RESEARCH

Open Access

Identification of a novel de novo pathogenic variant in *GFAP* in an Iranian family with Alexander disease by whole-exome sequencing

Katayoun Heshmatzad¹, Niloofar Naderi¹, Tannaz Masoumi¹, Hamidreza Pouraliakbar² and Samira Kalayinia^{1*}

Abstract

Background: Alexander disease (AxD) is a rare leukodystrophy with an autosomal dominant inheritance mode. Variants in *GFAP* lead to this disorder and it is classified into three distinguishable subgroups: infantile, juvenile, and adult-onset types.

Objective: The aim of this study is to report a novel variant causing AxD and collect all the associated variants with juvenile and adult-onset as well.

Methods: We report a 2-year-old female with infantile AxD. All relevant clinical and genetic data were evaluated. Search strategy for all AxD types was performed on PubMed. The extracted data include total recruited patients, number of patients carrying a *GFAP* variant, nucleotide and protein change, zygosity and all the clinical symptoms.

Results: A novel de novo variant c.217A > G: p. Met73Val was found in our case by whole-exome sequencing. In silico analysis categorized this variant as pathogenic. Totally 377 patients clinically diagnosed with juvenile or adult-onset forms were recruited in these articles, among them 212 patients were affected with juvenile or adult-onset form carrier of an alteration in *GFAP*. A total of 98 variants were collected. Among these variants c.262C > T 11/212 (5.18%), c.1246C > T 9/212 (4.24%), c.827G > T 8/212 (3.77%), c.232G > A 6/212 (2.83%) account for the majority of reported variants.

Conclusion: This study highlighted the role of genetic in AxD diagnosing. It also helps to provide more information in order to expand the genetic spectrum of Iranian patients with AxD. Our literature review is beneficial in defining a better genotype–phenotype correlation of AxD disorder.

Keywords: Infantile Alexander disease, GFAP, Leukodystrophy, Whole-exome sequencing, Genetics, In silico analysis

Introduction

Alexander disease (AxD) (OMIM #203450) is a rare leukodystrophy first described in 1949 with usually infantile manifestation. The exact prevalence of AxD is not known,

*Correspondence: samira.kalayi@yahoo.com

however a Japanese investigation estimated an incidence of 1 person in 2.7 million. This disorder belongs to a group of neurological diseases denoted as leukodystrophies affecting the central nervous system (CNS) white matter and characterized by myelin sheath defects or abnormal development of myelin sheath [1, 2]. According to age of onset, AxD is classified in to three subgroups naming infantile, juvenile and adult forms [3]. Patients affected with infantile AxD present various symptoms

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

¹ Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran Full list of author information is available at the end of the article

such as seizures, megalencephaly, developmental delay, progressive deterioration and increased neonatal patients severity within first two years after birth [4]. Juvenile form with the age of onset (2–14 years of age) is characterized by symptoms including ataxia, hyperreflexia, bulbar symptoms. Juvenile form has milder progression and preserved cognitive and motor function comparing to infantile form. Adult AxD patients have more similarities to the juvenile form and manifest mainly spastic paraparesis, palatal myoclonus, bulbar symptoms and ataxia [5]. AxD is usually diagnosed based on the results of CT and MRI characteristic appearances-reference. Frontal predominance involvement, hindbrain involvement, medulla oblongata and cervical spinal cord atrophy are indicators of younger patients and patients with later onset, respectively [6-8]. This autosomal dominant disorder is usually the consequence of defects in GFAP gene [9]. Sporadic cases should be mentioned briefly GFAP is located within chromosome 17q21 consists of nine exons spreading 9.8 kb length encoding a 432 amino acid protein. This protein belongs to intermediate filament proteins and has considerable and key roles in astrocytes morphology and motility regulation and astrocytes and oligodendrocytes interaction. The exact and precise mechanism through which GFAP function is not completely understood, however, it is believed that gain of function mutations in GFAP affects and disrupts intermediate filaments dimerization leading to abnormal aggregation of proteins and cytoskeleton collapse [3, 10, 11]. GFAP identification and sequencing have increased the level of diagnosis accuracy and statistical analysis have evaluated the relationships between onset age and the GFAP genotype and its clinical outcomes [12]. Nearly all of the GFAP disease-causing mutations are heterozygous single base-pair alterations located in the coding region especially in central rod domain conserved α -helices. The remaining mutations are near the N-terminus precoil domain and C-terminal tail domain [3, 13]. In this study, we report a *GFAP* novel variant in a 2-year-old female affected with infantile form and conduct a comprehensive review on all of the reported GFAP mutations in patients with adult and juvenile forms as well.

Methods

Case clinical features and demographic data

A 2-year-old female patient referred to Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran, suffering from developmental delay and vomiting during one year after her birth. She was born through cesarean delivery and she was the only child of one healthy non-consanguineous parents (Fig. 1A). Her birth weight and head circumference were 2350 g and 33.9 cm, respectively. At age 24 months, she manifested some further symptoms including seizure and motor and speech delays. She could not also sit independently. The patient presented spasticity and increased deep tendon reflexes (DTRs). Further neurological examination also revealed ataxia and she had also gait disturbance. The clinical surveys of other available members of the pedigree were normal. After conducting clinical evaluations and family history recording and genetic counselling, whole-exome sequencing [14] was conducted for precise diagnosis. Identified candidate variant was confirmed and segregated in family members using PCR and direct Sanger sequencing. The study was performed in accordance with the Helsinki Declaration and has been approved by the Rajaei Cardiovascular, Medical, and Research Center ethics committee (IR.RHC. REC.1400.077).

MRI

Her first brain magnetic resonance imaging (MRI) at the age of 24 months indicated diffuse hyperintensity in periventricular and subcortical white matter of frontal and parietal lobes. Furthermore, basal ganglia indicated hyperintensity on apparent diffusion coefficient (ADC) maps. The brainstem and cerebellum had no abnormalities. Her MRI suggested leukodystrophy or hypoxic– ischemic encephalopathy. Her MRI reveals white matter involvement.

Whole-exome sequencing

Informed consent was obtained from the proband's parents. DNA extraction was conducted according to salting out method. The quality and quantity of extracted DNA was checked by agarose gel electrophoresis and NanoDrop (Thermo Fisher Scientific, USA). DNA sample of the proband (III-1) (Fig. 1A) was subjected to WES and was conducted using at Macrogen (Seoul, South Korea) and raw data (fastq) was analyzed by Cardiogenetic Research Center, Rajaie Cardiovascular, Medical, and Research Center, Tehran, Iran.

The short reads alignment with human reference genome (UCSC build37/hg19) was performed by BWA (http://bio-bwa.sourceforge.net/) [15]. Any alterations including insertions/deletions (indels), single-nucleotide polymorphisms (SNPs) and polymerase chain reaction (PCR) duplicates removal were detected using Picard (http://picard.sourceforge.net/), SAMtools (http://www. htslib.org/) [16], and GATK (https://www.broadinsti tute.org/gatk/) [17]. After annotation by annovar (http:// annovar.openbioinformatics.org) [18], variants with minor allele frequency (MAF)<0.05 were selected and filtered. In order to assess deleterious effects of variants, bioinformatics tools were applied including combined

annotation dependent depletion (CADD; https://cadd. gs.washington.edu/home) [19], sorting intolerant from tolerant (SIFT; https://sift.bii.a-star.edu.sg/) [20], MutationTaster (http://www.mutationtaster.org/) [21], protein variation effect analyzer (PROVEAN; http://prove an.jcvi.org/index.php) [22], polymorphism phenotyping v2 (PolyPhen-2; http://genetics.bwh.harvard.edu/pph2/) [23], genomic evolutionary rate profiling (GERP; http:// mendel.stanford.edu/SidowLab/downloads/gerp/), and CLUSTALW (https://www.genome.jp/tools-bin/clust alw).

Validation, and bioinformatics analysis

The validation of identified variant was confirmed in the proband and segregated in other family members by PCR and direct Sanger-sequencing. PCR was performed using specific primers (forward primer: TTCATAAAG CCCTCGCATC, reverse primer: CGCTTCCAACTC CTCCTTTA) on a SimpliAmp Thermal Cycler (Thermo Fisher Scientific) and products were sequenced on an ABI Sequencer 3500XL PE (Applied Biosystems). The sequences were analyzed by CodonCode Aligner 7.1.2 (https://www.codoncode.com/aligner/).

Search strategy and data extraction

The combination of following keywords GFAP and Alexander disease, "GFAP mutations" and GFAP" [title/ abstract] were used searching PubMed. Totally 954 articles were collected and after duplicate removal, 868 articles remained. The inclusion criteria include patients affected with juvenile and adult-onset form of AxD who carried an alteration in *GFAP*.

According to our defined inclusion criteria, nucleotide and protein change, zygosity, number of total recruited patients and *GFAP* carriers, main clinical symptoms were extracted from the selected articles (Table 1). All the collected variants were analyzed by different in silico tools such as Clinvar, SIFT, Mutation Taster, PROVEAN, GERP, ACMG, CADD and Polyphen-2 (Table 2).

Results

Our genetic investigation revealed a novel de novo pathogenic variant, c.217A > G (p. Met73Val) in the recruited patient. Segregation analysis in the proband's parents confirmed the identified variant of WES (Fig. 1B). The sequence alignments of proteins displayed the variant occurred within a highly conserved amino acid across various species, which provides its essential performance (Fig. 1C). Using schematic view of GFAP, the location of p.Met73Val was visualized. The identified variant is located on coil 1A of rod domain (Fig. 1D, E). Bioinformatic analysis by different tools such as Mutation Taster, PROVEAN, PolyPhen-2, CADD, SIFT, and GERP categorized this variant as disease causing, neutral (Score: -1.540), possibly damaging (Score: 0.526), PHRED: 21.8, damaging (Score: 0.005), and Score: 3.73, respectively.

