMmer [41], followed by filtering recombinogenic SNPs by Gubbins [42], and

used for reconstruction of an ML tree in RAxML [43] with the GTR gamma substitution

model as previously described [27]. To reconstruct the phylogeny of the E. coli strains carrying

PPompW, we used 92 E. coli strains representing each of the 92 serotypes that contained

PPompW-carrying strains. Strains in which the 21-bp attB sequence was detected were prefer-

entially selected from the serotypes that contained multiple strains. Escherichia cryptic clade I

strain TW15838 (No. AEKA01000000) was used as an outgroup. The core genes (n = 2,642) of

these strains, which were defined as the genes present in 100% of strains, were identified by

Roary [44], and their concatenated sequence alignments were generated by the same software.

Based on the alignment (109,927 SNP sites in total), an ML tree was constructed using RAxML

as described above. Phylogroups of the strains were determined by ClermonTyping [45]. ML
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trees were displayed and annotated using iTOL [46] or FigTree (v1.4.3) (http://tree.bio.ed.ac.

uk/software/figtree/).

Supporting information

S1 Fig. Determination of the attP sequences of phages integrated in ompW, PPompW, and

yecE in O145:H28 strains 12E129 and 112648. (A) Schematic representation of the PCR

strategy used to amplify the attP-flanking region (left panel) and the locations of PCR primers

used for each phage (right panel). (B) PCR detection of excised and circularized prophage

genomes. Total cellular DNA isolated from MMC-treated (+) or MMC-untreated (-) cells was

analyzed. A chromosome backbone (CB) region was amplified as a positive control. (C) The

att sequences of the three prophages in strain 12E129. The attP-containing sequences obtained

by sequencing the PCR products shown in S1B Fig were aligned with the attR-, attL-, attB-

containing sequences to define the att sequences of each phage. The ompW sequences of strain

K-12 MG1655 (accession No. NC_000913) and the yecE sequence of O145:H28 strain 122715

(accession No. AP019708), in which no phages were integrated, were used as the attB
sequences, respectively (indicated by a dagger and a section mark, respectively). The defined

att sequences are indicated by uppercase letters. (D) Detection of packaged DNA of the three

prophages in the DNase-treated lysates of strain 112648 with (+) or without (-) MMC treat-

ment. The CB region was amplified as a negative control. The same primer pairs as shown in

S1A Fig were used in this analysis.

(TIF)

S2 Fig. All-to-all genome sequence comparison of PPompWs and that of prophages in the

attB in PPompW and PPyecEs found in 64 O145:H28 strains. Dot plot matrixes of the

concatenated sequences of the 20 PPompW genomes (A) and 27 prophage in the attB in

PPompW and PPyecE genomes (B) found in 64 O145:H28 strains are shown. Strain names and

information on the ST and ST32 clade of each strain are indicated. Sequence identities are

indicated by a heatmap. In panel A, the nucleotide sequences between the attB in PPompW
and the attR (approximately 428 bp in length) were excluded from this analysis because the

sequences of this region in three strains (499, EH1910, and KIH15-140) were not determined.

Average nucleotide identities (ANIs) among these genomes ranged from 97.0% to 99.9%. In

panel B, the subtype of Stx encoded by each prophage and the integration site of each phage

are indicated. Prophage groups sharing similar genomic sequences are framed by boxes. ANIs

among the Stx1a phages ranged from 98.1% to 99.9% and those between Stx2a phage of strain

RM9872 and the other Stx2a phages of clade A/B strains framed by purple boxes showed over

98.1%.

(TIF)

S3 Fig. Sequence comparison of the two copies of Stx2 phage found in four E. coli genomes.

Dot plot matrixes of the concatenated sequences of the Stx phages found in four strains (two

O145:H28 strains, an O157:H7 strain, and an O145:H25 strain) in their attB in PPompW and

yecE loci are shown. The names of host strains, Stx2 subtypes, and integration sites of each

Stx2 phage are indicated. Stx2 phages in the same strain are framed by boxes. The two Stx2

phages in three strains (indicated by purple boxes) showed high sequence identity across their

entire genomes (ANI: >99.8%), suggesting that they were duplicated in each strain. Sequence

identities are indicated by a heatmap.

