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Self‑supervised language modeling is a rapidly developing approach for the analysis of protein 
sequence data. However, work in this area is heterogeneous and diverse, making comparison of 
models and methods difficult. Moreover, models are often evaluated only on one or two downstream 
tasks, making it unclear whether the models capture generally useful properties. We introduce the 
ProteinGLUE benchmark for the evaluation of protein representations: a set of seven per‑amino‑acid 
tasks for evaluating learned protein representations. We also offer reference code, and we provide 
two baseline models with hyperparameters specifically trained for these benchmarks. Pre‑training 
was done on two tasks, masked symbol prediction and next sentence prediction. We show that pre‑
training yields higher performance on a variety of downstream tasks such as secondary structure 
and protein interaction interface prediction, compared to no pre‑training. However, the larger base 
model does not outperform the smaller medium model. We expect the ProteinGLUE benchmark 
dataset introduced here, together with the two baseline pre‑trained models and their performance 
evaluations, to be of great value to the field of protein sequence‑based property prediction. 
Availability: code and datasets from https:// github. com/ ibivu/ prote in‑ glue.

Machine learning methods have the capability to predict many useful properties of proteins directly from their 
 sequences1–3. However, these methods require labeled data, mapping proteins to the property of interest. High-
quality labeled data is expensive to acquire—and large quantities are usually required in order to train a good 
predictor.

In the domain of natural language processing (NLP), the issue of missing or scarce labels is often solved by 
pre-training a model on unlabeled, general domain data. This results in representations of the data that capture 
high-level semantics. These can then be used in downstream tasks: specific prediction tasks for which only a 
limited amount of labeled data is available. Usually, this is achieved by fine-tuning the pre-trained model on 
the labeled  data4,5. Training the downstream tasks is therefore also called the fine-tuning step. Recently, the 
transformer architecture has emerged as a firm favorite for this kind of  approach6. Large language models such 
as  BERT7 and GPT-28, have shown a remarkable ability to generalize across domains. It is a reasonable question 
to ask whether this approach carries over to the domain of proteins: can we successfully pre-train a model on 
unlabeled data, and fine-tune for a variety of tasks requiring labeled data. If so, does the pre-training allow us 
to perform better than if we had trained on the labeled data alone? We will evaluate this question here using 
transformer models, which are currently the most popular approach, however any sequence-to-sequence model 
can be evaluated on such a benchmark.

Several recent studies have already investigated protein representation models, among which models based 
on the transformer  architecture9–12. In general, the representation models make use of a large set of protein 
sequences to train an NLP based model of which the objective is to learn embeddings that represent the proteins. 
We provide a comprehensive overview of the protein representation models in the Related work section. Most 
of these models use different protein sequence databases for pre-training, widely different numbers of model 
parameters, and different downstream tasks for evaluation. Most importantly, these models are generally evalu-
ated only on one or two downstream tasks, giving a poor indication of how well the pre-trained representations 
generalize. We suggest that the rapid progress of pre-trained transformer models in the domain of NLP is not 
just due to the power of the models, but also to the wealth of benchmarks for a variety of tasks already avail-
able. Without standardized and varied benchmark suites like  GLUE13, we believe that development would have 
progressed much slower.
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In this paper, we present a benchmark set for the domain of protein prediction, including a variety of struc-
tural protein prediction tasks, in order to generalize pre-trained representations, called the Protein General 
Language (of life) representation Evaluation (ProteinGLUE) benchmark. This benchmark consists of seven down-
stream tasks, with data formatted for and tested in large transformer models. The following tasks are included:

Secondary structure The secondary structure describes the local structure of a protein, defined by patterns 
of backbone hydrogen bonds in the  protein14. Commonly, these are three types: α-helix and β-strand, and 
anything else is labelled coil; a further subdivision can be made into eight  types15. Secondary structure predic-
tion methods aim to classify the type per amino  acid2.
Solvent accessibility (ASA) For every amino acid in a protein, the solvent accessibility indicates the amount 
of surface area of the amino acid that is accessible to the surrounding  solvent16. Relative solvent accessibility 
classifies residues into a buried or non-buried state, reducing the difficulty of the prediction task. We model 
the absolute solvent accessibility as a regression task over every amino acid and the relative solvent accessibility 
as a classification task over every amino acid.
Protein-protein interaction (PPI) The interactions between proteins is arguably the most important prop-
erty for functioning of a  protein17. Almost all processes occurring in a cell are in some way dependent on 
protein-protein interactions; these include DNA replication, protein transport, and signal  transduction16,18. 
The protein-protein interaction interface determines which residues are involved in the interaction, and may 
be predicted as a classification task over every amino acid.
Epitope region A specific kind of PPI is the binding between antigens and antibodies. The antigen region that 
is recognised by the antibody is a set of amino acids on the protein surface, and is known as the epitope19. 
These may be predicted as a classification task over every amino  acid20.
Hydrophobic patch prediction A number of spatially adjacent hydrophobic residues on the protein surface 
is called a hydrophobic patch. Hydrophobic residues on the surface of the protein may be important for the 
interaction between proteins, or for membrane interactions, and have been implicated as being a driving 
factor in protein  aggregation21. Protein aggregation in turn is thought to be a major causative factor in the 
development of diseases like Alzheimer and  Parkinson22. Hydrophobic patch prediction may be modeled as 
a regression task over every amino acid by identifying the rank of the size of the hydrophobic patch to which 
the amino acid belongs.

These tasks are related to protein structural properties, mainly because protein structures are the richest 
source of per-amino-acid property annotations, but are also closely linked to protein function. In particular, 
PPI, epitopes, and hydrophobic patches describe a proteins relations with other molecules in its environment 
which together define protein function, as inspired by Bork et al17.

General function-related annotations, such as GO labels or enzyme classifications may also be relevant, 
but these would yield one label per protein. This severely reduces the number of labels, which means that in 
such tasks a very large test set is required (in the order of 10 000 proteins) to accurately estimate performance. 
Moreover, the small amount of labels in the training data may mean that the task becomes impossible rather than 
challenging. For these reasons, we focus here on tasks that contain one label per residue, and leave per-protein 
tasks to future work.