Our search strategy and data extraction led to collection of 86 articles that met our defined inclusion criteria. Totally 377 patients were recruited in these articles, among them 212 patients were affected with juvenile or adult-onset form carrier of an alteration in *GFAP*. 202 mutations were reported and among them 98 were unique (without duplication). c.262C > T 11/212 (5.18%), c.1246C > T 9/212 (4.24%), c.827G > T 8/212 (3.77%), c.232G > A 6/212 (2.83%) were more frequent comparing to other fulfilled mutations. Our search analysis revealed that bulbar signs 115/212 (54.24%), ataxia 74/212 (34.9%) and spasticity 59/212 (27.83%) were the dominant clinical symptoms among carrier of *GFAP* variants (Fig. 2).

According to our analysis, mutations located on coil2B (24.74%) and coil1A (23.71%) constituted the majority of reported mutations in juvenile and adult-onset forms (Table 2). Among these 98 unique fulfilled variants 54 and 35 variants were categorized as likely pathogenic and pathogenic, respectively (Table 2).

Discussion

Gain of function variants in GFAP are associated with different forms of AxD as a neurodegenerative disorder with autosomal dominant inheritance mode [3, 24]. GFAP is an important conserved intermediate filament protein with high expression level in astrocytes playing a significant role in central nervous system (CNS). Altered GFAP loses ability of extracellular K⁺ clearing and gliotic tissue hyperexcitability as the consequence [25]. This leads to astrocyte function impairment, demyelination changes and aggregation of Rosenthal fiber [26]. A comprehensive search on variants causing juvenile and adult was conducted and all the collected variants were analyzed by different in silico tools. Besides, our genetic analysis revealed a novel de novo variant in *GFAP* naming c.217A > G results in a methionine substitution to valine at codon 73 located in Coil 1A. GFAP- α (alpha) is the most abundant form of GFAP consists of head coil domain followed by the rod (filament) domain. Rod domain is also composed of four coils (1A, 1B, 2A, 2B). Reported variants near or within coil1A are Met73Lys, Met73Thr, and Met73Arg [13, 27-29]. Previous studies indicated that variants located within 1A, 1B and 2B domains may strongly cause severe form of AxD [13]. Met73Lys was first reported in a 7-month-old girl manifesting seizures and spasticity, but she did not indicate any bulbar signs or ataxia [27] and Met73Thr was reported in a 3-month-old girl. Her main clinical symptoms were macrocephaly, seizures,

er Ref	[33]	[39]	[40]	[41]	[42]	[43]	[44]	[45]	[3]	[46]	[47]	[48]	[27]
d-Othe										SM		≚∪∑	
- Stan ing - on one foot		-											
Elec - tive ism		-											
ns-Un s stea din- ess		-											
d- Clur ines		-											
Slurred speech	-	,	-	-		-							
acro- phaly													
ait Ma cel		-											
	2	-		7									
Devel menta Delay			-				-	-					
ental tard- ion													
hy re at		-											
Seiz- A ures p		-	-	4	-		-	-					-
atus il- ticus													
as-St city ep ep													
atal-sp oc-tic us				5			-						-
ta-Pala us myo lon				, -									
ar Nys	5				-								
i- Bulb signs	5			5	2	-	-	-			-		4
p-Scoli osis					2		-						
- Ence halo- pathy					-								
- Myoc Ionus					-								
Hyper tonia								-					
FR Ata- xia						-					-		7
ige D	90	0		∧ ∞ ~ 4	4 0 1	тб	0		0	P.	0	υ	നരംഗന
iers	~ ~ ~	-	9	U U U U		U U	-		-	9	4	Q	$\nabla \cdots + 0$
Num ed of s carri	5	-	-	4		7					-	-	LO
otal ecruite patient:		-2							-				m
ein J ge r		>	-	년 33 년 -	90E 39C	138 137	2	¥	_	ter 1	Ø	Z.	_ ≥ 4 ~ >
chan	A E72K T T412I	. A244	A R79H	5 p. Arg 330G p.Glu 2Lys	p.Q2	Gp.Asr A6Ser p.Arg 6Gln	. p.R75	A E312	A R79H	- E312	E223	A D126	C R79P T R416 C L359I A R70C R70W
utation	14G>/ 235C>	31C>T	50G > /	88C > (94G > /	68C > C 29C > T	157A > 127G >	35C>T 29C>T	28G > /	50G > /	34G>7	1G>C	82G>/	36G > (246C > 076T > 09G > ♪
ي م	C.1	2 C.7	3 c.2	4 2.0 0.0	C.7	C C C	C.5.2	3 C.6) c.2	10 c.9	11 68	12 C.3	000000 000000
	4	· •		*		-		~	<u> </u>				

Table 1 Data extraction

Tab	ile 1 (con	tinued)																				
So.	Mutation 1	Protein change	Total recruite patient:	Numbe d of 5 carriers	r Age	DTRAta-Hyper- My xia tonia lor	/oc-Encep-9 nus halo- o pathy	Scoli-B osis si	ulbar N igns g	Nysta-Palatal- gmus myoc- lonus	spas- S ticity e e	tatus S pil- u pticus	eiz- At res ph	ro-Mental y retard- ation	Develop- Gait mental Delay	Macro- cephaly	Slurred speech	- Clums-U iness st di	n Ele ea- tive in- mu ss ism	e Stan ing t- on foot	d-Other	Ref
4	C.53G>T F	p.Gly1 3Val	_	-	46																	[49]
15	c.382 G > A F	p.Asp12 8Asn	-	-	52																P RF	[50]
16	c.219G > C F	p.M731	-	-	49	1	-	_			-										т	[30]
17	c.809G[C F	p.Arg270 Pro	-	-	36	1		-	1	_												[51]
18	c.1245G > Al	M4511	m	m	38 35 60	-		2	1	_							m				M (3)	[52]
19	c.10761>C1 c.1178G>T1 c.1178G>T1 c.209G>A 1 c.209G>A 1 c.208C>T 1 c.208C>T 1 c.208G>A 2 c.208G>A 1 c.208C>A 1 c.208G>A 2 c.208G>A 2 c.208GA C.208	p.L359P p.S393I p.R416W p.R70Q p.R70W p.E305K p.E325K p.5398Y 3.D128N	=	0	26 33 58 58 58 53 58	v							10									[23]
20	c.619-C > G l	NA	e	-	39			-					-								X	[54]

a-Hype- Myo- Enceph- Sco- I a rtonia clonus alopathy liosis s
_
~
_
~
_
_
_
_
_
_

(continued)
-
Ð
9
Ъ.

. Ref	[67]	[68]	[69]	[70]	[12]	[72]	[73]	9	[74]
- Other									
e-ding tr-on n one foot									
itea-Ele ess tiv mu isn									
um-Uns lessdin									
rred-Clt ch sin									
o- Slur alypee			-						
t Macr ceph									
op-Gair al		-	-	-					
l- Devel -ment Delay									
Mental retar- dation									
z-Atro- is phy		-	-				-		
:us- Sei e- ure :us							-		-
ty epil ptic									
ntal-spä >- tici nus	-	-						-	
ta-Pala us myc clor									
ar-Nys s gm			-				-		
o- Bulb sis sign	-	1			-			-	
ph- Sco athy lio	-								-
Encel Is alopá									
- Myo- a clonu									
a- Hype rtoni									
otr Ata xia	-						-		
Age I	28	51	21	26 32 46		67	m	33	=
umber f carrie									
lrecr-N d- o ents	-	-	-	m	-	-	-	ŝ	-
in Tota ge uite pativ	-	-	- 1	ω ω	9	2*)1	1 Val	m	5L 1
Prote chanç	p.R41 6W	p.Leu1 23Pro	p.Arg7 9His	p.Ser2 47Pro P.Asp ² 7Ala p.Gln4 26Leu	p.Arg- 88Cys	p.(E31	5 p. Ile363'	R276L	p.R276
Itation	246C > T	58T>C	50 G > A	39T>C 250A>C 277A>T	52C>T	34G>T	387A>C	27G>T	27G>T
W	C.1.	C.3(c.2!	C.1.2 C.1.2	c.2(c.95	c.1(C.82	C.8,
ž	37	38	39	4	41	42	43	4	45

Table 1 (continued)

her Ref		[75]	[76]	[22]	[78]	[62]	[80]	[81]										[12]	[82]	[83]	[84]	[85]	[98]	[87]
ums-Unstea- Elective-Stand-Oth ess diness mutism ing on	foot																				U			U
Macro- Slurred Cl cephaly speech in				1																1		1		
Il Develop-Gait mental Delay					-			00														-		
 Seiz- Atro- Menta ures phy retar- dation 				1		2	1											1		1				
spas- Status ticity epilep ticus		1			1			4											1					1
Nysta-Palatal- gmus -myo- clonus		-	-			-		5																
- Scoli- Bulbar- osis signs		-			-	2	٦	2 4										-	-		-			1
Hyper Myo- Encep tonia clonus-halo- pathy								m										-						
TR Ataxia H					-	2		9																
ers ers		57	7	29	40	37 38	50	30	54	52	62	19	33	13	34	30	43	40	35	13	32	55 B	7	25
Numbe ted of carri tts		1	-	-	1	2	1	10										-	-	1	-	-	1	1
Total recruit patien		-	1	11	- T	2	-	11										30	-	1	-	-	-	iln 1
Protein change		p.R276L	L357P	R88C	Glu206Alã	pY242N pY242N	M74T	p.E205K	p.E205K	p.5398Y	p.D128N	p.L359P	p.S393I	p.R416W	p.R70Q	p.R70W	p.E332K	R66Q	S393I	E362D	p.Arg 124_ Leu125in- sGInLeuAr	T383I	L331P	p.Lys260G
Mutation		c.827G>T	c.1070C>T	c.262C>T	c.617A > C	c.724T>A c.724T>A	c.221T>C	c.613G>A	c.613G>A	c.1193C > A	c.382G > A	c.1076T > C	c.1178G>T	c.1246C>T	c.209G > A	c.208C>T	c.994G > A	c. 211G>A	c1178G>T	c.1100G > C	c.365_3 73dup	c. 1148C>T	1006T>C	c.778A>C
No.		46	47	48	49	50	51	52										53	54	55	56	57	58	59