(TIF)

S4 Fig. Comparison of the PPompW genomes containing the 21-bp attB sequence. In the

left panel, along with the same ML tree as shown in Fig 3, E. coli strain ID, phylogroup (PG),
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and the presence (colored) or absence (open) of the 21-bp attB sequence in each E. coli are

indicated. In the right panel, the genome structures of PPompWs containing the attB are

drawn to scale. In two strains indicated by asterisks (E473 and E471), recombination between

PPompW and another prophage along with translocation of chromosome segments caused

complicated chromosome inversions around the replication terminal; therefore, only relevant

prophage regions are shown. Homologous regions and sequence identities are depicted by

shading with a color gradient. The Stx2a phages integrated into the attB locus in strains E474

and E118 are schematically indicated.

(TIF)

S5 Fig. Variation in the prophage integration patterns in the prophage clusters that con-

tained prophages carrying potential attB sites. In the left table, a list of 33 strains that pos-

sessed prophage clusters that contained prophages carrying the 21-bp sequence identical or

nearly identical to that of the attB in PPompW is provided. In the right panel, the patterns of

phage integration are schematically illustrated. Strains showing each pattern are also indicated

in the left table. CDSs shown by colored triangles include pseudogenes. The 21-bp sequence

(renamed attB-in-PP_1) and other attB sequences are indicated. Among these sequences, the

two indicated by an asterisk are truncated by IS insertion. Several attB sequences are missing

because of deletions. The T3SS effector set (light green triangles) consists of any of the seven

effector family/subfamily genes that are encoded by the PPompW EELs shown in Fig 3. Pro-

phage that are apparently defective due to multiple gene degradation and deletion are indi-

cated by (d). Genomic structures of four prophage clusters (indicated in bold in the left table)

are presented in Fig 4. Types a, c, and d include a minor variation; homologous recombination

between the second PPompW and the first PPydfJ (type a2), integrase-deficient PPydfJs with or

without additional phage integration in tandem (types c2 or c3, respectively), and a region

comprising two degraded prophages integrated in tandem between the trg and rspB genes

without phage integration into the attB-in-PP_2 locus (type d2) are shown.

(TIF)

S6 Fig. The attB-in-PP_2 sequences. (A) Locations of the attB-in-PP_2 sequences in repre-

sentative prophage genomes. (B) Comparison of the nucleotide sequence of attB-in-PP_2

among the prophages shown in panel A.

(TIF)

S7 Fig. The attP sequence of PPydfJ. (A) Schematic representation of the ydfJ-flanking region

and the prophage clusters present at the ydfJ locus in three E. coli strains. Because the integrase

genes of the PPydfJs in strain PV15-279 (PPydfJ-L and PPydfJ-R) have both been inactivated

by IS insertion, the PPydfJ-R of O26:H11 strain 11368 was used for sequence determination of

the attP-flanking region of PPydfJ by sequencing a PCR amplicon obtained with two primers

(indicated by red and blue arrows). (B) The att sequences of the four PPydfJs. The attP-con-

taining sequence of the PPydfJ-R of strain 11368 was aligned with the attR-, attL-, and attB-

containing sequences to define the att sequences of each phage. Because phages are integrated

in the ydfJ locus in many E. coli strains including K-12, the ydfJ sequence of O104:H4 strain

C227-11, in which no phage was integrated in this locus, was used as the attB sequence. The

18- or 19-bp att sequence that we defined is indicated by uppercase letters.

(TIF)

S8 Fig. The attB-in-PP_1 and its flanking sequences in prophages and comparison with the

E. coli yecE sequence. (A) The locations of the attB-in-PP_1 (initially called 21-bp attB in

PPompW) sequences in the genomes of six PPompWs and three other phages integrated in

prophages and in the yecE locus of E. coliO145:H28 strain 122715. The 21-bp attB-in-PP_1
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sequence and the additional 79-bp sequence homologous to the yecE gene are indicated by red

and purple, respectively. The attB-in-PP_2 and attB-in-PP_3 are also indicated by blue and

orange, respectively. The sequences of the two regions indicated by green are conserved

between prophages with up to 5 SNPs. The lengths of the two regions are 185 bp (left) and 228

bp (right). (B) Alignment of the 100-bp sequences homologous to the yecE locus in the nine

prophages shown in panel A with the corresponding sequence of the yecE locus of strain E. coli
O145:H28 strain 122715. The 21-bp attB-in-PP_1 sequence is indicated by uppercase letters.

The 100-bp sequences of these prophages were 87% identical to the yecE sequence.