To estimate performance on these tasks, we pre-trained two large transformer models. This allows us to test 
our benchmark suite, provide reference code for the training and development of prediction methods, and to give 
a baseline performance for each task, showing what performance can be expected from a modest sized model. 
Commonly, pre-training is performed on a large set of unlabeled general domain data. In the protein domain this 
translates to unlabeled protein sequences. We have chosen to use the protein sequences from the protein domain 
family database Pfam, which is a widely used database for the classification of protein  sequences23.

Our pre-training models are based on the BERT transformer architectures for natural language  processing7. 
We trained two models of different sizes: the medium and base model architectures. The base model was 
first described in the paper of Devlin et al.7 and contain 12 hidden layers, 12 self-attention heads, a hidden size of 
768 and 110 million parameters. The smaller medium model could be used to overcome the time- and memory 
limits that are associated with the base  models24,25. This medium version contains 8 hidden layers, 8 attention 
head, a hidden size of 512 and 42 million parameters.

Our contributions are as follows:

• A set of generally usable downstream tasks for evaluating pre-trained protein models.
• A repository of reference code showing how to pre-train a large transformer model on unlabeled data from 

the Pfam database, and how to evaluate it on our benchmarks.
• Two such pre-trained models, broadly similar to the BERT-medium and BERT-base models.

The rest of the manuscript is organised as follows. We will first give an overview of related work, followed by 
the outline of the ProteinGLUE Benchmark suite we present here. We then first describe methods and present 
results of the pre-trained models, and then methods and results of the fine-tuned models. All datasets, code, and 
models are publicly available at https:// github. com/ ibivu/ prote in- glue. All code is MIT licensed, the models are 
public domain (that is, creative commons CC-0) and the datasets are each released under the most permissive 
licence allowed by the source data.

https://github.com/ibivu/protein-glue
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Related work
Many learning architectures have been used for a variety of protein property prediction tasks. As a background 
to the multi-task benchmark suite we present here, we therefore first include a rather in-depth overview of rel-
evant natural language modelling learning architecture. We will then proceed to review state-of-the-art machine 
learning approaches to protein modelling, from which we have gleaned relevant and interesting prediction tasks, 
sources of reference data as well as some inspiration on our learning approaches. Note that this section provides 
background information and is not required for the main understanding of this study.

Natural language modeling. The idea of combining labeled and unlabeled data has a long history in 
machine learning, going back to such approaches as self-training and co-training26–28. One of the first deep 
learning models to combine unsupervised pre-training with supervised fine-tuning in multiple domains was the 
RNN-based  ULMFit29. This was followed by  ELMo30, which used bidirectional RNNs and was the first to show 
state-of the art performance across many downstream tasks. We have recently investigated a number of different 
Neural Net architectures for their ability to predict protein  interfaces31. Transformer models are architectures 
which rely primarily on the self-attention operation. Self-attention is a sequence-to-sequence operation in which 
the output vector for each token i in the sequence is a weighted average of all input vectors in the sequence, 
with the weights determined dynamically by the contents of the corresponding input vector. Most commonly, 
the weight for input j is based on the dot product of input vectors i and j. A key property of transformers is that 
self-attention is the only operation that mixes information between tokens in the sequence. All other operations 
in the model are applied to each token in isolation.

The Transformer was introduced in by Vaswani et al.6. This model was an encoder/decoder architecture 
designed specifically for machine translation. Devlin et al.7 simplified the model to a single stack of transformer 
blocks, and adopted the pre-training and fine-tuning approach from ULMFit and ELMo. The result, called BERT 
(Bidirectional Encoder Representations from Transformers), is what we base our reference models on. BERT is 
a bidirectional sequence-to-sequence model: both its input and its output are sequences of vectors, of the same 
sequence length. For the computation of each of the output vectors, all vectors of the input may be used (to the 
left or the right). By contrast, autoregressive models, like those in the GPT  family8,32 are unidirectional, which 
means that the output vector for one element in the sequence is computed using only the input vectors of preced-
ing elements. Both bidirectional and autoregressive models have been shown to be capable of learning strong 
representations both of the tokens in the sequence and of the sequence as a whole. In NLP, text sequences are 
most commonly broken up into tokens larger than individual characters, but smaller than individual words. In 
the protein setting, individual amino acids are usually taken as tokens.

Protein modeling. In recent years, attempts have been made to automatically generate enriched embed-
dings of protein sequences through machine learning. These embeddings generally capture information that 
is not explicitly encoded in the protein sequence, such as information about the structure or dynamics. This 
enriched representation can be used in place of the original sequence to improve performance on a variety of 
tasks, including protein database searching, regression, and classification tasks.

Enriched protein representation models can be categorized on three axes. Firstly, there is the architecture of 
the model used to generate the representation, which can broadly be categorized as either Word2Vec-based33–35, 
LSTM-based36–40, or Transformer-based9–12.

Although not always specified, a second categorization can be made in terms of the model size, or the number 
of parameters a model contains. This is, to some degree, correlated with the model type, but not in an absolute 
sense. Comparisons between types of models are therefore complicated, if, for example, more recent Transformer 
models with many parameters are benchmarked against smaller LSTM models. The LSTM-based representa-
tion method  UniRep36 contains 18 million parameters, the TAPE Transformer-based model contains 38 million 
 parameters9, and the LSTM-based model DeepSeqVec contains 93 million  parameters37. Recently developed 
methods have mostly been based on Transformer models, and a clear trend can be observed of increasing size. 
For example, ESM-1b has 650 million  parameters12, and Prot-TR-XL-UniRef has 3  billion11. It is shown that even 
these large models, such as ProGen with 1.2 billion parameters, still do not overfit the training  data10. Heizinger 
et al.37 note that the risk of overfitting is generally very small, given the fact that the number of tokens in the 
training set (hundreds of billions) is much higher than the number of parameters; however for protein data 
one must take into account the redundancy due to a lot of similar (homologous) sequences. For (large) protein 
sequence alignments this is commonly done by evaluating the so-called effective number of sequences Neff

41, 
essentially counting clusters of sequences at a set threshold of similarity (e.g. 62% or 80%). However, we do not 
attempt to translate this approach to sequence databases here.