	Ref	88	<mark>[80</mark>	6	5													<mark>6</mark>	[92]	<mark>.</mark>	
	Other	A(3)																V		-	
	and-C n ot	<																<		1	
	sm in St fo o																				
	Elect																				
	nstea- iness																				
	us-u ss di																				
	ed Clu																				
	Slurre																		-	2	
	acro- phaly																				
	cel Cel																	-			
	op-Ge																			-	
	Devel ment: Delay	4																			
	ental tar- ation																				
	N re di																				
	eiz- A res pl		-																		
	itus- S lep- u Js	б [,]																-			
	ty epi tic																				
	al-spa - tici Is			1																	
	-Palat -myo clonu																				
	Nysta gmus																			-	
	ulbar- gns			œ																	
	sis si				-															2	
	thy o																			-	
	- En ba-sur ba																				
	r My																				
	Hype -tonia			00)																
	taxia			4																	
	A			1	-														-	2)	
	e D		_							_					_					9	
	er Aç iers		72	30	000	60	50	32	51	99	5 m	52	45	00	46	45		7	22	64	50 M
	Numb of carr	<u>ب</u>	_															_	_	~	
	l l uited o ents																			(1)	
	Tota recri pati	22	-	19	2													-	-	m	
6	ein Ige		86S	Q	2	S	SS	≥		× 2	zz		dnp	Ņ	д	.1	P B		43dup	7	77
	Prot	P.R.83 P.R.83 P.R.87 P.R.73 P.R.73 P.R.73 P.R.73 P.R.73 P.R.73 P.R.73 P.R.73 P.R.73 P.R.73 P.R.73 P.R.73 P.R.73 P.R.73 P.R.73 P.R.83	p.N3	A268	R416	N386	N386	A244	G30.	N102	2421 7421	R126	L127	R416	L357	R124	L125 L123	R88C	p.E24	D781	D781 D781
	tion		7A > G	A < .	- 1<0		7A > G	U_T	4 < 1	₹ < ^ /		C>T	373	∢	0~			L<	_72 \66	A < 5	A < 2
Þ	Muta	22620 22620 22620 22620 227119 22350 22350 22350 22350 22350 22350 22350 22350 22350 22350 22350 22350 22350 22350 22650 22750 22750 22750 22250 22500 2	c.1157	c.803C	c.1246	c.1157	c.1157	c.7310	c.3060	с.7241	C1246	c.1070	c.372_	in sGA.	c.3687			c.262C	c.726_ 8dupA	c.2320	c.232(c.2326
2	No.	20	61	22	1													23	5	55	

(continued)
-
ø
q
Ē

Table 1	(cont	inued)	~																	
No. Mută	ation	rotein hange	Total recr- uited pati- ents	Number <i>i</i> of carriers	AgeDTF	R Ataxia	a Hyper- tonia	- Myo- clonus	Encepha lopathy	a- Sco- liosis	Bulbar- Nysta- signs gmus	Palatal- spasticity -myo- clonus	Status S epile u pticus	Seiz- Atro- ures phy	- Mental retar- dation	Develop- G mental Delay	aaitMacro- Slurred cephaly speech	- Clum- Unstea- Elective siness diness - mutisr	Stand- Othe n ing on one foot	r Ref
72 C.615 C.704 C.704 C.187 C.187 C.731 C.731 C.731 C.715 C.715		ilu20 Lys eu23 Pro Pro Pro Sin Val Val Siu20 Gln Cgln Cys Cys	0	~	0 m m 17 0 0 4	2				-	чл	4				m				[8]
73 c.234	C>G L)78E	-	-							-									[66]
74 c.115	8C>A N	J386K	-	-	79	-										-				[1 00]
75 с.20£	C>T F	o. vrg70Trp	-		8	-														[101]
76 c.38(56/c 66/c 66/c 16/c c.262 c.262 c.262 c.262 c.262 c.262 c.262 c.262 c.262	Last 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Argl 126. eu 127 lup aur 127 aur 1286_ aur 1286_ all 786_ all 786 all		~	2	-					-		-	_		7	_			E
77 c.465 c.124	G>A C 5G>A N	0157N 44151	-	-	13	-					-					-				[102]

Table 1(continuea	(F													
No. Mutatic	n Protein change	Total I recr- o uitedo pati- ents	NumberAgeD M arriers	TR Ata	xia Hyper- Myo- tonia clonus	Encepha- Sco- lopathy liosis	Bulbar-Nyst signs gmu	a- Palatal- s -myo- clonus	spasticity Status epile pticus	s Seiz- Atro- ures phy	Mental Der retar- me dation De	velop- Gait ntal ilay	Macro- Slurr cephaly spee	ed- Clum-Unstea- Elective Stand- ch sinessdiness -mutism ing on one foot	Other Ref
78 c.274T>	G(3) G87V	m	3 53 13 27 32				-			m		2	m		[103]
79 c.1154.C 1V54.24. 1V54.25.G c.259.G5 c.715C> c.715C> c.715C> c.715C> c.715C> c.715C c.1154.C c.209.G5 c.1118A	 >G p.Ser385 A NA G p.Val871 G p.Val871 A P.Arag23 > A P.Arag23 > C 4Asp p.Ser3 855ys p.Ser3 p.Glu3 73Ala 	5 9 5 ~	2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	m			ω		SC .			νο			[104]
80 c.692T>	A p.Leu23 1His		50	-			-					-			[105]
81 c.988C> c.994G>	G p.R330G A p.E332K	-	56												[106]
82 c.236G> 83 c.236G>	A p.R79H A R79H		36 38	-					1		-	-			[107] [108]
84 c.232G> 85 c.221T>	A(3) p.D78N C p.M74T		3 I(2 56	2) 1		-	2		-						[93] [109]
86 c.1157A c.628G> c.716G> c.208C>	 G N386S A E210K A R258H T R70W 	4	4 5 8 5 5 6 6	4			4 0		4						[110]

isease
Alexander d
ated to /
riants rel
lected va
GFAP col
alysis of
natics an
Bioinforn
Table 2

No.	Position on Chromosome 17 (GRCh37)	HGVS DNA	HGVS protein	Exon/ intron	CI ANS	Transcript	Coil	ClinVar	SIFT	Mutation Taster	PROVEAN	FATHMM	GERP	ACMG	CADD	PolyPhen-2
_	42987997	c.1157A>G	p.Asn386Ser	Ш	rs61726471	ENST00000253408	Tail		F	DC	z	D	5.13	LP	17.83	В
2	42992647	c.208C>T	p.Arg70Trp	ш	rs60343255	ENST00000253408	Head	Р	D	DC/P	D	D	4.82	Р	24.1	PD
m	42992549	c.306C > A	p.Asn102Lys	ш	I	ENST00000586793.1	Coil1A	1	T	Ы	z	T/D	4.69	LP	21.8	PD
4	42988006	c.1148C>T	p.Thr3831le	ш	rs267607517	ENST00000586793.1	Tail	Р	D	DC/P	D	D	5.13	LP	25.4	PD
ŝ	42992644	c.211G>A	p.Ala71Thr	Ш	rs267607522	ENST00000586793.1	Head	NP	D	DC/P	z	D	4.82	LP	23.1	PD
9	42984686	c.*29C > T	NA	3UTR	rs370608748	ENST00000588735.1							5.07	В		1
~	42988655	c.1076T>C	p.Leu359Pro	ш	rs267607511	ENST00000586793.1	Coil2B	Р	D	Ы	D	D	4.25	Ь	30	PD
00	42988652	c.1079A > T	p.Asp360Val	ш	rs62636501	ENST00000586793.1	Coil2B	Р	Q	Ы	D	D	4.25	LP	32	PD
6	42988644	c.1087A > G	p.lle363Val	Ш	ı	ENST00000586793.1	Coil2B	,	D	Ы	z	D	4.25	LP	27.3	PD
10	42988641	c.1090G > A	p.Ala364Thr	ш	rs58645997	ENST00000586793.1	Coil2B	Р	D	Ы	D	D	4.25	Р	28.8	PD
11	42988631	c.1100G > C	p.Arg367Thr	ш		ENST00000586793.1	Coil2B	ī	D	Ы	D	D	4.25	Ь	28.8	PD
12	42988613	c.1118A > C	p.Glu373Ala	Ш	rs797044589	ENST00000586793.1	Coil2B	Р	D	Ы	D	D	4.25	Ь	31	PD
13	42988612	c.1119G > C	p.Glu- 373Asp	ш		ENST0000586793.1	Coil2B	i.	Ω	Ы	Ω	Ω	4.25	Ч	25.6	PD
4	42988605	c.1126C > T	p.Arg376Trp	ш	rs267607512	ENST00000586793.1	Coil2B	Р	D	Ы	D	D	4.25	Р	29.7	PD
15	42988604	c.1127G > A	p.Arg376GIn	ш	ı	ENST00000586793.1	Coil2B	ı	D	Ы	D	D	4.25	Р	36	PD
16	42988000	c.1154C > G	p.Ser385Cys	ш	rs797044590	ENST00000586793.1	Tail	LP/P	D	Ы	D	D	5.13	Ь	28.2	PD
17	42987997	c.1157A > G	p.Asn386Ser	ш	rs61726471	ENST00000586793.1	Tail	ı	F	Ы	z	D	5.13	LP	17.83	В
18	42987996	c.1158C > A	p.Asn386Lys	ш	ı	ENST00000586793.1	Tail	ı	D	Ы	z	D	5.13	LP	24.9	В
19	42985512	c.1177A>C	p.Ser393Arg	ш	I	ENST00000253408.5	Tail	ı	μ	Ы	z	ī	5.23	LP	22.6	PD
20	42985511	c.1178G>T	p.Ser3931le	ш	rs62635764	ENST00000253408.5	Tail	Р	⊢	DC	z	,	5.23	LP	21.9	В