(TIF)

S9 Fig. The attB-in-PP_2 sequence and its flanking sequences. (A) The locations of the attB-

in-PP_2 sequences (blue) in eight prophage genomes and on the chromosome of E. coli K-12

strain MG1655. The 96-bp attB-in-PP_2 sequences and their flanking sequences (184 bp and

29 bp in length) homologous to the ykgJ-ecpE region on the E. coliMG1655 chromosome are

indicated by blue, pink, and dark brown, respectively. The presence of stx and T3SS effector

genes in each prophage is also indicated. (B) Alignment of the attB-in-PP_2 and its flanking

sequences in the prophages shown in panel A with the corresponding sequence of the ykgJ-
ecpE region on the E. coliMG1655 chromosome. Only the prophage genomic regions homolo-

gous to the ykgJ-ecpE region are shown. The 184-bp regions (pink) of prophages show 83%

sequence identity with the ykgJ-ecpE region. Note that the 96-bp attB-in-PP_2 (blue; indicated

by uppercase letters) contained 23 SNPs.

(TIF)

S10 Fig. Procedures to determine the phage integration into the ompW, 21-bp attB in

PPompW (later in the manuscript, renamed attB-in-PP_1) and yecE loci. (A) Analysis of

phage integration by a BLASTN search. Draft genomes of O145:H28 (n = 56) were searched by

BLASTN, using the sequences of the attL- and attR-containing regions of the prophages at

ompW, attB in PPompW and yecE in strain 112648 (P08L/R, P09L/R, and P12L/R, respec-

tively) as queries. Each query sequence was composed of the sequences from the host chromo-

some and prophage (60 bp each) with the att sequence determined in this study (121 bp for

P08 and 21 bp for P09/P12) located between them. Phage integration at each locus was consid-

ered positive when attL- and attR-containing sequences were both detected (identity thresh-

old:>95%). Phage integration in all but two genomes was determined by this analysis. In

strains EH1910 and H27V05, although phages integrated into yecE (PPyecE) were detected,

PPompW was not detected. Unexpectedly, however, the P09L/R sequences (corresponding to

the attL- and attR-containing sequences of the prophage in PPompW) were detected in

EH1910, and a partial P09 attL sequence (74.5% coverage) was detected in H27V05. Therefore,

the ompW and attB in PPompW loci of the two genomes were defined as ‘Others’, and sub-

jected to long PCR analysis along with the identified prophages. (B) Long PCR analysis and

sequence determination of prophage genomes. Strategies for five types of analysis are shown.

Type I analysis: The genomes of PPompWs that did not contain prophages were divided into

three segments and amplified by three long PCRs to obtain the PCR products for genomic

sequence determination. Note that the left and right segments included the left and right

PPompW-chromosome junctions, respectively (the same strategy was employed in Types II-V

analyses). Type II analysis: The genomes of PPompWs that contained an Stx phage were ampli-

fied together with the Stx phage genomes using 5 or 6 primer pairs to confirm the presence of

these prophages and to obtain the PCR products for genome sequence determination. Two

primers targeted the stx gene (stx1 or stx2). As we detected recombination between the Stx

phage and a prophage located at the ydfJ locus in two strains (EH1910 and 499), a different

primer (the leftmost one) was used, thus labeled Type IIb. Type III analysis: In four strains, in
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which the PPompW contained an Stx phage, the genome of PPompW and the early region of

the Stx phage were amplified using 4 primer pairs, and only these genomic regions were

sequenced. Type IV and V analyses: The genomes of PPyecEs were amplified using 2 or 3

primer pairs to obtain the PCR products for genomic sequence determination. When the

PPyecE contained the stx gene (Type IV), two stx-targeting primers were used as in Type II

analysis. For the PPyecE in strain H27V05 (Type Va), only the early region was amplified and

sequenced.

(TIF)

S1 Table. E. coli O145:H28 strains analyzed in this study.

(XLSX)

S2 Table. The proportion of STEC/EPEC strains in the complete E. coli genome set ana-

lyzed in this study (last access: 20th of July 2019).

(XLSX)

S3 Table. E. coli strains containing the 21-bp attB sequence found in prophage at non-yecE
loci.

(XLSX)

S4 Table. E. coli O157:H7 and O145:H25 strains carrying prophages integrated in

PPompW.

(XLSX)

S5 Table. All available complete E. coli genomes in the NCBI database (last access: 20th of

July 2019).

(XLSX)

S6 Table. Primers used for PCR amplification for prophage regions.

(XLSX)

S7 Table. Primers used for long PCR analysis.

(XLSX)
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