Thirdly, the size of the datasets used for pre-training differs significantly across methods. To give an idea of 
the range:  UMSDProt38 is pre-trained on 560 thousand Swiss-prot  sequences42, UniRep is trained on 24 million 
UniRef50 sequences, ESM-1b is pre-trained on 250 million UniParc sequences, and Elnaggar et al.11 even train 
their models on the BFD dataset containing over 2 billion  sequences43,44, and on the UniRef100 database with 216 
million sequences. We find that  UniRef5042 and Pfam are the most popular pre-training databases. By selecting 
protein (domain) sequences from each cluster or family in Pfam, it can be ensured that the pre-training dataset 
contains a wide variety of protein sequences, and—to a limited degree—is non-redundant.

Protein representation models may be evaluated internally, by analysing their embeddings, or externally, 
by benchmarking predictions based on the representations. Several studies have shown correlation between 
the embeddings and physicochemical  properties11,12,36,37, the source organism  proteome11,12,36,37, the secondary 
 structure11,36,37, and the subcellular  location11,37. The quality of these correlations generally improves with fine-
tuning. Additionally, Vig et al.45 inspect the intermediate outputs of the TAPE Transformer model, and observe 
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that, in the first layers, its attention heads specialize on amino acid type. Then, deeper layers focus on more 
complex features, such as binding sites and intra-chain protein contacts.

We observe a wide variety in the kinds of benchmarks used to evaluate these protein representation models. 
Even if the type of benchmark is similar, methods will frequently use different datasets, use different training 
and validation methodologies, and differ in how the datasets are preprocessed.

A standard prediction task is the prediction of the secondary structure ( α-helix, β-strand, or coil)9,11,12,37,40,45. 
Two commonly used datasets for this task are the NetsurfP-2.0  dataset1 and the SPOT  dataset46. These data-
sets consists of training sequences with assigned secondary structure, derived from PDB structures. Another 
frequently performed prediction task is contact map  prediction9,12,39,45,47, in which residues are identified as in 
close contact with each other based on three-dimensional structure of the protein. Therefore, datasets containing 
contact map annotations are based on the PDB structures.

Next to per amino acid predictions, several studies perform per protein prediction tasks such as remote 
homology  detection9,12,48. Remote homology detection is a classification task to identify homologous sequences 
i.e. descended during evolution from a common ancestor. While close homologs will be very similar in sequence, 
remote homologs can have conserved function (and structure) but diverse sequence, making this a difficult 
 task48. The Pfam database could be used for this prediction task, but the  SCOP49 and  CATH50 databases are more 
commonly  used9,12,48. These two databases use structure information more explicitly making them able to clas-
sify into broader superfamilies than Pfam does, and thus is more suitable for remote—and thus more difficult 
to detect and predict—homology.

Alley et al.36, and Rives et al.12 include variant effect prediction as a benchmark, as does the variational 
autoencoder-based approach of Riesselman et al51. In this task, the quantitative impact of a mutations is pre-
dicted for a specific set of protein functions, such as ligase activity and substrate binding. Two commonly used 
datasets are the dataset used by Gray et al.52 including 21 026 variant effect measurements of eight proteins from 
nine experimental datasets, and the dataset by Riesselman et al.51 including 712 218 mutations on 34 proteins.

Protein localization classification is also a protein-level labelling task. Protein function may also depend on 
subcellular localization. Abnormal localization can lead to dysfunction, which in turn can contribute to disease. 
Min et al.40, Heinzinger et al.37, and Elnaggar et al.11 use the DeepLoc  dataset53, consisting of 13 858 proteins. Pro-
teins are classified as being present in ten cellular locations, based on UniProt annotations. For transmembrane 
prediction, Bepler and  Berger39, as well as Min et al.40 use the TOPCONS  dataset54, containing 6 856 proteins. In 
this task, the model needs to predict for every amino acid in the training set whether it is membrane-spanning.

Notably, the Tape  repository9 provides a set of five benchmark task for both biological property and protein 
engineering prediction, namely secondary structure, residue contacts, remote homology, respectively fluores-
cence landscape, and stability landscape. For the prediction of biological properties, these tasks are generally also 
used for evaluating representation models. Compared to TAPE, ProteinGLUE focuses on the biological property 
prediction tasks, and expands its set of tasks with solvent accessibility, protein-protein interaction, epitope, and 
hydrophobic patch prediction, but omits contact map prediction and remote homology detection. By adding 
these properties, that are related to the protein molecule’s interactions with its environment, the ProteinGLUE 
benchmark set includes tasks that are more closely related to protein  function17. The ProteinGLUE benchmark 
set solely contains important per amino acid prediction tasks, and per protein tasks are out of scope for this 
study. Thus, ProteinGLUE may be seen as complementary to the TAPE benchmark tasks.

Notable factors influencing protein representation model performance are the size of the training set, the 
model size, and pre-training using multiple (orthogonal) objectives. Although the CB513  dataset55 has been 
called redundant and  outdated11 , it is commonly used to evaluate model quality on the prediction of second-
ary structure in eight classes as it is sufficiently difficult to avoid ceiling effects. Table 1 summarizes some of the 
best performing models on this dataset. The state-of-the-art model NetSurfP-2.01 achieves 72.3% accuracy on 
this set. From the protein representation models, only the MSA Transformer from Rao et al.47 achieves a higher 

Table 1.  Overview from literature of the best performing protein representation models on the secondary 
structure prediction task for 8 classes (SS8), using the CB513 dataset. We have gathered results from three 
articles that report model performance(s) on the CB513 dataset. The performance metric shown here is 
percent SS8 accuracy as reported. NetSurfP-2.0 and RaptorX models from Klausen et al.1 are included as 
examples of state-of-the-art performance (neither of these are based on protein representation models). The 
other methods are all represenation models, and only the MSA Transformer (ESM-MSA-1) achieves higher 
accuracy than NetSurfP-2.0. The number of parameters (model size), the number of sequences in the pre-
training dataset, and corresponding references are also reported. a Rao et al.47 create one MSA per sequence as 
input for ESM-MSA-1, which means pre-training was performed on the same number of sequences as MSAs.