Table 2 (continued)

Š.	Position on Chromosome 17 (GRCh37)	HGVS DNA	HGVS protein	Exon/ intron	SNP ID	Transcript	Coil	ClinVar	SIFT	Mutation Taster	PROVEAN	FATHMM	GERP	ACMG	CADD	PolyPhen-2
21	42985496	c.1193C>A	p.Ser398Tyr	Ш	rs267607508	ENST00000253408.5	Tail	Р	Ь	DC	z		5.23	LP	22.4	Q
22	42985496	c.1193C>T	p.Ser398Phe	ш	rs267607508	ENST00000253408.5	Tail	Ч	D	Ы	z		5.23	LP	22.7	Q
23	42985454	c.1235C>T	p.Thr412lle	ш	rs1597853099	ENST00000253408.5	Tail	LP	D	Ы	D		5.13	LP	22.4	Q
24	42985444	c.1245G>A	p.Met415lle	Ш	1	ENST00000253408.5	Tail	T	D	Р	z	ı	5.13	VUS/P	21.8	~
25	42985443	c.1246C>T	p.Arg416Trp	Ш	rs121909717	ENST00000253408.5	Tail	Ъ	D	Я	D	,	5.13	Р	21.2	Q
26	42985439	c.1250A > C	p.Asp417Ala	ш	rs267607520	ENST00000253408.5	Tail	Р	D	Ы	D		5.13	LP	22.5	~
27	42984754	c.1260C>T	p.Val420 ==	ш	rs779643685	ENST00000253408.5	Tail	1	ı	Ы	T	ı	4.80	LB	18.95	
28	42984737	c.1277A>T	p.Gln426Leu	ш	rs267607521	ENST00000253408.5	Tail	Р	D	Ы	D	ı	5.34	LP	18.64	Q
29	42987511	c.1289G > A	p.Arg430His	Ш	rs748860341	ENST00000435360.2	Tail	LP	D	DC/P	D	D	4.78	LP	15.13	Q
30	42987510	c.1290C>A	p.Arg430 ==	ш	rs775524073	ENST00000435360.2	Tail	LP	D	Р		1	4.78	VUS/P	11.06	
31	42992668	c.187A > C	p.Lys63GIn	ш	rs60095124	ENST00000586793.1	Head	Ь	D	DC/P	z	D	4.82	LP	23.5	~
32	42992658	c.197G > A	p.Arg66Gln	ш	rs797044569	ENST00000586793.1	Head	Conflict	D	DC	D	D	5.89	LP	29	Q
33	42992647	c.208C > T	p.Arg70Trp	ш	rs60343255	ENST00000586793.1	Head	Ч	D	DC/P	D	D	4.82	Р	24.1	Q
34	42992646	c.209G > A	p.Arg70Gln	ш	rs267607510	ENST00000586793.1	Head	VUS	D	DC/P	z	D	4.82	Р	22.2	0
35	42992641	c.214G > A	p.Glu72Lys	Ш	rs267607523	ENST00000586793.1	Head	Р	D	Ы	D	D	4.82	Р	24	~
36	42992636	c.219G > C	p.Met73lle	Ш	ı	ENST00000586793.1	Coil1A		D	Я	z	D	4.82	Р	23	~
37	42992636	c.219G>T	p.Met73lle	ш	I	ENST0000586793.1	Coil1A		D	Ы	z	D	4.82	Р	23	~
38	42992634	c.221 T>C	p.Met74Thr	ш	rs267607504	ENST0000586793.1	Coil1A	Ъ	D	Ы	z	D	4.82	Р	22.3	~
39	42992629	c.226C > T	p.Leu76Phe	Ш	rs57120761	ENST00000586793.1	Coil1A	Ъ	D	Я	D	D	4.82	Р	26.7	Q
40	42992624	c.231 T>A	p.Asn77Lys	ш	ı	ENST0000586793.1	Coil1A		D	Ы	D	D	4.82	Р	23.3	Q

CD
5
2
. <u> </u>
+
\subseteq
0
ă
9
\sim
•••
A 1
w.
<u>ــــــــــــــــــــــــــــــــــــ</u>
ă

Tab	Je 2 (continued	기)														
No.	Position on Chromosome 17 (GRCh37)	HGVS DNA	HGVS protein	Exon/ intron	DI ANS	Transcript	Coil	ClinVar	SIFT	Mutation Taster	PROVEAN	FATHMM (GERP /	ACMG 0	CADD	olyPhen-2
14	42992623	c.232G > A	p. Asp78Asn	ш	rs7970 44571	ENST00000 586793.1	Coil1 A	<u>م</u>		DC			4.82 F		26 F	0
42	42992623	c.232G > C	p.Asp78His	ш	I	ENST00000 591880.1	Coil1A	ı		DC	Δ	,	3.39 \	/US/P 2	26 F	Q
43	42992621	c.234C > G	p.Asp- 78Glu	ш	I	ENST00000 586793.1	Coil1A			DC	Δ		1.82 F	0	26 F	Q
44	42992620	c.235C > T	p.Arg79Cys	ш	rs59793293	ENST00000 586793.1	Coil1A	۵.		DC	Δ		1.82 F	0	24.9 F	Q
45	42992619	c.236G > A	p.Arg79His	ш	rs59285727	ENST00000 586793.1	Coil1A	ط		DC	Ω		1.82 F	0	24.6 F	Q
46	42992619	c.236G > C	p.Arg79Pro	ш	rs59285727	ENST00000 586793.1	Coil1A	۵.		DC	Ω		1.82 F	0	26.8 F	Q
47	42992619	c.236G > T	p. Arg79Leu	ш	rs59285727	ENST00000 586793.1	Coil1A	ط		DC	Ω		1.82 F	0	26.7 E	~
48	42992605	c.250A > T	p.Ile84Phe	ш		ENST00000 587997.1	Coil1A	I		DC			5.07 L	д.	24.3 E	~
49	42992596	c.256_259 delinsGAGT	p.Lys86 Val87delin- sGluPhe	ш	rs267607501	ENST0000 0586793.1	Coil1A	۵.	I.					۔ د	I	
50	42992596	c.259G > A	p.Val87Ile	ш	rs267607518	ENST0000 0586793.1	Coil1A	Ч	Ω	DC	z		1.69 F	0	24 F	Q
51	42992593	c.262C > T	p.Arg88Cys	ш	rs61622935	ENST0000 0586793.1	Coil1A	Ч		DC			1.69 F	0	28.2 F	Q
52	42992593	c.262C > A	p.Arg885er	ш	rs61622935	ENST00000 586793.1	Coil1A	Ч		DC			1.69 F	0	31 F	Q
53	42992577	c.278A > C	p.Gln93Pro	ш	rs797044574	ENST00000 586793.1	Coil1A	ط	Ω	DC	D	D/T	1.69 [۵.	27.2 F	Q
54	42992553	c.302 T > C	p.Leu- 101 Pro	ш	rs267607516	ENST00000 586793.1	Coil1A	۵.		DC	Ω		1.69 [در ط	24.3 F	Q
55	42992482	c.365 373dup	p.Arg124_ Leu125in- sGIn- LeuArg	ш	rs797044575	ENST0000 0586793.1	Coil 1B	۹.	I	I	I	I	-	۔ م		I
56	42992487	c.368T>C	p.Leu- 123Pro	ш	I	ENST00000 586793.1	Coil1B	I		DC	D		1.69 [ط	24.2 F	Q

(continued)
2
Ð
q
Ta

No.	Position on Chromosome	HGVS DNA	HGVS protein	Exon/ intron	SNP ID	Transcript	Coil	ClinVar	SIFT	Mutation Taster	PROVEAN	FATHMM	GERP	ACMG	CADD	PolyPhen-2
	17 (GRCh37)															
57	42992470	c.380_385d upGCGGCT	p.Leu127_ Asp- 128dup	ш	1	ENST00005 86793.1	Coil1B		1	1	1	I	I	ГЪ		
58	42992473	c.382G > A	p. Asp128Asn	ш	rs267607509	ENST00005 86793.1	Coil1B	ط		DC	Ω	D/T	4.57	Г	24.2	D
59	42991449	c.469G > A	p. Asp157Asn	ш	rs59291670	ENST0000 0586793.1	Coil1B	В		DC	z	DЛ	5.55	в	24.5	ω
60	42992802	c.53G>T	p.Gly18Val	ш	I	ENST0000 586793.1	Head		⊢	۵.	z	Ω	3.25	VUS/P	1.67	8
61	42991103	c.611A>G	p.His204Arg	ш	Ι	ENST0000058	6793.1 Cc	oil1B —		DC	D	D	4.71	LP	25	PD
62	42991101	c.613G>A	p.Glu205Lys	ш	rs267607507	ENST0000058	6793.1 Cc	oil1B P		DC	D	D	4.71	LP	25.1	PD
63	42991097	c.617A > C	p.Glu206Ala	ш	I	ENST0000058	6793.1 Cc	oil1B –		DC	D	D	4.71	Р	33	PD
64	42990798	c.619G > A	p.Glu207Lys	ш	rs267607500	ENST0000058	6793.1 Cc	oil1B P		DC	Ω	D	4.8	Р	34	PD
65	42990798	c.619G > C	p.Glu207Gln	ш	rs267607500	ENST0000058	6793.1 Cc	oil1B P		DC	D	D	4.8	Р	33	PD
99	42990797	c.620A > T	p.Glu207Val	ш	rs1555574517	· ENST000058	6793.1 Cc	oil1B LP		DC	D		4.8	Ь	32	PD
67	42990789	c.628G > A	p.Glu210Lys	ш	rs57661783	ENST000058	6793.1 Cc	oil1B P		DC	D	D	4.92	LP	31	PD
68	42990725	c.692 T > A	p.Leu231His	ш	rs797044577	ENST000058	6793.1 Cc	il2A P		DC	D	D	4.92	LP	24.9	PD
69	42990713	c.704 T > C	p.Leu235Pro	ш	rs60269890	ENST0000058	6793.1 Cc	il2A P		DC	D	D	4.92	LP	24.9	PD
70	42990702	c.715C > G	p.Arg239Gly	ш	rs58064122	ENST0000058	6793.1 Cc	oil2A VUS		DC	D	D	4.92	LP	25.3	PD
71	42990702	c.715C>T	p.Arg239Cys	ш	rs58064122	ENST000058	6793.1 Cc	oil2A P		DC	Ω	D	4.92	LP	25.3	PD
72	42990701	c.716G > A	p.Arg239His	ш	rs59565950	ENST000058	6793.1 Cc	il2A P		DC	D	D	4.92	Р	23.9	PD
73	42990693	c.724 T > A	p.Tyr242Asn	ш	I	ENST000058	6793.1 Cc	oil2A —		DC	D		4.92	LP	25	PD
74	42990686	c.731C>T	p.Ala244Val	ш	rs61497286	ENST000058	6793.1 Cc	oil2A P		Ы	z		4.94	LP	24.3	PD
75	42990678	c.739T>C	p.Ser247Pro	ш	rs267607519	ENST000058	6793.1 Cc	il2A P		DC/P	Ω		5.07	LP	23.1	PD
76	42990647	c.770A > G	p.Tyr257Cys	ш	rs26760750	ENST0000058	6793.1 Cc	oil2B P		DC	D	Ω	5.07	LP	25.5	PD
77	42990639	c.778A > C	p.Lys260GIn	ш	Ι	ENST0000058	6793.1 Cc	oil2B -		Ы	D	Ω	5.07	LP	28.9	PD
78	42989147	c.799G > C	p.Ala267Pro	ш	rs797044581	ENST0000058	6793.1 Cc	oil2B P		Ы		D	4.42	LP	27.1	PD
79	42989143	c.803C > A	p.Ala268Asp	ш	rs797044582	ENST0000058	6793.1 Cc	oil2B P		DC	D	D	4.42	LP	25.7	PD
80	42989137	c.809G > C	p.Arg270Pro	ш	Ι	ENST0000058	6793.1 Cc	oil2B —		DC	Ω	D	4.42	LP	25.2	PD

ne
.⊆
Ę
ō
9
2
Ð
ā
Ta

Tab	vie 2 (continue.	d)														
No.	Position on Chromosome 17 (GRCh37)	HGVS DNA	HGVS protein	Exon/ intron	SNP ID	Transcript	Coil	ClinVar	SIFT	Mutation Taster	PRO VEAN	FATHMM	GERP	ACMG	CADD	PolyPhen-2
6	42989119	c.827G>T	p.Arg276Leu	ш	rs121909719	ENST00000586793.1	Coil2B	Ь	۵	DC	۵	D	4.42	ГЪ	29.8	PD
82	42989078	c.868C > G	p.Gln290Glu	ш	rs797044583	ENST00000586793.1	Coil2B	Р		Ы	Ω	D	4.38	LP	24.6	PD
83	42988797	c.934G > T	p.Glu312Ter		rs763868966	ENST00000586793.1	Coil2B	VUS	Ι	ЫС	Ι	Ι	4.65	Р	22.8	Ι
84	42988743	c.988C > G	p.Arg330Gly	ш	rs267607513	ENST00000586793.1	Coil2B	Р		DC	Ω	D	4.51	LP	41	PD
85	42988737	c.994G > A	p.Glu332Lys	ш	rs267607514	ENST00000586793.1	Coil2B	Р		ЫС	Ω	D	4.51	LP	23.1	PD
86	42985511	c.1178G>T	p.Ser393Ile	ш	rs62635764	ENST00000253408.5	Coil2B	Р	⊢	Ы	z	I	5.23	LP	24	В
87	42992483	c.372_373 insGAA	p.Arg124_ Leu125in- sGlu	ш	I	ENST0000586793.1	Coil1B	I	I	1	I	I	4.63	Ч	15.82	I
88	42990689	c.726_728 dupAGG	p.E243dup	ш		ENST0000586793.1	Coil1B	ı	ı	1	I	I	4.92	Г	16.67	I
89	42990716	c.701C>A	p.Ala234Asp	ш	rs1353739896	ENST00000592320.1	Coil2A	1	⊢	DC/P		D	4.25	LP	19.72	PD
06	42990801	c.619-3C > G	NA	_	rs112611995	ENST00000586793.1	1	Р			ı			VUS/P		
91	42992582	c.273A > C	p.Glu91Asp	ш	I	ENST00000586793.1	Coil1A			Ы	Ω	D	4.69	LP	25.6	PD
92	42992581	c.274C > G	p.GIn92Glu	ш	I	ENST00000586793.1	Coil1A			Ы	z	D	4.69	LP	24.9	PD
93	42992476	c.378_379dup	p. Leu 127Argf- sTer 26	ш	I	ENST0000586793.1	Coil1B	I	I		ı		4.58	۵	17.26	1
94	42988612	c.1119G > C	p.Glu373Asp	ш	I	ENST00000435360.2	Coil2B	1		Ы	Ω	D	4.25	Р	21.9	PD
95	42989044	c.902G > A	p.Gly301Asp	ш	I	ENST00000586793.1	Coil2B			Ы		D	4.38	LP	25.3	PD
96	42990644	c.773G > C	p.Arg258Pro	ш	rs61726468	ENST00000586793.1	Coil2B	Р		DC		D	5.07	LP	26	PD
97	42989155	c.791 T > C	p.Leu264Pro	ш	rs797044579	ENST00000586793.1	Coil2B	Р		DC		D	4.42	LP	25.3	PD
98	42992579	c.276G > T	p.Gln92His	ш	ı	ENST00000586793.1	Coil1A		Ω	DC	Ω	Ω	4.69	LP	24.5	PD
All tl signi	ne variants were an ificance, N neutral	alyzed based on the	: NM_002055, <i>D</i> d	amaging,	T tolerated, DC dis	sease causing, <i>B</i> benign, <i>F</i>	polymor	ohism, LP	ikely pat	hogenic, <i>P</i> p	athogenic	, PD probably	damagir	ng, <i>VUS</i> va	riant of u	nwonh

spasticity, bulbar signs, and ataxia [13]. Met73Arg is the third variant within this region and was reported in a patient with juvenile form. Her initial symptom was strabismus. In addition to the above-mentioned variants, Met73Ile and Met73Arg located in coil1A are also reported for patients affected with adult-onset form [30, 31]. Most of the reported mutations in GFAP gene are de novo and with 100% penetrance [3, 32]. A study conducted by Xiaoxuan Song et al. in 2021, two de novo mutations naming c.214G > A and c.1235C > T were reported in two unrelated individuals [33]. Both patients indicate regional neural activity increase. In

this study, patient who was carrier of c.1235C > T manifests atrophy of grey matter mainly involving thalamus and bilateral putamen. Grey matter volume loss may be associated with disability in the long run [34]. AxD is inherited in autosomal dominant mode, however, in an investigation by Mu-Hui Fu et al.in 2020, a homozygous substitution naming c.197G > A (p.Arg66Gln) in a man with the onset age 16 was reported. This was the first report of a *GFAP* homozygous mutation [35].

Previous studies showed that c.715C > T (Arg239Cys) is the most common variant identified in Infantile AxD patients, however, c.262C > T (Arg88Cys) and c.1246C > T (Arg416Trp) are the two common variants of other two types. These variants are mainly located in Coil2B domain and Coil1A and therefore they are hotspot regions of GFAP. Our literature review indicated that bulbar signs, ataxia and spasticity constitutes the majority of clinical symptoms of GFAP carriers with juvenile and adult-onset AxD. A review conducted by Heshmatzad et al. in 2021 revealed that 59.70% of infantile AxD patients carrying a GFAP alteration, manifest seizure, spasticity, macrocephaly, and developmental as the dominant clinical symptoms [36]. These results indicated that spasticity is one of the most important signs among all AxD groups. Despite all the promising results of DNA analysis, next-generation sequencing [37] implementation, further studies are needed to categorize GFAP gene variants as a reliable genetic marker for AxD patients. There are only a few published articles investigating the genetics of Iranian patients affected with AxD [36, 38]. This fact highlights the important role of genetic in AxD diagnosis. More large-scale studies with the help of genetic analysis should be conducted in order to expand our knowledge of AxD.