Model name CB513 SS8 accuracy Model size Pre-training db size

TAPE Transformer 59 9 38M 9 32M 9

ProtBert-BFD 70 11 420M 11 2 122M 11

ProtTrans-T5 71.4 ± 0.2 47 3 000M 11 2 122M 11

ESM-1b 71.6 ± 0.1 47 650M 12 250M 12

ESM-MSA-1 72.9 ± 0.2 47 100M 47 26M a47  

NetSurfP-2.0 (mmseqs) 72.3 1 Not a representation model

RaptorX 70.6 1 Not a representation model
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accuracy: 72.9%. This performance is more than 10% accuracy improvement compared to their earlier TAPE 
Transformer model that achieves a accuracy of 59%9. Big pre-trained Transformers come close to state-of-the-art 
performance: ESM-1b achieves 71.6%, ProtTrans-T511 achieves 71.4%, and ProtTrans-Bert11 achieves 70% on 
SS8 prediction. This is in accordance with a general trend that we observe: most protein representation models 
do not outperform the state-of-the-art, which are often methods which are laboriously hand-tuned for optimum 
performance. However, large transformer-based models often come close on a wide variety of downstream tasks 
that it is debatable whether a statistically significant performance difference actually exists. Because the archi-
tectures are not specialized for a specific task—most are actually fairly straightforward conversions of natural 
language processing architectures—there is already significant value in being able to get to near state-of-the-art 
performance.

Recently, Alphafold2—a neural-network-based algorithm from Google’s DeepMind that predicts a protein 
structure from sequence—has gained a lot of attention for its prediction results at CASP-143. This may raise the 
question whether the type of tasks presented here are still relevant. Notwithstanding the enormous progress that 
AlphaFold2 represents, reliable structural information remains unavailable for many  proteins56,57. Moreover, the 
usefulness of predicted structures for direct derivation of structural features may be  limited58,59. This means that 
sequence-based prediction of protein structural features is still a relevant task. Finally, AlphaFold2 requires a 
high-quality multiple sequence alignment as an input. Conceivably, advancements in protein sequence modeling 
could improve the quality and breadth of AlphaFold2 improvements as well.

ProteinGLUE Benchmark tasks
The ProteinGLUE benchmark suite described in this work consists of the following seven benchmark tasks, 
which are all structural features that are labelled per amino acid in the protein sequence.

Secondary structure (SS3 and SS8) The dataset used for the secondary structure classification into three classes 
( α-helix, β-sheet, and coil) and into eight classes (coil, high-curvature, β-turn, α-helix, 310-helix, π-helix, β
-strand, and β-bridge) was created by Hanson et al.46. This dataset is used in multiple prediction  methods2,46,60. 
Proteins in the set were obtained using the PISCES  server61, and were filtered using a resolution cutoff of 
< 2.5 Å and sequence identity cutoff of (seq.ID) 25% according to  BlastClust41. We split this dataset into 
8 803 sequences for training, 1 102 sequences for validation and 1 102 sequences for testing. For the second-
ary structure prediction in three (SS3) and eight classes (SS8) these sets include the same proteins. Accuracy 
(ACC) is used for measuring model performance on these classification tasks. In order to compare the SS8 
prediction to other models (see Related work) we determine the performance on the commonly used CB513 
dataset. We used  CDhit62 to excluded from this test set all proteins with more than 40% sequence identity to 
our training set, resulting in a dataset size of 390 protein sequences.
Solvent accessibility (ASA and BUR) The dataset used for the solvent accessibility prediction is based on the 
same dataset used for SS3 and SS8. Training, validation and test sets were sampled independently from the 
secondary structure prediction sets, but include the same number of sequences for each. The absolute solvent 
accessibility (ASA) values, as given in the source data, were used to identify buried residues. Residues were 
determined as being buried (BUR)63 if the relative solvent accessible area—that is, the solvent accessible area 
divided by the maximal solvent accessible area for an amino acid type—was less than 7%63. Accuracy (ACC) 
is used for measuring model performance on the BUR classification task, and Pearson correlation coefficient 
(PCC) for the ASA regression task.
Protein-protein interaction (PPI) The dataset used for the PPI interface prediction task was created by Hou 
et al.16 for their random forest based PPI interface prediction model  SeRenDIP16,18, which included both 
homodimer and heterodimer interfaces. The homomeric dataset was based on the Test_set 1 dataset of earlier 
work from Hou et al.64. In short, this dataset was created by filtering on 30% seq.ID, and remaining proteins 
were filtered at 25% seq.ID against the heterodimer dataset and against the training sets of NetsurfP. The 
heteromeric dataset was created from Dset_186 and Dset_72 created by Murakami and  Mizuguchi65, and 
were filtered at 25% seq.ID against the NetSurfP and DynaMine training, and the homomeric  datasets16. We 
used those four datasets, retaining 287 homomeric training, 93 homomeric test, 118 heteromeric training 
and 44 heteromeric test proteins (the last stored protein for each was omitted). We then selected 20% of the 
homomeric and heteromeric training proteins individually in order to create a validation set. The homomeric 
and heteromeric training, validation, and test sets respectively were concatenated into one training, valida-
tion, and test set for the PPI task, containing both types of interfaces. The area under the receiver operating 
characteristic curve (AUC ROC) is used to evaluate model performance on the PPI prediction task.
Epitope region (EPI) The epitope dataset was obtained from Hou et al.16. This dataset is based on the struc-
tural antibody database of the Oxford Protein Information Group (SAbDab)66. The PDB structures of the 
antibody-antigen complexes were selected and antigen sequences were filtered at 25% seq.ID. We used the 
training, validation, and test sets of the first fold of the original 5-fold data split, which contains 179 training, 
45 validation, and 56 test sequences. Area under the receiver operating characteristic curve (AUC ROC) is 
used for measuring model performance on the EPI prediction task.
Hydrophobic patch prediction (HPR) The hydrophobic patch dataset contains the structure-based assignment 
of hydrophobic patches, as created by Van Gils et al.22. PISCES was used to collect PDB structure of a resolu-
tion ≤ 3.0 Å, R-factor ≤ 0.3, and of sequence length between 40–10 000 residues. Only X-ray determined 
and non-Cα-only structures were selected. Subsequently, the selected proteins were filtered on 25% seq.ID. 
Finally, only monomers were selected: transmembrane proteins were excluded. The resulting set contains 
4 917 proteins. Because the model is unable to predict the total hydrophobic surface area,  MolPatch22 was 
used to generate, per protein, the rank of each hydrophobic patch. For amino acids belonging to multiple 
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patches the rank of the largest patch was assigned. The dataset was split into 60% training sequences, 15% 
validation sequences, and 25% test sequences. Pearson correlation coefficient (PCC) is used for measuring 
model performance on the HPR regression task.