Accession Number

The accession number of the variant in ClinVar is as follows:

NM_002055.5(GFAP):c.217A > G(p.Met73Val): VCV001173085.1.

Acknowledgements

Special acknowledgments to the family that let us to document their story to improve our realization of the condition.

Author contributions

KH wrote the initial manuscript text. NN and TM performed the wet lab evaluation. HP surveyed the patient clinically. SK contributed to the research design and analyzed WES data. All authors reviewed the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate

This research was provided by the Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran, approved by RHC Ethics Committee (IR.RHC.REC.1400.077).

Informed consent

Informed consent has been obtained by the authors.

Competing interests

The authors declare that they have no conflict of financial interest.

Author details

¹Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran. ²Cardiovascular Imaging Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.

Received: 21 May 2022 Accepted: 23 August 2022 Published online: 10 September 2022

References

- 1. Barkovich AJ, Messing A. Alexander disease: not just a leukodystrophy anymore. In: AAN Enterprises; 2006.
- Yoshida T, Sasaki M, Yoshida M, Namekawa M, Okamoto Y, Tsujino S, et al. Nationwide survey of Alexander disease in Japan and proposed new guidelines for diagnosis. J Neurol. 2011;258(11):1998–2008.
- Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet. 2001;27(1):117–20.
- Springer S, Erlewein R, Naegele T, Becker I, Auer D, Grodd W, et al. Alexander disease-classification revisited and isolation of a neonatal form. Neuropediatrics. 2000;31(02):86–92.
- Johnson AB. Alexander disease: a review and the gene. Int J Dev Neurosci. 2002;20(3–5):391–4.
- Namekawa M, Takiyama Y, Aoki Y, Takayashiki N, Sakoe K, Shimazaki H, et al. Identification of GFAP gene mutation in hereditary adult-onset Alexander's disease. Ann Neurol. 2002;52(6):779–85. https://doi.org/10. 1002/ana.10375.
- van der Knaap MS, Ramesh V, Schiffmann R, Blaser S, Kyllerman M, Gholkar A, et al. Alexander disease: ventricular garlands and abnormalities of the medulla and spinal cord. Neurology. 2006;66(4):494–8. https://doi. org/10.1212/01.wnl.0000198770.80743.37.
- van der Knaap MS, Salomons GS, Li R, Franzoni E, Gutiérrez-Solana LG, Smit LM, et al. Unusual variants of Alexander's disease. Ann Neurol. 2005;57(3):327–38. https://doi.org/10.1002/ana.20381.
- Paprocka J, Rzepka-Migut B, Rzepka N, Jezela-Stanek A, Morava E. Infantile Alexander disease with late onset infantile spasms and hypsarrhythmia. Balkan J Med Genet. 2019;22(2):77.
- Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirtyone years (1969–2000). Neurochem Res. 2000;25(9):1439–51.
- Nielsen AL, Jørgensen P, Jørgensen AL. Mutations associated with a childhood leukodystrophy, Alexander disease, cause deficiency in dimerization of the cytoskeletal protein GFAP. J Neurogenet. 2002;16(3):175–9. https://doi.org/10.1080/01677060215305.
- Prust M, Wang J, Morizono H, Messing A, Brenner M, Gordon E, et al. GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology. 2011;77(13):1287–94.
- Li R, Johnson AB, Salomons G, Goldman JE, Naidu S, Quinlan R, et al. Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Ann Neurol. 2005;57(3):310–26. https://doi. org/10.1002/ana.20406.

- Rowczenio DM, Noor I, Gillmore JD, Lachmann HJ, Whelan C, Hawkins PN, et al. Online registry for mutations in hereditary amyloidosis including nomenclature recommendations. Hum Mutat. 2014;35(9):E2403–12.
- 15. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
- McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
- Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucl Acids Res. 2010;38(16):e164-e.
- Kircher M, Witten DM, Jain P, O'roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5.
- Kumar P, Henikoff S, Ng PC. Predicting the effects of coding nonsynonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.
- Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.
- Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31(16):2745–7.
- Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;76 1:7.20. 1–7. 41.
- van der Knaap MS, Naidu S, Breiter SN, Blaser S, Stroink H, Springer S, et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol. 2001;22(3):541–52.
- Walz W, Wuttke WA. Independent mechanisms of potassium clearance by astrocytes in gliotic tissue. J Neurosci Res. 1999;56(6):595–603.
- Messing A, Goldman JE, Johnson AB, Brenner M. Alexander disease: new insights from genetics. J Neuropathol Exp Neurol. 2001;60(6):563–73.
- Caroli F, Biancheri R, Seri M, Rossi A, Pessagno A, Bugiani M, et al. GFAP mutations and polymorphisms in 13 unrelated Italian patients affected by Alexander disease. Clin Genet. 2007;72(5):427–33. https://doi.org/10. 1111/j.1399-0004.2007.00869.x.
- Gorospe J, Naidu S, Johnson A, Puri V, Raymond G, Jenkins S, et al. Molecular findings in symptomatic and pre-symptomatic Alexander disease patients. Neurology. 2002;58(10):1494–500.
- Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017;376(1):21–31.
- Ciammola A, Sangalli D, Sassone J, Poletti B, Carelli L, Banfi P, et al. A novel mutation of GFAP causing adult-onset Alexander disease. Front Neurol. 2019;10:1124.
- Hayano E, Shimizu M, Baba K, Shimamura M, Yoshida T, Mochizuki H. A case of Alexander disease presented with dystonia of lower limb and decreased dopaminergic uptake in dopamine transporter scintigraphy. Rinsho shinkeigaku Clin Neurol. 2020;60(10):712–5. https://doi.org/10. 5692/clinicalneurol.cn-001445.
- Rodriguez D, Gauthier F, Bertini E, Bugiani M, Brenner M, N'Guyen S, et al. Infantile Alexander disease: spectrum of GFAP mutations and genotype-phenotype correlation. Am J Hum Genet. 2001;69(5):1134– 40. https://doi.org/10.1086/323799.
- Song X, Jiang J, Tian W, Zhan F, Zhu Z, Li B, et al. A report of two cases of bulbospinal form Alexander disease and preliminary exploration of the disease. Mol Med Rep. 2021;24(2):1–12.
- Eshaghi A, Prados F, Brownlee WJ, Altmann DR, Tur C, Cardoso MJ, et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol. 2018;83(2):210–22.
- Fu MH, Chang YY, Lin NH, Yang AW, Chang CC, Liu JS, et al. Recessivelyinherited adult-onset Alexander disease caused by a homozygous mutation in the GFAP gene. Mov Disord. 2020;35(9):1662–7.
- Heshmatzad K, Haghi Panah M, Tavasoli AR, Ashrafi MR, Mahdieh N, Rabbani B. GFAP variants leading to infantile Alexander disease:

Phenotype and genotype analysis of 135 cases and report of a de novo variant. Clin Neurol Neurosurg. 2021;207: 106754. https://doi.org/10. 1016/j.clineuro.2021.106754.

- Jefferson RJ, Absoud M, Jain R, Livingston JH, van der Knaap MS, Jayawant S. Alexander disease with periventricular calcification: a novel mutation of the GFAP gene. Dev Med Child Neurol. 2010;52(12):1160–3. https://doi.org/10.1111/j.1469-8749.2010.03784.x.
- Ashrafi MR, Tavasoli A, Aryani O, Alizadeh H, Houshmand M. Alexander disease: report of two unrelated infantile form cases, identified by GFAP mutation analysis and review of literature; the first report from Iran. Iran J Pediatr. 2013;23(4):481–4.
- Aoki Y, Haginoya K, Munakata M, Yokoyama H, Nishio T, Togashi N, et al. A novel mutation in glial fibrillary acidic protein gene in a patient with Alexander disease. Neurosci Lett. 2001;312(2):71–4. https://doi.org/10. 1016/s0304-3940(01)02139-5.
- Asahina N, Okamoto T, Sudo A, Kanazawa N, Tsujino S, Saitoh S. An infantile-juvenile form of Alexander disease caused by a R79H mutation in GFAP. Brain Dev. 2006;28(2):131–3. https://doi.org/10.1016/j.braindev. 2005.05.004.
- Balbi P, Seri M, Ceccherini I, Uggetti C, Casale R, Fundarò C, et al. Adultonset Alexander disease: report on a family. J Neurol. 2008; 255(1):24– 30. https://doi.org/10.1007/s00415-007-0654-0.
- Barreau P, Prust MJ, Crane J, Loewenstein J, Kadom N, Vanderver A. Focal central white matter lesions in Alexander disease. J Child Neurol. 2011;26(11):1422–4. https://doi.org/10.1177/0883073811405381.
- Benzoni C, Aquino D, Di Bella D, Sarto E, Moscatelli M, Pareyson D, et al. Severe worsening of adult-onset Alexander disease after minor head trauma: report of two patients and review of the literature. J Clin Neurosci. 2020;75:221–3. https://doi.org/10.1016/j.jocn.2020.03.033.
- Biancheri R, Rossi A, Ceccherini I, Pezzella M, Prato G, Striano P, et al. Magnetic resonance imaging "tigroid pattern" in Alexander disease. Neuropediatrics. 2013;44(3):174–6. https://doi.org/10.1055/s-0032-1329910.
- Bonthius DJ, Karacay B. Alexander disease: a novel mutation in GFAP leading to Epilepsia Partialis Continua. J Child Neurol. 2016;31(7):869– 72. https://doi.org/10.1177/0883073815624762.
- Brenner M, Messing A. A new mutation in GFAP widens the spectrum of Alexander disease. Eur J Hum Genet. 2015;23(1):1–2. https://doi.org/10. 1038/ejhg.2014.99.
- Brockmann K, Meins M, Taubert A, Trappe R, Grond M, Hanefeld F. A novel GFAP mutation and disseminated white matter lesions: adult Alexander disease? Eur Neurol. 2003;50(2):100–5. https://doi.org/10. 1159/000072507.
- Cabrera-Galván JJ, Martínez-Martin MS, Déniz-García D, Araujo-Ruano E, Travieso-Aja MDM. Adult-onset Alexander disease with a heterozygous D128N GFAP mutation: a pathological study. Histol Histopathol. 2019;34(9):1073–188. https://doi.org/10.14670/hh-18-110.
- Casasnovas C, Verdura E, Vélez V, Schlüter A, Pons-Escoda A, Homedes C, et al. A novel mutation in the GFAP gene expands the phenotype of Alexander disease. J Med Genet. 2019;56(12):846–9. https://doi.org/10. 1136/jmedgenet-2018-105959.
- Chang KE, Pratt D, Mishra BB, Edwards N, Hallett M, Ray-Chaudhury A. Type II (adult onset) Alexander disease in a paraplegic male with a rare D128N mutation in the GFAP gene. Clin Neuropathol. 2015;34(5):298– 302. https://doi.org/10.5414/np300863.
- de Paiva AR, Freua F, Lucato LT, Parmera J, Dória D, Nóbrega PR, et al. A novel GFAP mutation in a type II (late-onset) Alexander disease patient. J Neurol. 2016;263(4):821–2. https://doi.org/10.1007/ s00415-016-8065-8.
- Elmali AD, Çetinçelik Ü, Işlak C, Uzun Adatepe N, Karaali Savrun F, Yalçinkaya C. Familial adult-onset alexander disease: clinical and neuroradiological findings of three cases. Noro Psikiyatr Ars. 2016;53(2):169–72. https://doi.org/10.5152/npa.2015.10193.
- Farina L, Pareyson D, Minati L, Ceccherini I, Chiapparini L, Romano S, et al. Can MR imaging diagnose adult-onset Alexander disease? AJNR Am J Neuroradiol. 2008;29(6):1190–6. https://doi.org/10.3174/ajnr. A1060.
- Flint D, Li R, Webster LS, Naidu S, Kolodny E, Percy A, et al. Splice site, frameshift, and chimeric GFAP mutations in Alexander disease. Hum Mutat. 2012;33(7):1141–8. https://doi.org/10.1002/humu.22094.

- Gass JM, Cheema A, Jackson J, Blackburn PR, Van Gerpen J, Atwal PS. Novel GFAP variant in adult-onset Alexander disease with progressive ataxia and palatal tremor. Neurologist. 2017;22(6):247–8. https://doi. org/10.1097/nrl.00000000000153.
- Helman G, Takanohashi A, Hagemann TL, Perng MD, Walkiewicz M, Woidill S, et al. Type II Alexander disease caused by splicing errors and aberrant overexpression of an uncharacterized GFAP isoform. Hum Mutat. 2020;41(6):1131–7. https://doi.org/10.1002/humu.24008.
- Hida A, Ishiura H, Arai N, Fukuoka H, Hasuo K, Goto J, et al. Adult-onset Alexander disease with an R66Q mutation in GFAP presented with severe vocal cord paralysis during sleep. J Neurol. 2012;259(10):2234–6. https://doi.org/10.1007/s00415-012-6540-4.
- Hinttala R, Karttunen V, Karttunen A, Herva R, Uusimaa J, Remes AM. Alexander disease with occipital predominance and a novel c.799G>C mutation in the GFAP gene. Acta Neuropathol. 2007;114(5):543–5. https://doi.org/10.1007/s00401-007-0292-8.
- Howard KL, Hall DA, Moon M, Agarwal P, Newman E, Brenner M. Adultonset Alexander disease with progressive ataxia and palatal tremor. Mov Disord. 2008;23(1):118–22. https://doi.org/10.1002/mds.21774.
- Ishigaki K, Ito Y, Sawaishi Y, Kodaira K, Funatsuka M, Hattori N, et al. TRH therapy in a patient with juvenile Alexander disease. Brain Dev. 2006;28(10):663–7. https://doi.org/10.1016/j.braindev.2006.05.001.
- Iwasaki Y, Saito Y, Mori K, Ito M, Mimuro M, Aiba I, et al. An autopsied case of adult-onset bulbospinal form Alexander disease with a novel S393R mutation in the GFAP gene. Clin Neuropathol. 2015;34(4):207–14. https://doi.org/10.5414/np300806.
- Kaneko H, Hirose M, Katada S, Takahashi T, Naruse S, Tsuchiya M, et al. Novel GFAP mutation in patient with adult-onset Alexander disease presenting with spastic ataxia. Mov Disord. 2009;24(9):1393–5. https:// doi.org/10.1002/mds.22556.
- Karp N, Lee D, Shickh S, Jenkins ME. c.1289G>A (p.Arg430His) variant in the epsilon isoform of the GFAP gene in a patient with adult onset Alexander disease. Eur J Med Genet. 2019;62(4):235–8. https://doi.org/ 10.1016/j.ejmg.2018.07.020.
- Kinoshita T, Imaizumi T, Miura Y, Fujimoto H, Ayabe M, Shoji H, et al. A case of adult-onset Alexander disease with Arg416Trp human glial fibrillary acidic protein gene mutation. Neurosci Lett. 2003;350(3):169– 72. https://doi.org/10.1016/s0304-3940(03)00900-5.
- Kyllerman M, Rosengren L, Wiklund LM, Holmberg E. Increased levels of GFAP in the cerebrospinal fluid in three subtypes of genetically confirmed Alexander disease. Neuropediatrics. 2005;36(5):319–23. https:// doi.org/10.1055/s-2005-872876.
- Lee SH, Nam TS, Kim KH, Kim JH, Yoon W, Heo SH, et al. Aggregation-prone GFAP mutation in Alexander disease validated using a zebrafish model. BMC Neurol. 2017;17(1):175. https://doi.org/10.1186/ s12883-017-0938-7.
- Liu Y, Zhou H, Wang H, Gong X, Zhou A, Zhao L, et al. Atypical MRI features in familial adult onset Alexander disease: case report. BMC Neurol. 2016;16(1):211. https://doi.org/10.1186/s12883-016-0734-9.
- Maeda K, Iwai K, Kobayashi Y, Tsuji H, Yoshida T, Kobayashi Y. A case of Alexander disease with dropped head syndrome. Rinsho shinkeigaku Clin Neurol. 2018;58(3):198–201. https://doi.org/10.5692/clinicalneurol. cn-001116.
- 69. Matsuyama Y, Satake M, Kamei R, Yoshida T. A case of Alexander disease with repeated loss of consciousness and with rapid aggravation of dysbasia by falling. Rinsho shinkeigaku Clin Neurol. 2020;60(2):137–41. https://doi.org/10.5692/clinicalneurol.cn-001341.
- Messing A, Li R, Naidu S, Taylor JP, Silverman L, Flint D, et al. Archetypal and new families with Alexander disease and novel mutations in GFAP. Arch Neurol. 2012;69(2):208–14. https://doi.org/10.1001/archneurol. 2011.1181.
- Mierzewska H, Mierzewska-Schmidt M, Salomons GS, Dudzińska M, Szczepanik E. Alexander disease—astrogliopathy considered as leukodystrophy—experience of an institution. Dev Period Med. 2016;20(2):110–7.
- Nam TS, Kim JH, Chang CH, Yoon W, Jung YS, Kang SY, et al. Identification of a novel nonsense mutation in the rod domain of GFAP that is associated with Alexander disease. Eur J Hum Genet. 2015;23(1):72–8. https://doi.org/10.1038/ejhg.2014.68.