Based on previous studies on protein structural properties using all kinds of prediction models, we expect SS3 
and BUR to be easy prediction tasks followed by SS8 and ASA. The PPI and EPI prediction tasks are expected to 
be ‘medium’  difficult18,20. The hydrophobic patch prediction is expected to be a hard prediction  task22. The SS3 
and SS8 tasks are naturally related, as are BUR and ASA; also between these pairs we expect some correlation, 
as for example loops tend to be  exposed1.

All the datasets of the ProteinGLUE benchmark suite are provided in the TensorFlow and CSV format, making 
the set easily reusable by the community. We refer to the section TensorFlow format of datasets in the supplement 
for detailed information about this data format.

Pre‑trained models
To set a challenging baseline for our datasets, we trained two transformer models based on the BERT 
 architecture7. We provide a BERT medium model, with 8 hidden layers, 8 attention heads and hidden size of 
512, and we provide a BERT base model with 12 hidden layer, 12 attention heads and hidden size 768. The 
“hidden size” refers to the dimensionality of the vectors representing the tokens in the hidden layers (between 
transformer blocks).

Pre‑training data. Our baseline models were pre-trained on the Pfam dataset, more specifically the 
sequences from the PfamA 33.1  dataset23 , filtered on 90% sequence identity. Similar to the BERT training pro-
cess, we distinguish the amino acid sequences into regular sequences, which were at most 128 tokens long, and 
big ones at most  5127. We discarded sequences longer than 512 amino acids, but as single domains longer than 
512 amino acids are exceedingly rare, this does not exclude a significant fraction of the data. For both big and 
regular sequences, a test and a validation set were split off from the training data, each containing 10% of the 
total number of protein sequences. The resulting pre-training training dataset consists of 13 065 370 regular 
and 14 687 695 big sequences, a validation set of 1 469 855 regular and 1 835 963 big sequence, and a test set of 
1 469 855 regular and 1 835 962 big sequences.

The downstream tasks may be used with models which have used other pre-training datasets than PfamA. In 
fact, in the natural language domain, progress in pre-training has often been the consequence of better-curated 
data, in addition to model improvements (in terms of size and architecture)8. We do, however, urge caution in 
assuming the source of performance improvements. If a new model and a different pre-training dataset are used, 
then, where possible, an ablation study should be  performed67. For this purpose we provide the precise, canonical 
subset of Pfam used for training our baseline models.

Unless mentioned otherwise, all aspects of the model were taken from the BERT  model7.
Pre-processing Following the previously mentioned seperation of sequences into regular (max 128 tokens) and 

big (max 512 tokens) sequences, we tokenize sequences into amino acids, giving us a base vocabulary of 20. We 
also reserve 20 special tokens, used to annotate the sequence. Four of these, named PAD, CLS, MSK, and SEP, are 
used in pre-training as explained below. The remaining 16 tokens are reserved for potential use in downstream 
tasks. These are not used for any of our downstream tasks, but they may be useful for others.

While Devlin et al.7 slice fixed-length contiguous sub-sequences out of the corpus, we always train on full-
length proteins. This means that our input sequences are variable length, so we pad each batch using PAD tokens 
so that all sequences within each batch have the same length.

Pre‑training methods. Following the structure of the original BERT models, with some slight deviations, 
we define two pre-training tasks:

Masked token prediction (MTP) We change out a small percentage of tokens in the input sequences. The task 
is to reproduce the original tokens in the sequence. Some proportion of input tokens are masked (replaced by 
the masking token), and the others are corrupted by replacing them by randomly chosen, but different, amino 
acids; this is a change from the BERT setup because, with a vocabulary size of only 20 amino acids, the chance 
of randomising into the same amino acid gives a non-negligible performance boost. The model receives no 
indication which tokens are corrupted, but the loss is only computed over changed tokens. We use a 15% chance 
for a token to be changed. 80% of these are masked, 10% are corrupted, and 10% remain unchanged (but do 
contribute to the loss). Here we follow Devlin et al.7 precisely.

Next sentence prediction (NSP) To stimulate the model to learn a representation of the whole sequence, a 
sequence-level task is added. That is, one label should be predicted for the whole sequence in addition to the ones 
for individual tokens. Devlin et al.7 created this task by either concatenating two half-length sequences from the 
corpus or using one whole-length sequence, and having the model predict which is the case. A special CLS token 
was prepended to every training example, and the representation of this token was used to predict the target label.

We adapt the NSP task for the application to protein sequence data, by selecting either whole sequences 
from the data or concatenating the first part of one and the second part of another sequence chosen at random. 
Sequences are cut or left unchanged with equal probability. To make the NSP task more challenging, we cut each 
sequence randomly somewhere between 40-60% of its length to avoid having the cut be in the exact same position 
every time. We place a SEP token in between the two separate chunks of protein sequence, or in the middle of the 
complete sequence, using the same 40-60% selection to simulate a cutting point. Another SEP token is placed at 
the end, before the padding tokens. Following Devlin et al.7, we also add a learned segment embedding to every 
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token which indicates whether the token belongs to the first or the second part of the sequence. Summed with 
the token- and position embeddings, these form the input embeddings.

Batching For efficiency reasons, each batch either contains only regular sequences or only large sequences. 
We schedule the proportion of regular versus large sequence batches in each epoch. Training starts with 0% 
large sequence batches and linearly increases to 50% by the end of the run. Our assumption is that at the start 
of training, the model is not yet learning long dependencies, so it is more efficient to train on short sequences. 
Near the end of training, the model is hopefully learning longer dependencies, and the longer sequences become 
a valuable input.

For each batch, we perform both tasks: the batch is made up of either original sequences or concatenated cut 
sequences, and in both cases, masking is applied as described above. We then compute losses for both the MTP 
and NSP tasks, using categorical cross-entropy, and add them together to produce the total loss.

Pre‑training results. Both the BERT medium and base model were pre-trained using the Layer-wise 
Adaptive Moments (LAMB)  optimizer68. We used a learning rate of 0.00025 and batch sizes of 512 and 128 
sequences for regular- and big batches, respectively. Both runs took approximately two weeks of wall-clock time 
of continuous training on four parallel TitanRTX GPUs and using mixed precision. The medium model was 
trained for 2 000 000 steps while the base one was trained for 1 000 000 steps.

The BERT medium model converged on roughly 38% accuracy for the regular sequences in the masked token 
prediction task, and was still improving on the large sequences at the end of this run. With longer training times, 
we would expect the accuracy for big sequences to also converge at around 38%, but the latest average training 
accuracy after the full 2 000 000 steps at the end of this run was approximately 35%. The average validation and 
testing accuracy for the masked token prediction were also both around 35% at the end. The NSP accuracy con-
verged much faster than the masked token prediction and ended at an average training, validation, and testing 
accuracy of around 96% (see Supplementary Fig. 1A).

The BERT base model showed a similar training progression as the medium model after only half the 
amount of steps. This increase in performance is likely due to its added complexity. The base model also per-
formed better than the medium one overall, converging on roughly 41% accuracy for the regular sequences in 
the masked token prediction task, with the performance on big sequences still improving again, resulting in an 
average training accuracy at the end of the 1 000 000 steps of 38%. The average validation and testing accuracies 
at the end of this run were both approximately 38% as well. The NSP accuracy converged considerably faster again 
and ended at an average training, validation, and testing accuracy of around 97% (see Supplementary Fig. 1B).

Fine‑tuned models
To provide baseline performance estimates, and as a proof-of-concept for pre-training performed as described 
in the previous section, we fine-tune both our BERT-derived models for all downstream tasks included in the 
ProteinGLUE benchmark dataset.

Fine‑tuning methods. Architecture and parameters The fine-tuning models for the downstream tasks con-
sists of the transformer model and a classifier. The size of the model is therefore dependent on the size of the pre-
trained transformer. Classifiers of classification tasks (SS3, SS8, BU, PPI, and EPI) consist of a non-linear layer, a 
dropout layer, a classification layer, and a probability layer. The activation function in the non-linear layer is set 
to the Gaussian Error Linear Unit (GELU)69, which was also used in the pre-train layers. The dimension of the 
output space of the classification layer is set to the number of classes plus one, due to the padding of sequences. 
The activation function that is applied to the output in order to generate the probabilities is set to the softmax 
activation function. The classifier of the regression tasks (ASA and HPR) consisted of a linear layer, a dropout 
layer, and a regression layer. The activation function of the linear layer is also set to the GELU activation func-
tion. The dimensionality of the output space in the regression layer is set to 1.

We tuned the hyperparameters batch size, learning rate, and dropout rate for all downstream tasks by train-
ing models on the training sets and compare performances on the validation set. We performed an exhaustive 
grid search on the pre-trained medium and base models separately. The dropout rate is the rate included in 
the dropout layer of the fine-tuning classifier. For the medium model we considered batch sizes 8, 16, and 32, 
learning rates 6.25e-5, 1.25e-4, 2.5e-4, and dropout rates 0.0, 0.05, 0.1, and 0.2. When a high performance is 
attained for the largest learning rate, the learning rate is further increased to 5.0e-4 or 1.0e-3. For the base 
model we considered the same values, except for the batch size where only batch sizes of 4 and 8 were included 
due to memory limitations. After the exhaustive grid search, the 4 to 8 best performing hyper-parameter sets 
were selected for each prediction task. The models were trained 4 times on each set after which the best hyper-
parameters were selected, based on the mean performance (see supplementary Table 1).

We decided to set the maximum length of the considered sequences to 512 and keep this value constant over 
all downstream prediction tasks. Even as for the pre-training, the LAMB optimiser was used. We define the 
fine-tuning models to be converged when they are trained for 15 epochs or 2 000 steps.

For the protein interface and epitope prediction tasks, we had to deal with the class imbalance of the dataset. 
The PPI interface training set consisted of 16 605 residues indicated as interface residues, and 66 180 residues 
indicated as non-interacting. The epitope training set consisted of 4 503 and 41 938 residues indicated as inter-
acting and non-interacting, respectively. We included the ratio of the number of non-interface residues over 
the number of interface residues as weight in the loss function. Therefore this weight was set to 3.99 for the PPI 
interface prediction and 9.31 for the epitope prediction.

All downstream tasks were trained and validated on a single compute node, consisting of a single TitanX 
GPU containing 12Gb of GPU memory, with a (wallclock) run time of about 4 hours.
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Training and evaluation During training, the loss was determined by categorical cross entropy for classification 
tasks, and mean absolute error for regression tasks. Model performance was assessed by the Pearson correlation 
coefficient (PCC) for the regression tasks (ASA and HPR), accuracy (ACC) for the classification of the structural 
components (SS3 and SS8) and the identification of the buried residues, and the area under the receiver operating 
characteristic curve (AUC ROC) for the interface predictions (PPI and EPI). Note that the range of the PCC is 
between −1 and 1, whereas the range of the ACC and AUC is between 0 and 1. We determined random prediction 
performances for all downstream prediction tasks in the benchmark set. For the SS3, SS8, and BUR prediction 
task this random performance is set to the fraction of the number of majority-class residues over all residues. 
For the ASA and HPR we compare the labels with a sequence of the same size sampled from a standard normal 
distribution. The expected random expected performance, in this way, is close to zero. For the two interface 
prediction tasks we set the baseline to the random performance of a ROC curve, which is 0.5.