- Nam TS, Oh J, Levy M, Kang KW, Choi SY, Kim MK. A Novel GFAP mutation in late-onset Alexander disease showing diffusion restriction. J Clin Neurol. 2017;13(4):426–8. https://doi.org/10.3988/jcn.2017.13.4.426.
- Namekawa M, Takiyama Y, Honda J, Sakoe K, Naoi T, Shimazaki H, et al. A novel adult case of juvenile-onset Alexander disease: complete remission of neurological symptoms for over 12 years, despite insidiously progressive cervicomedullary atrophy. Neurolo Sci. 2012;33(6):1389–92. https://doi.org/10.1007/s10072-011-0902-z.
- Namekawa M, Takiyama Y, Honda J, Shimazaki H, Sakoe K, Nakano I. Adult-onset Alexander disease with typical "tadpole" brainstem atrophy and unusual bilateral basal ganglia involvement: a case report and review of the literature. BMC Neurol. 2010;10:21. https://doi.org/10. 1186/1471-2377-10-21.
- Niinikoski H, Haataja L, Brander A, Valanne L, Blaser S. Alexander disease as a cause of nocturnal vomiting in a 7-year-old girl. Pediatr Radiol. 2009;39(8):872–5. https://doi.org/10.1007/s00247-009-1289-3.
- Nobuhara Y, Nakahara K, Higuchi I, Yoshida T, Fushiki S, Osame M, et al. Juvenile form of Alexander disease with GFAP mutation and mitochondrial abnormality. Neurology. 2004;63(7):1302–4. https://doi.org/10. 1212/01.wnl.0000140695.90497.e2.
- Ogawa T, Ogaki K, Ishiguro M, Ando M, Yoshida T, Noda K, et al. Novel GFAP p. Glu206Ala mutation in Alexander disease with decreased dopamine transporter uptake. Mov Disord Clin Pract. 2020;7(6):720–2. https://doi.org/10.1002/mdc3.12998.
- Ogura H, Maki F, Sasaki N, Yoshida T, Hasegawa Y. Familial adult-onset Alexander disease with a Novel GFAP mutation. Mov Disord Clin Pract. 2016;3(3):300–2. https://doi.org/10.1002/mdc3.12296.
- Ohnari K, Yamano M, Uozumi T, Hashimoto T, Tsuji S, Nakagawa M. An adult form of Alexander disease: a novel mutation in glial fibrillary acidic protein. J Neurol. 2007;254(10):1390–4. https://doi.org/10.1007/ s00415-007-0557-0.
- Pareyson D, Fancellu R, Mariotti C, Romano S, Salmaggi A, Carella F, et al. Adult-onset Alexander disease: a series of eleven unrelated cases with review of the literature. Brain. 2008;131(Pt 9):2321–31. https://doi.org/ 10.1093/brain/awn178.
- Salmaggi A, Botturi A, Lamperti E, Grisoli M, Fischetto R, Ceccherini I, et al. A novel mutation in the GFAP gene in a familial adult onset Alexander disease. J Neurol. 2007;254(9):1278–80. https://doi.org/10.1007/ s00415-006-0361-2.
- Sawaishi Y, Yano T, Takaku I, Takada G. Juvenile Alexander disease with a novel mutation in glial fibrillary acidic protein gene. Neurology. 2002;58(10):1541–3. https://doi.org/10.1212/wnl.58.10.1541.
- Schmidt H, Kretzschmar B, Lingor P, Pauli S, Schramm P, Otto M, et al. Acute onset of adult Alexander disease. J Neurol Sci. 2013;331(1– 2):152–4. https://doi.org/10.1016/j.jns.2013.05.006.
- Schmidt S, Wattjes MP, Gerding WM, van der Knaap M. Late onset Alexander's disease presenting as cerebellar ataxia associated with a novel mutation in the GFAP gene. J Neurol. 2011;258(5):938–40. https://doi. org/10.1007/s00415-010-5849-0.
- Shiihara T, Sawaishi Y, Adachi M, Kato M, Hayasaka K. Asymptomatic hereditary Alexander's disease caused by a novel mutation in GFAP. J Neurol Sci. 2004;225(1–2):125–7. https://doi.org/10.1016/j.jns.2004.07. 008.
- Zaver DB, Douthit NT. A novel mutation in the adult-onset Alexander's disease GFAP gene. Case Rep Med. 2019;2019:2986538. https://doi.org/ 10.1155/2019/2986538.
- Zang L, Wang J, Jiang Y, Gu Q, Gao Z, Yang Y, et al. Follow-up study of 22 Chinese children with Alexander disease and analysis of parental origin of de novo GFAP mutations. J Hum Genet. 2013;58(4):183–8. https://doi. org/10.1038/jhg.2012.152.
- Sugiyama A, Sawai S, Ito S, Mukai H, Beppu M, Yoshida T, et al. Incidental diagnosis of an asymptomatic adult-onset Alexander disease by brain magnetic resonance imaging for preoperative evaluation. J Neurol Sci. 2015;1(354):131–2.
- Yoshida T, Yasuda R, Mizuta I, Nakagawa M, Mizuno T. Quantitative evaluation of brain stem atrophy using magnetic resonance imaging in adult patients with Alexander disease. Eur Neurol. 2017;77(5–6):296– 302. https://doi.org/10.1159/000475661.

Page 23 of 23

- Ye W, Qiang G, Jingmin W, Yanling Y, Xiru W, Yuwu J. Clinical and genetic study in Chinese patients with Alexander disease. J Child Neurol. 2008;23(2):173–7. https://doi.org/10.1177/0883073807308691.
- Yasuda R, Yoshida T, Mizuta I, Nakagawa M, Mizuno T. A novel threebase duplication, E243dup, of GFAP identified in a patient with Alexander disease. Hum Genome Var. 2017;4:17028. https://doi.org/10.1038/ hgv.2017.28.
- Wada Y, Yanagihara C, Nishimura Y, Namekawa M. Familial adult-onset Alexander disease with a novel mutation (D78N) in the glial fibrillary acidic protein gene with unusual bilateral basal ganglia involvement. J Neurol Sci. 2013;331(1–2):161–4. https://doi.org/10.1016/j.jns.2013.05. 019.
- Vázquez-Justes D, Peñalva-García J, López R, Mitjana R, Begue R, González-Mingot C. Parkinsonism phenotype in a family with adult onset Alexander disease and a novel mutation of GFAP. Clin Neurol Neurosurg. 2020;195: 105893. https://doi.org/10.1016/j.clineuro.2020. 105893.
- Tulyeu J, Tamaura M, Jimbo E, Shimbo H, Takano K, lai M, et al. Aggregate formation analysis of GFAP(R416W) found in one case of Alexander disease. Brain Dev. 2019;41(2):195–200. https://doi.org/10.1016/j. braindev.2018.08.009.
- Thyagarajan D, Chataway T, Li R, Gai WP, Brenner M. Dominantlyinherited adult-onset leukodystrophy with palatal tremor caused by a mutation in the glial fibrillary acidic protein gene. Mov Disord. 2004;19(10):1244–8. https://doi.org/10.1002/mds.20161.
- Suzuki H, Yoshida T, Kitada M, Ichihashi J, Sasayama H, Nishikawa Y, et al. Late-onset Alexander disease with a V87L mutation in glial fibrillary acidic protein (GFAP) and calcifying lesions in the sub-cortex and cortex. J Neurol. 2012;259(3):457–61. https://doi.org/10.1007/ s00415-011-6201-z.
- Yoshida T, Sasayama H, Mizuta I, Okamoto Y, Yoshida M, Riku Y, et al. Glial fibrillary acidic protein mutations in adult-onset Alexander disease: clinical features observed in 12 Japanese patients. Acta Neurol Scand. 2011;124(2):104–8. https://doi.org/10.1111/j.1600-0404.2010.01427.x.
- Stumpf E, Masson H, Duquette A, Berthelet F, McNabb J, Lortie A, et al. Adult Alexander disease with autosomal dominant transmission: a distinct entity caused by mutation in the glial fibrillary acid protein gene. Arch Neurol. 2003;60(9):1307–12. https://doi.org/10.1001/archneur.60.9. 1307.
- Stitt DW, Gavrilova R, Watson R, Hassan A. An unusual presentation of late-onset Alexander's disease with slow orthostatic tremor and a novel GFAP variant. Neurocase. 2018;24(5–6):266–8. https://doi.org/10.1080/ 13554794.2019.1580749.
- Sreedharan J, Shaw CE, Jarosz J, Samuel M. Alexander disease with hypothermia, microcoria, and psychiatric and endocrine disturbances. Neurology. 2007;68(16):1322–3. https://doi.org/10.1212/01.wnl.00002 59543.95222.9d.
- Rezende SADS, Fernandes M, Munhoz RP, Raskin S, Schelp AO, Knaap MS, et al. Cerebellar ataxia as the first manifestation of Alexander's disease. Arg Neuropsiguiatr. 2012;70:309–10.
- Okamoto Y, Mitsuyama H, Jonosono M, Hirata K, Arimura K, Osame M, et al. Autosomal dominant palatal myoclonus and spinal cord atrophy. J Neurol Sci. 2002;195(1):71–6. https://doi.org/10.1016/s0022-510x(01) 00687-6.
- Graff-Radford J, Schwartz K, Gavrilova RH, Lachance DH, Kumar N. Neuroimaging and clinical features in type II (late-onset) Alexander disease. Neurology. 2014;82(1):49–56. https://doi.org/10.1212/01.wnl.00004 38230.33223.bc.
- Delnooz CC, Schelhaas JH, van de Warrenburg BP, de Graaf RJ, Salomons GS. Alexander disease causing hereditary late-onset ataxia with only minimal white matter changes: a report of two sibs. Mov Disord. 2008;23(11):1613–5. https://doi.org/10.1002/mds.22053.
- Bachetti T, Caroli F, Bocca P, Prigione I, Balbi P, Biancheri R, et al. Mild functional effects of a novel GFAP mutant allele identified in a familial case of adult-onset Alexander disease. Eur J Hum Genet. 2008;16(4):462–70.
- Hayashi Y, Nagasawa M, Asano T, Yoshida T, Kimura A, Inuzuka T. Central hypothermia associated with Alexander disease. A case report. Clin Neurol Neurosurg. 2017;157:31–3.
- 108. Nagaishi A, Nakane S, Fukudome T, Matsuo H, Yoshida T. A case of Alexander disease suspected juvenile-onset and exacerbating after

long stationary state. Rinsho shinkeigaku Clin Neurol. 2013;53(6):474–7. https://doi.org/10.5692/clinicalneurol.53.474.

- 109. Yonezu T, Ito S, Kanai K, Masuda S, Shibuya K, Kuwabara S. A case of adult-onset alexander disease featuring severe atrophy of the medulla oblongata and upper cervical cord on magnetic resonance imaging. Case Rep Neurol. 2012;4(3):202–6. https://doi.org/10.1159/000345303.
- 110. Yoshida T, Mizuta I, Saito K, Kimura Y, Park K, Ito Y, et al. Characteristic abnormal signals in medulla oblongata-"eye spot" sign: four cases of elderly-onset Alexander disease. Neurol Clin Pract. 2015;5(3):259–62. https://doi.org/10.1212/cpj.00000000000124.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