The previously described pre-trained medium and base models were used for the hyperparameter tuning. 
The performance, per downstream task, between the medium and base model were compared. For comparison, 
we also trained the downstream tasks on both models excluding the pre-training step. During training of the 
pre-training models two checkpoints were stored manually. This includes the checkpoints of the medium model 
at step 500 000 and 1 600 000, and of the base model at step 350 00 and 700 000. The predictive performance 
of the different downstream tasks was evaluated over these checkpoints to check for overfitting. All fine-tuning 
models were trained ten times, after which the mean performance and standard error on the validation set was 
determined.

Figure 1.  Improved performance on downstream tasks with pre-trained models. Prediction performances of 
the benchmark test set, as introduced in section ProteinGLUE Benchmark tasks, for a medium model without 
the pre-training step (pink), medium model including a pre-trained model until step 2 000 000 (dark red), 
base model without the pre-training step (grey), and base model including a pre-trained model until step 
1 000 000 (dark blue). The yellow lines indicate the performance of a random or majority-class baseline. All 
models are trained ten times on their selected set of hyperparameters after which the mean performance and 
standard error is determined.

Table 2.  Overview of the number of protein sequences in the training, validation and test set of the seven 
downstream protein structural prediction tasks. The prediction tasks secondary structure in three (SS3) and 
eight (SS8) classes, buried residues (BUR) and absolute solvent accessibility (ASA) are based on the same 
dataset. Furthermore, we included the prediction tasks protein-protein interaction interfaces (PPI), epitope 
interfaces (EPI) and hydrophobic patches (HPR).

Dataset SS3 SS8 BUR ASA PPI EPI HPR

Training set 8 803 8 803 8 803 8 803 324 179 2 949

Validation set 1 102 1 102 1 102 1 102 81 45 738

Test set 1 102 1 102 1 102 1 102 137 56 1 230
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Fine‑tuning results. In this study, we selected seven protein structural prediction tasks to evaluate pre-
trained transformer models in a varied way. Our pre-trained models include a BERT medium and a BERT 
base model trained on protein domain sequences from the PfamA database. The datasets for these tasks were 
based on previous state-of-the-art prediction studies on these tasks. Each selected dataset was divided into a 
training, validation, and test set, see Table 2.

Hyperparameter tuning Similar to the study of Devlin et al.7, most hyperparameters were set to the parameters 
of the pre-training-tasks. However, the downstream tasks are considered as having converged after reaching 2 000 
steps, or 15 epochs. We tuned the the batch size, learning rate, and dropout rate for each task specific on both 
the converged medium model and the converged base model (see Supplementary Table 2).

Model performance The pre-trained models were used as a basis to train and evaluate models for the seven 
fully supervised downstream tasks. It is commonly assumed that, by allowing the model to learn the structure 
of the input data on a large amount of unlabeled sequences, the performance on specific tasks can be improved, 
without requiring large amounts of labeled sequences, which are often difficult or expensive to acquire. Figure 1 
tests this assumption using our data and models. We compare the performance of a medium and base model 
on the downstream tasks, with and without pre-training. The results show a clear improvement of pre-training 
for 6 out of the 7 downstream tasks. For the epitope prediction both the medium and base pre-trained mod-
els perform slightly worse compared to the non pre-trained models. On the validation set, the improvement 
of pre-training is shown for all tasks (see Supplementary Fig. 2). For the hydrophobic patch regression (HPR), 
however, the results are less clear. There is minimal improvement in the medium model. The base model does 
show improvement, but that is because the model without pre-training far under performs, compared to the 
medium version. This appears to be the most challenging task in our set of benchmarks, and the one for which 
models behave the most counter-intuitively.

For the medium model an accuracy of 59% after pre-training and 39% without pre-training on the SS8 
prediction using the CB513 test set is obtained. For the base model an accuracy of 58% after pre-training and 
34% without pre-training is obtained on this test set.

Furthermore, we compare the downstream task performances against their random performance. The ran-
dom performance of the SS3, SS8, and BUR prediction was set to the majority-class which resulted in 39%, 32%, 
and 70% respectively. The random performance of the ASA prediction was estimated to be –8.9e–4, and of the 
HPR prediction to –6.0e–4, i.e. both very close to zero. The random performance of the AUC ROC performance 
measure was set to the value 0.5. We conclude that in all cases except for the not pre-trained base model on the 
SS8 and BUR prediction tasks, the model performances, including standard error bars, outperform the random 
performances.

To check for convergence in the pre-trained models we also monitored the performance of the downstream 
task during pre-training, which is shown in Fig. 2. Results on the validation set are shown in Supplementary 
Fig. 3. Our main observation here is that for most tasks, pre-training confers a strong advantage. For the medium 
model (Fig. 2a), the performance increases with the amount of pre-training, aside from some small fluctuations. 
For the larger base model (Fig. 2b), we note a more uneven progress in the number of training steps, with 
greater standard error.

Figure 3 shows the difference between the validation and test performance. For some tasks the validation 
performance is substantially higher than the test performance. To some degree this is to be expected, but it may 
also indicate over-tuning of hyperparameters. Overall, however, model performance is stable over the test and 
validation sets.

Discussion
We present the ProteinGLUE benchmark set: a collection of classification and regression tasks in the protein 
sequence domain. Our main aim with this resource is to provide a standardized way to evaluate pre-trained 
protein models, and to provide clearer and more informative comparison between such models. We have also 
provided initial results of baseline models and checkpoints of these models for further development. All code 
used to train and evaluate our models is available online at https:// github. com/ ibivu/ prote in- glue.

ProteinGLUE is not the first publicly available benchmark dataset in the field of protein modeling. The 
TAPE benchmark has been used by multiple groups and has thereby served as a useful tool to compare model 
performances. In comparison with TAPE, our dataset covers more protein-function related tasks that also have 
not been covered yet by other groups.

We pre-trained two transformer models inspired by the BERT medium and base architectures. Pre-training 
was performed with two objectives commonly used in NLP: masked symbol prediction; and next sentence predic-
tion, which we adapted to predict matching halves of a protein sequence. Given the fast convergence on the NSP 
objective—with a final accuracy close to 100% (Fig.  1)—in future work it could be investigated how this task 
could be made more difficult and how a harder pre-training task may help improve downstream performance.

We evaluated prediction performances on the ProteinGLUE benchmark set on secondary structure in three 
(SS3) and eight (SS8) classes, buried residues (BUR) and absolute solvent accessibility (ASA), protein-protein 
interaction interfaces (PPI), epitope interfaces (EPI), and hydrophobic patches (HPR) using the medium and 
base pre-trained BERT models. We compared results against performances of these models without pre-training 
(Fig. 1). Except for the epitope interface (EPI) prediction, all other benchmark tasks (SS3, SS8, BUR, ASA, PPI, 
HPR) achieved better performance on the pre-trained models. We also see that the secondary structure tasks 
(SS3 and SS8) show similar trends across models as the solvent accessibility tasks (BUR and ASA), indicating that 
these tasks rely on similar  patterns1. As expected the hydrophobic patch (HPR) prediction is the most challeng-
ing  task22. Results of the SS8 prediction on the CB513 test set indicate similar performances for both medium 
and base models, 59% and 58% respectively. Compared to other models (see Table 1), a similar accuracy is 

https://github.com/ibivu/protein-glue


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16047  | https://doi.org/10.1038/s41598-022-19608-4

www.nature.com/scientificreports/

obtained for the TAPE Transformer (59% for the medium model) whereas approximately 10% points lower 
accuracies are obtained compared to the other protein representation models which achieve 70-73%. This could 
partially be due to the smaller models used here, and due to the use of multiple sequence alignments as input, 
which we do not include.

In order to make strong claims about zero-shot learning, such as those  in7  and32, a rigorous effort should 
be made to remove any overlap between the pre-training set and the downstream training sets. Here, because 
of evolutionary relations between protein sequences, this is not a trivial task. In particular, PFAM is built from 
seed alignments based on proteins with known structure from the PDB; and the downstream task annotations 
are also based on the PDB. Nevertheless, we may still draw firm conclusions on the usefulness of pretraining in 
protein structure-related property prediction.

The larger base model does not always outperform the medium model (Fig. 1). However, the differences 
are small and not statistically significant, and are not indicative of a lack of convergence for the base model. 

Figure 2.  Performance of downstream tasks monitored during pre-training. Prediction performances of the 
benchmark test set, as introduced in section ProteinGLUE Benchmark tasks, (a) for a medium sized model, and 
(b) for a base sized model, trained without the pre-training step (pink/grey), and on a pre-trained model for 
350 000 (light red/blue), 700 000 (red/blue) and 1 000 000 steps (dark red/blue). Further details as in Fig. 1.
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Additionally, for some datasets, performance does not increase monotonically with the number of training steps 
(Fig. 2). While these instances are rare, it suggests there may be some benefit to early stopping in pre-training, 
or added regularization to allow for a more uniform convergence. We leave this as a matter for future work.

While it is not our aim to outperform state of the art structural prediction methods, which typically use feature 
sets that were handcrafted and tuned over many years of painstaking research (e.g. Table 1 for SS8), we compare 
the ProteinGLUE benchmark set results against these methods in order to provide a general understanding of 
the performances. Note that for most comparisons the test sets are different, so the observed differences in per-
formance should only be taken as a rough approximation. The OPUS-TASS  method2 outperforms earlier studies 
on the secondary structure prediction based on the dataset created by Hanson et al.46, which is also used here. 
OPUS-TASS reaches 89% and 79% on SS3 and SS8 prediction, respectively, on one of their test sets. We reach 
75% accuracy on the pre-trained base model for SS3 and 62% accuracy on the pre-trained medium model for 
SS8. The SeRenDIP  method16,18, trained on the combined dataset of homodimer and heterodimer protein-protein 
interactions, resulted in an AUC ROC of 0.72 on the homodimer test set and 0.64 on the heterodimer test set. We 
reach an AUC ROC for PPI of 0.62 on the combined test set. The SeRenDIP-CE  method20 for epitope interface 
prediction reaches an average AUC ROC of 0.69 over their 5 folds. We reached an average AUC ROC for EPI of 
0.67 over ten times training the first fold. Clearly, even though we could show the added value of our pre-training 
of the transformer models, in their current invocation these models are not yet competitive to established state-
of-the-art for the various prediction tasks.

There are many research questions about pre-trained protein models that we hope these tasks can help to 
investigate. For instance, the question of how best to fine-tune a pre-trained model for a specific task. For sim-
plicity, we used the original BERT approach of fine-tuning all weights in our baselines, but there are indications 
that freezing weights may help for some models, and that layerwise decay is preferable for  others70,71 In general 
there are many ways to fine-tune a model for a downstream task (including  distillation72 and prompt  tuning73), 
all of which may be evaluated with these datasets.

One limitation of large models in general is that the state of the art eventually falls to such large models that 
even fine-tuning itself becomes a non-trivial task, requiring a large amount of computational resources. This can 
be mitigated by various methods. For example by fine-tuning with some or all of the lower layers of the model 
frozen, so that these values can be precomputed. What techniques are available, and what their impacts are on 
performance we leave as a topic for future research.

Compared to the standardized benchmarks available in the NLP domain, a set of seven tasks is a modest 
start. We hope that further benchmark sets will follow ours. All tasks included in our ProteinGLUE benchmark 
set currently label individual amino acids: no tasks were included for which the label applies to the whole 
sequence, or to a region such as a protein domain. Including tasks like fold or function prediction may provide 
such opportunities. Here, we evaluated the added value of pre-training using transformer models, as these are 
the most widely used at the moment, however our benchmark set is equally useful for evaluating any sequence 
to sequence prediction method. We expect our ProteinGLUE benchmark set will prove to be useful in itself, and 
that combined with the baseline models and performance comparison presented here, it will provide a starting 
point for further improvement of deep learning approaches, and transformer-based models in particular, to the 
exciting field of protein structural and functional property prediction.

Figure 3.  Performance on downstream task is generally stable between test and validation sets. Prediction 
performances of the benchmark validation and test set for both the converged medium and base models. 
Further details are given in Fig. 1.
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